Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BCL-2 INHIBITORS CONTAINING A ZINC BINDING MOIETY
Document Type and Number:
WIPO Patent Application WO/2009/036051
Kind Code:
A1
Abstract:
The present invention relates to Bcl-2 inhibitors and their use in the treatment of cell proliferative diseases such as cancer. The compounds of the invention may further act as HDAC inhibitors.

Inventors:
QIAN CHANGGENG (US)
CAI XIONG (US)
ZHAI HAIXIAO (US)
Application Number:
PCT/US2008/075837
Publication Date:
March 19, 2009
Filing Date:
September 10, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CURIS INC (US)
QIAN CHANGGENG (US)
CAI XIONG (US)
ZHAI HAIXIAO (US)
International Classes:
A01N41/06; A61K31/18; A61K31/497
Foreign References:
US20070015787A12007-01-18
Other References:
OLTERSDORF ET AL.: "An inhibitor of Bcl-2 family proteins induces regression of solid tumors", NATURE, vol. 435, June 2005 (2005-06-01), pages 677 - 681
DUAN ET AL.: "Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptsis in t(14;18)lymphomas", MOLECULAR CELLULAR BIOLOGY, vol. 25, 2005, pages 1608 - 1617
Attorney, Agent or Firm:
ISSAC, Roy, P. et al. (P.C.515 Groton Rd., Unit 1, Westford MA, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A compound represented by formula I or II:

or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein

Cy and Cy 1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;

Ar is aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl or substituted cycloalkyl; Z is O, S, CR 8 , or NR 8 ;

R20 and R 2 1 are each independently selected from hydrogen, acyl, aliphatic and substituted aliphatic; alternatively, R20 and R 2 1 can be taken together with the atom they are attached to form a heterocyclic or substituted heterocyclic; m is 1, 2 or 3; n is 1, 2, 3 or 4;

R 22 and R23 are each independently selected from hydrogen, acyl, aliphatic and substituted aliphatic;

X 1 -X 4 are independently N or CR25, where R25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic;

B is linker; C is selected from:

where Wi is O or S; Yi is absent, N, or CH; Zi is N or CH; R 7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R 7 and R 9 are both present, one of R 7 or R 9 must be OR' and if Yi is absent, R9 must be OR'; and Rg is hydrogen, acyl, aliphatic or substituted aliphatic;

; where Wi is O or S; J is O, NH or NCH 3 ; and Rio is hydrogen or lower alkyl;

(c) ; where Wi is O or S; Y 2 and Z 2 are independently N, C or CH; and

(d) where Zi, Yi, and Wi are as previously defined; Rn and R12 are independently selected from hydrogen or aliphatic; R 1 , R 2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.

2. A compound according to Claim 1 represented by formula (III) or (IV):

(HI) (IV) or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein Xi -Xg are independently N or CR 25 , where R 25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; Bi is absent, N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Ar, Cy 1, Z, R', R 8 and R 2 O-R 23 are as previously defined in Claim 1.

3. A compound according to Claim 1 represented by formula (V) or (VI):

or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein W is N or CH; Wi is absent, N or CH; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 28 is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; Xi-X 9 are independently N or CR 25 , where R 25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; Bi is absent, N(Rs), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, C 1 - C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Z, R', R 8 and R 2 Q-R 23 are as previously defined in Claim 1.

4. A compound according to Claim 1 represented by formula (VII) or (VIII):

geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein W is N or CH; Wi is absent, N or CH; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 28 is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; Bi is absent, N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl,

C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R', R 8 and R 2O -R 23 are as previously defined in Claim 1.

5. A compound according to Claim 1 represented by formula (IX) or (X):

geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein W is N or CH; Wi is absent, N or CH; R 24 is hydrogen, acyl, aliphatic or substituted aliphatic; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 28 is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; X 1 -X 9 are independently N or CR 25 , where R 25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; s is 1 to 8; Z, R', R 8 and R 2 O-R 23 are as previously defined in Claim 1.

6. A compound according to Claim 1 selected from the compounds delineated in Table A or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

TABLE A

7. A pharmaceutical composition comprising as an active ingredient a compound of Claim 1 and a pharmaceutical acceptable carrier.

8. A method of treating cell proliferative disorder in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the pharmaceutical composition of Claim 7.

9. The method of Claim 8, wherein said cell proliferative disorder is selected from the group consisting of papilloma, blastoglioma, Kaposi's sarcoma, melanoma, non-small cell lung cancer, ovarian cancer, prostate cancer, colon cancer, squamous cell carcinoma, astrocytoma, head cancer, neck cancer, bladder cancer, breast cancer, lung cancer, colorectal cancer, thyroid cancer, pancreatic cancer, renal cell carcinoma, gastric cancer, hepatocellular carcinoma, neuroblastoma, leukemia, lymphoma, vulcar cancer, Hodgkin's disease and Burkitt's disease.

10. A method of treating an HDAC-mediated disease comprising administering to a subject in need thereof a pharmaceutical composition of Claim 7.

11. A method of treating cell proliferative disorder that relates to Bcl-2 and HDAC comprising administering to a subject in need thereof a pharmaceutical composition of Claim 7.

12. A method for the treatment or prophylaxis of cancer in a subject in need thereof, comprising administering to the subject a compound of claim 7.

Description:

Bcl-2 INHIBITORS CONTAINING A ZINC BINDING MOIETY

RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/971,031, filed on September 10, 2007. The entire teaching of the above application is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Programmed cell-death or apoptosis is a regulated process that involves an orchestrated series of biochemical events leading to characteristic cell morphology and eventually cell death, and is necessary in an organism's development and during the life cycle. For example, the differentiation of digits in a developing embryo requires cells between the digits to initiate apoptosis so that they can separate. Deregulated apoptotic processes have been implicated in an extensive variety of diseases. Excessive apoptosis causes hypotrophy, such as in ischemic damage, whereas an insufficient amount results in uncontrolled cell proliferation, such as in cancer. Bcl-2 proteins

Bcl-2 is the prototype of a family of mammalian genes and the proteins they produce (Chao, D. T., Korsmeyer, S.J., Annu Rev Immunol 16, 1998, 395-419; Cory, S., Adams, J.M. Nat Rev Cancer 2(9), 2002, 647-656), which govern mitochondrial outer membrane permeabilisation, and which can be either anti-apoptotic (including Bcl-2 proper, Bcl-xL, and Bcl-w) or pro-apoptotic (Bax, BAD, Bak and Bok among others). More than 20 genes in the Bcl-2 family are known to date. Bcl-2 derives its name from B- cell lymphoma 2, as it is the second member of a group of genes described to be translocated in follicular lymphomas from chromosome 14 to 18 (Pegoraro, L., et al., Proc Natl Acad Sci USA 81, 1984, 7166-7170).

The Bcl-2 family has a general structure that consists of a hydrophobic helix surrounded by amphipathic helices. Many members of the family have transmembrane domains. Bcl-2 and its closely related BcI-X(L) counterpart are one of several pro-survival proteins which can share up to four highly conserved domains known as BHl, BH2, BH3 and BH4. These domains form the basis of a well-defined groove where a heterodimeric

protein-protein interaction can occur with pro-apoptotic BH3 proteins such as Bad, Bid and Bim (Chao, D.T., Korsmeyer, S.J., Annu Rev Immunol 16, 1998, 395-419; Kelekar, A., Thompson, C.B., Trends Cell Biol 8, 1998, 324-330).

The BH domains are known to be crucial for function, as deletion of these domains affects apoptosis rates. In anti-apoptotic Bcl-2 proteins, such as Bcl-2 and Bcl-xL, all four BH domains are conserved.

The site of action for the Bcl-2 family is mostly on the outer mitochondrial membrane. Within the mitochondria are pro-apoptotic factors (e.g., cytochrome C) that if released, activate caspases which are key proteins in the apoptotic cascade. Depending on their function, once activated, Bcl-2 proteins either promote the release of these factors, or keep them sequestered in the mitochondria. The exact mechanisms surrounding Bcl-2 regulated mitochondrial outer membrane permeabilization have yet to be elucidated, but it is believed that the multidomain, pro-apoptotic Bcl-2 proteins can activate it directly, a process that is inhibited by the binding of anti-apoptotic Bcl-2 proteins. There are a number of theories concerning how Bcl-2 family genes and their resulting proteins exert their pro- or anti-apoptotic effects. An important one states that this is achieved by activation or inactivation of an inner mitochondrial permeability transition pore, which is involved in the regulation of matrix Ca2+, pH, and voltage. It is also thought that some Bcl-2 family proteins can induce (pro-apoptotic members) or inhibit (anti- apoptotic members) the release of cytochrome C in to the cytosol, which, once there, activates caspase-9 and caspase-3, leading to apoptosis (Zamzami, N. et ah, Oncogene 16, 1998, 2265-2282.) Overexpression of Bcl-2 is known to block cytochrome C release. Bcl-2 's role in disease

Cancer is one of the world's leading causes of death and occurs when the homeostatic balance between cell growth and death is disturbed. Extensive evidence indicates a strong correlation between neoplastic progression and deregulation of apoptotic pathways. Overexpression of Bcl-2 family proteins is associated with tumor progression, poor prognosis and resistance to chemotherapy (Stauffer, S. R., Curr Top Med Chem 7(10), 2007, 961-965), hence the development of therapies which inhibit Bcl-2 proteins may prove to be beneficial in cancer and other proliferative disorders.

The Bcl-2 gene has been implicated in a number of cancers, including melanoma, breast, prostate, and lung cancer, supporting its role for decreased apoptosis in the pathogenesis of cancer. A particularly interesting example has been observed in follicular

B-cell lymphoma, where a chromosomal translocation occurs between chromosomes 14 and 18 which places the Bcl-2 gene next to the immunoglobulin heavy chain locus (Jaeger, U. et al., Leuk Lymphoma 14, 1994, 197-202). The resulting fusion gene is deregulated, leading to the transcription of excessively high levels of anti-apoptotic Bcl-2 protein and decreasing these cells' rate of apoptosis (Vaux D. L. et al., Nature 335, 1988, 440-442). Targeted Bcl-2 therapies

Specifically, antagonism of the protein-protein interactions of Bcl-2 family proteins (including Bcl-2 and Bcl-xL) are considered extremely important points for drug intervention in cancer. Abbott has recently described a novel inhibitor of Bcl-2 and Bcl-xL, known as ABT-737 (Oltersdorf, T., et al. Nature 435, 2005, 677-681). ABT-737 is one of several BH3 mimetic small molecule inhibitors targeting Bcl-2 and Bcl-2 -related proteins such as Bcl-xL and McI-I. It has been shown to cause complete regression in small-cell lung carcinoma tumour xenografts in mice and may prove to be clinically useful as a new anticancer agent capable of overcoming apoptosis resistance. It is currently at the preclinical stage.

ABT-737

An antisense oligonucleotide drug, Genasense (G3139), has also been developed to target Bcl-2 after it was shown that the proliferation of human lymphomas with t(14;18) translocation could be inhibited by antisense RNA targeted to the start coding region of Bcl-2 mRNA (Dias, N., Stein, CA, Eur J Pharm Biopharm 54, 2002, 263-269).

Genasense' s clinical development program indicates that its manufacturer has evidence for its potential therapeutic utility in a range of tumor types, as has been studied

in patients with non-small cell and small cell lung cancer, non-Hodgkin's lymphoma, myeloid and lymphocytic leukemia, multiple myeloma, melanoma, colorectal, prostate, skin, breast, renal, pancreatic, liver and gastric cancer. Combination therapy Despite early successes of molecularly targeted cancer therapies, selectively inhibiting individual targets can lead to the development of drug resistant tumors and also does not address the issue of heterogeneity amongst tumor cells. Much effort is currently aimed at combining molecularly targeted drugs with standard chemotherapeutics, radiation, or other targeted agents with the expectation that novel strategies to improve overall response rate and to increase remission rates will emerge.

In addition to the conventional approach of co-administering individual cancer drugs, novel combinatorial approaches, in which two or more distinct targeted inhibitory activities are combined in a single molecular entity are being explored. In contrast to the abovementioned drug combination treatments, such multi-targeted single molecule drugs, in addition to the mentioned advantages regarding drug resistance, may also provide benefits with respect to reduced toxicity, matched pharmacodynamic properties, the convenience of administration of a single drug, and synergistic efficacy compared to combination therapy. HDAC inhibitors in combination treatment One particularly attractive target for combination therapy are histone deacetylase

(HDAC) inhibitors, which target a family of enzymes that catalyze the deacetylation of histones and numerous non-histone proteins directly and so contribute to the transcriptional silencing of a number of genes, including genes involved in apoptosis.

Use of HDAC inhibitors in combination with a wide range of molecularly targeted therapies as well as standard chemotherapeutics and radiation has been shown to produce synergistic effects. Co-treatment with SAHA significantly increases EGFR2 antibody trastuzumab-induced apoptosis of BT-474 and SKB R- 3 cells and induces synergistic cytotoxic effects against breast cancer cells, for instance (Bali, Clin. Cancer Res., 2005, 11, 3392). HDAC inhibitors, such as SAHA, have demonstrated synergistic antiproliferative and apoptotic effects when used in combination with gefitinib in head and neck cancer cell lines, including lines that are resistant to gefitinib monotherapy (Bruzzese et al., Proc. AACR, 2004). Pretreating gefitinib resistant cell lines with the HDAC inhibitor, MS-275, led to a growth-inhibitory and apoptotic effect of gefitinib similar to that seen in gefitinib-

sensitive NSCLC cell lines, including those harboring EGFR mutations (Witta S. E., et al, Cancer Res, 2006, 66:2, 944-50). The HDAC inhibitor PXDlOl has been shown to act synergistically to inhibit proliferation with the EGFRl inhibitor Tarceva (erlotinib) (WO2006082428A2). Similarly, inhibition of HDAC activity has also been shown to synergize with inhibition of angiogenesis (Kim, MS, et al, Nat Med, 2001, 7:4, 437-43; Deroanne, CF, et al, Oncogene, 2002, 21 :3, 427-36). Indeed, the anti-tumor activity of the HDAC inhibitor FK228 observed in PC3 xenografts is dependent upon the repression of angiogenic factors such as VEGF and bFGF (Sasakawa et al, Biochem. Pharmacol, 2003, 66, 897). The HDAC inhibitor NVP-LAQ824 has been shown to inhibit angiogenesis and have a greater anti-tumor effect when used in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (Qian et al, Cancer Res., 2004, 64, 66260). The increase in anti-tumor activity was associated with a down regulation of the pro-angiogenic factors angiopoietin-2, Tie-2, and survivin in endothelial cells and with down regulation of hypoxia-inducible factor 1- and VEGF expression in tumor cells.

Similarly the HDAC inhibitor, LBH589, has been shown to target endothelial cells leading to a reduction in an angiogenic response (Qian et al, Clin Cancer Res, 2006, 12:2, 634- 42).

Histone deacetylase inhibitors have been shown to promote Gleevec (imatinib mesylate)-mediated apoptosis in both Gleevec-sensitive and -resistant (Bcr/Abl+) human myeloid leukemia cells Yu et al, Cancer Res, 2003, 63:9, 2118-26; Nimmanapalli et al, Cancer Res., 63:16, 2003, 5126-35. Similarly, strong synergy between NVP-LAQ 824 and imatinib mesylate was demonstrated against the BCR/ABL-expressing myeloid leukemia cell line, K562. These compounds were minimally toxic when used alone but, in combination, resulted in a marked increase in mitochondrial damage (e.g., cytochrome c, Smac/DIABLO, and apoptosis-inducing factor release), caspase activation, and apoptosis. (Weisberg et al, Leukemia. 2004, 18, 1951).

In addition, HDAC inhibitors have been shown to synergistically block cell proliferation when used in combinations with standard chemotherapeutics including 5 -FU, Topotecan, Gemcitabine, Cisplatin, Doxorubicin, Docetaxle, Tomoxifen, 5-Azacytidine, Alimta, and Irinotecan (WO2006082428A2). A combination of the HDAC inhibitor, MS- 275, and the nucleoside analogue fludarabine sharply increased mitochondrial injury, caspase activation, and apoptosis in leukemia cells (Maggio, SC, et. al, Cancer Res, 2004,

64:7, 2590-600). Addition of the HDAC inhibitor SAHA and topoisomerase II inhibitors (e.g., epirubicin, doxorubicin, m-AMSA, VM-26, and teniposide) have also shown synergistic effects in terms of increased cell death (Marchion, DC, J Cell Biochem, 2004, 92:2, 223-37). Similarly HDAC inhibitors have shown synergy when combined with radiation therapy (Paoluzzi, L, Cancer Biol Ther, 2004, 3:7, 612-3; Entin-Meer, M., MoI Cancer Ther, 2005, 4:12, 1952-61; Cerna, D, Curr Top Dev Biol, 2006, 73, 173-204) further illustrating the potential synergy between HDACs and other cancer therapeutics. Furthermore, HDAC inhibitors have also been shown to synergize with mitogen- activated protein kinase/ERK kinase (MEK), Cyclin-dependent kinase (CDK), proteasome, HSP90, and TRAIL inhibitors (MoI Pharmacol., 2006, 69(1), 288-98; Biochem Biophys Res Commu., 2006, 27, 339(4), 1171-7; MoI Pharmacol., 2005 67(4): 1166-76; Blood, 2005, 105(4), 1768-76; Cancer Res., 2006, 66(7), 3773-81; Acta Haematol., 2006, 115(1- 2), 78-90; Clin Cancer Res. 2004, 10(11), 3839-52; Oncogen, 2005 24(29), 4609-23; MoI Cancer Ther., 2003, 2(12), 1273-84; Biochem Pharmacol, 2003, 66(8), 1537-45; and MoI Cancer Ther., 2005, 4(11), 1772-85).

Current therapeutic regimens of the types described above attempt to address the problem of drug resistance by the administration of multiple agents. However, the combined toxicity of multiple agents due to off-target side effects as well as drug-drug interactions often limits the effectiveness of this approach. Moreover, it often is difficult to combine compounds having differing pharmacokinetics into a single dosage form, and the consequent requirement of taking multiple medications at different time intervals leads to problems with patient compliance that can undermine the efficacy of the drug combinations. In addition, the health care costs of combination therapies may be greater than for single molecule therapies. Furthermore, it may be more difficult to obtain regulatory approval of a combination therapy since the burden for demonstrating activity/safety of a combination of two agents may be greater than for a single agent (Dancey J & Chen H, Nat. Rev. Drug Dis., 2006, 5:649). The development of novel agents that target multiple therapeutic targets selected not by virtue of cross reactivity, but through rational design will help improve patient outcome while avoiding these limitations. Thus, enormous efforts are still directed to the development of selective anti-cancer drugs as well as to new and more efficacious combinations of known anti-cancer drugs.

SUMMARY OF THE INVENTION

The present invention relates to Bcl-2 inhibitors containing zinc-binding moiety based derivatives that have enhanced and unexpected properties as inhibitors of Bcl-2 and their use in the treatment of Bcl-2 related diseases and disorders such as cancer. The compounds of the present invention may further act as HDAC or matrix metalloproteinase (MMP) inhibitors by virtue of their ability to bind zinc ions. Surprisingly these compounds are active at multiple therapeutic targets and are effective for treating disease. Moreover, in some cases it has even more surprisingly been found that the compounds have enhanced activity when compared to the activities of combinations of separate molecules individually having the Bcl-2 and HDAC activities. In other words, the combination of pharmacophores into a single molecule may provide a synergistic effect as compared to the individual pharmacophores. More specifically, it has been found that it is possible to prepare compounds that simultaneously contain a first portion of the molecule that binds zinc ions and thus permits inhibition of HDAC and/or matrix metalloproteinase (MMP) activity and at least a second portion of the molecule that permits binding to a separate and distinct target that inhibits Bcl-2 and thus provides therapeutic benefit. Preferably, the compounds of the present invention inhibit both Bcl-2 and HDAC activity.

Accordingly, the present invention provides a compound having a general formula I or II:

or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein

Cy and Cyi are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;

Ar is aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl or substituted cycloalkyl; Z is O, S, CR 8 , Or NR 8 ;

R20 and R 2 1 are each independently selected from hydrogen, acyl, aliphatic and substituted aliphatic; alternatively, R 2 o and R 2 1 can be taken together with the atom they are attached to form a heterocyclic or substituted heterocyclic; m is 1, 2 or 3; n is i, 2, 3 or 4;

R 22 and R 23 are each independently selected from hydrogen, acyl, aliphatic and substituted aliphatic;

X 1 -X 4 are independently N or CR 25 , where R 25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic;

B is linker;

C is selected from:

or S; Yi is absent, N, or CH; Zi is N or CH; R 7 and Rg are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R 7 and R 9 are both present, one of R 7 or R 9 must be OR' and if Yi is absent,

R9 must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;

(b) where Wi is O or S; J is O, NH or NCH 3 ; and Rio is hydrogen or lower alkyl;

; where Wi is O or S; Y 2 and Z 2 are independently N, C or CH; and

(d) where Zi, Yi, and Wi are as previously defined; Rn and Ri 2 are independently selected from hydrogen or aliphatic; Ri, R 2 and R 3

are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.

DETAILED DESCRIPTION OF THE INVENTION

In a first embodiment of the compounds of the present invention are compounds represented by formula (I) or (II) as illustrated above, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof.

In one embodiment of the compounds of the present invention are compounds represented by formula (III) or (IV) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

(III) (IV) wherein Xi -Xg are independently N or CR25, where R25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; Bi is absent, N(Rg), CO, Ci-C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl,

cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Ar, Cy 1 , Z, R', R 8 and R20-R23 are as previously defined.

In one embodiment of the compounds of the present invention are compounds represented by formula (V) or (VI) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

wherein W is N or CH; Wi is absent, N or CH; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 2 8 is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; Xi-X 9 are independently N or CR25, where R25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; Bi is absent, N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 - C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Z, R', R 8 and R20-R23 are as previously defined.

In one embodiment of the compounds of the present invention are compounds represented by formula (VII) or (VIII) as illustrated below, or its geometric isomers,

enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

wherein W is N or CH; Wi is absent, N or CH; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 28 is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; Bi is absent, N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; B 3 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 4 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 5 is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 - C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B 6 is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; R', R 8 and R 2 o-R 2 3 are as previously defined. In one embodiment of the compounds of the present invention are compounds represented by formula (IX) or (X) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

wherein W is N or CH; Wi is absent, N or CH; R 24 is hydrogen, acyl, aliphatic or substituted aliphatic; R 26 is hydrogen, alkyl, aryl, alkylcarbonyl, or arylcarbonyl; R 27 is aryl, substituted aryl, heteroaryl, or substituted heteroaryl; R 2 g is hydrogen, oxo, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; Xi-X 9 are independently N or CR 25 , where R 25 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; s is 1 to 8; Z, R', R 8 and R 2O -R 23 are as previously defined.

Representative compounds according to the invention are those selected from the Table A below or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:

TABLE A

The invention further provides methods for the prevention or treatment of diseases or conditions involving aberrant proliferation, differentiation or survival of cells. In one embodiment, the invention further provides for the use of one or more compounds of the invention in the manufacture of a medicament for halting or decreasing diseases involving aberrant proliferation, differentiation, or survival of cells. In preferred embodiments, the disease is cancer. In one embodiment, the invention relates to a method of treating cancer in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.

The term "cancer" refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, lymphomas and the like. For example, cancers include, but are not limited to, mesothelioma, leukemias and lymphomas such as cutaneous T-cell lymphomas (CTCL), noncutaneous peripheral T-cell lymphomas, lymphomas associated with human T-cell lymphotrophic virus (HTLV) such as adult T-cell leukemia/lymphoma (ATLL), B-cell lymphoma, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, lymphomas, and multiple myeloma, non-Hodgkin lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), Hodgkin's lymphoma, Burkitt lymphoma, adult T-cell leukemia lymphoma, acute -myeloid leukemia (AML), chronic myeloid leukemia (CML), or hepatocellular carcinoma. Further examples include myelodisplastic syndrome, childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft-tissue sarcomas, common solid tumors of adults such as head and neck cancers (e.g., oral, laryngeal, nasopharyngeal and esophageal), genitourinary cancers (e.g., prostate, bladder, renal, uterine, ovarian, testicular), lung cancer (e.g., small-cell and non small cell), breast cancer, pancreatic cancer, melanoma and other skin cancers, stomach cancer, brain tumors, tumors related to Gorlin's syndrome (e.g., medulloblastoma, meningioma, etc.), and liver cancer. Additional exemplary forms of cancer which may be treated by the subject compounds include, but are not limited to, cancer of skeletal or smooth muscle, stomach cancer, cancer of the small intestine, rectum carcinoma, cancer of the salivary gland, endometrial cancer, adrenal cancer, anal cancer, rectal cancer, parathyroid cancer, and pituitary cancer.

Additional cancers that the compounds described herein may be useful in preventing, treating and studying are, for example, colon carcinoma, familiary adenomatous polyposis carcinoma and hereditary non-polyposis colorectal cancer, or melanoma. Further, cancers include, but are not limited to, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma), renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma, choroidea

melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma, liposarcoma, fibrosarcoma, Ewing sarcoma, and plasmocytoma. In one aspect of the invention, the present invention provides for the use of one or more compounds of the invention in the manufacture of a medicament for the treatment of cancer.

In one embodiment, the present invention includes the use of one or more compounds of the invention in the manufacture of a medicament that prevents further aberrant proliferation, differentiation, or survival of cells. For example, compounds of the invention may be useful in preventing tumors from increasing in size or from reaching a metastatic state. The subject compounds may be administered to halt the progression or advancement of cancer or to induce tumor apoptosis or to inhibit tumor angiogenesis. In addition, the instant invention includes use of the subject compounds to prevent a recurrence of cancer.

This invention further embraces the treatment or prevention of cell proliferative disorders such as hyperplasias, dysplasias and pre-cancerous lesions. Dysplasia is the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist. The subject compounds may be administered for the purpose of preventing said hyperplasias, dysplasias or pre-cancerous lesions from continuing to expand or from becoming cancerous. Examples of pre-cancerous lesions may occur in skin, esophageal tissue, breast and cervical intra-epithelial tissue.

"Combination therapy" includes the administration of the subject compounds in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment). For instance, the compounds of the invention can be used in combination with other pharmaceutically active compounds, preferably compounds that are able to enhance the effect of the compounds of the invention. The compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other drug therapy. In general, a combination therapy envisions administration of two or more drugs during a single cycle or course of therapy. In one aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate protein kinases involved in various disease states. Examples of such kinases may include, but are not limited to: serine/threonine specific kinases, receptor tyrosine specific kinases and non-receptor

tyrosine specific kinases. Serine/threonine kinases include mitogen activated protein kinases (MAPK), meiosis specific kinase (MEK), RAF and aurora kinase. Examples of receptor kinase families include epidermal growth factor receptor (EGFR) (e.g. HER2/neu, HER3, HER4, ErbB, ErbB2, ErbB3, ErbB4, Xmrk, DER, Let23); fibroblast growth factor (FGF) receptor (e.g. FGF-Rl ,GFF-R2/BEK/CEK3, FGF-R3/CEK2, FGF-R4/TKF, KGF- R); hepatocyte growth/scatter factor receptor (HGFR) (e.g, MET, RON, SEA, SEX); insulin receptor (e.g. IGFI-R); Eph (e.g. CEK5, CEK8, EBK, ECK, EEK, EHK-I, EHK-2, ELK, EPH, ERK, HEK, MDK2, MDK5, SEK); AxI (e.g. Mer/Nyk, Rse); RET; and platelet-derived growth factor receptor (PDGFR) (e.g. PDGFα-R, PDGβ-R, CSF1-R/FMS, SCF-R/C-KIT, VEGF-R/FLT, NEK/FLKl, FLT3/FLK2/STK-1). Non-receptor tyrosine kinase families include, but are not limited to, BCR-ABL (e.g. p43 abl , ARG); BTK (e.g. ITK/EMT, TEC); CSK, FAK, FPS, JAK, SRC, BMX, FER, CDK and SYK.

In another aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate non-kinase biological targets or processes. Such targets include histone deacetylases (HDAC), DNA methyltransferase (DNMT), heat shock proteins (e.g. Bcl-2), and proteosomes.

In a preferred embodiment, subject compounds may be combined with antineoplastic agents (e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins) that inhibit one or more biological targets such as Zolinza, Tarceva, Iressa, Tykerb, Gleevec, Sutent, Sprycel, Nexavar, Sorafinib, CNF2024, RG108, BMS387032, Affinitak, Avastin, Herceptin, Erbitux, AG24322, PD325901, ZD6474, PD 184322, Obatodax, ABT737 and AEE788. Such combinations may enhance therapeutic efficacy over efficacy achieved by any of the agents alone and may prevent or delay the appearance of resistant mutational variants. In certain preferred embodiments, the compounds of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment. Examples of such agents include, but are not limited to, alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines

and Triazines (Altretamine, Procarbazine, Dacarbazine and Temozolomide), Nitrosoureas (Carmustine, Lomustine and Streptozocin), Ifosfamide and metal salts (Carboplatin, Cisplatin, and Oxaliplatin); plant alkaloids such as Podophyllotoxins (Etoposide and Tenisopide), Taxanes (Paclitaxel and Docetaxel), Vinca alkaloids (Vincristine, Vinblastine, Vindesine and Vinorelbine), and Camptothecan analogs (Irinotecan and Topotecan); antitumor antibiotics such as Chromomycins (Dactinomycin and Plicamycin), Anthracyclines (Doxorubicin, Daunorubicin, Epirubicin, Mitoxantrone, Valrubicin and Idarubicin), and miscellaneous antibiotics such as Mitomycin, Actinomycin and Bleomycin; antimetabolites such as folic acid antagonists (Methotrexate, Pemetrexed, Raltitrexed, Aminopterin), pyrimidine antagonists (5-Fluorouracil, Floxuridine, Cytarabine,

Capecitabine, and Gemcitabine), purine antagonists (6-Mercaptopurine and 6-Thioguanine) and adenosine deaminase inhibitors (Cladribine, Fludarabine, Mercaptopurine, Clofarabine, Thioguanine, Nelarabine and Pentostatin); topoisomerase inhibitors such as topoisomerase I inhibitors (Ironotecan, topotecan) and topoisomerase II inhibitors (Amsacrine, etoposide, etoposide phosphate, teniposide); monoclonal antibodies (Alemtuzumab, Gemtuzumab ozogamicin, Rituximab, Trastuzumab, Ibritumomab Tioxetan, Cetuximab, Panitumumab, Tositumomab, Bevacizumab); and miscellaneous anti-neoplasties such as ribonucleotide reductase inhibitors (Hydroxyurea); adrenocortical steroid inhibitor (Mitotane); enzymes (Asparaginase and Pegaspargase); anti-microtubule agents (Estramustine); and retinoids (Bexarotene, Isotretinoin, Tretinoin (ATRA).

In certain preferred embodiments, the compounds of the invention are administered in combination with a chemoprotective agent. Chemoprotective agents act to protect the body or minimize the side effects of chemotherapy. Examples of such agents include, but are not limited to, amfostine, mesna, and dexrazoxane. In one aspect of the invention, the subject compounds are administered in combination with radiation therapy. Radiation is commonly delivered internally (implantation of radioactive material near cancer site) or externally from a machine that employs photon (x-ray or gamma-ray) or particle radiation. Where the combination therapy further comprises radiation treatment, the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co-action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.

It will be appreciated that compounds of the invention can be used in combination with an immunotherapeutic agent. One form of immunotherapy is the generation of an active systemic tumor-specific immune response of host origin by administering a vaccine composition at a site distant from the tumor. Various types of vaccines have been proposed, including isolated tumor-antigen vaccines and anti-idiotype vaccines. Another approach is to use tumor cells from the subject to be treated, or a derivative of such cells (reviewed by Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol, 121 :487). In U.S. Pat. No. 5,484,596, Hanna Jr. et al. claim a method for treating a resectable carcinoma to prevent recurrence or metastases, comprising surgically removing the tumor, dispersing the cells with collagenase, irradiating the cells, and vaccinating the patient with at least three consecutive doses of about 10 7 cells.

It will be appreciated that the compounds of the invention may advantageously be used in conjunction with one or more adjunctive therapeutic agents. Examples of suitable agents for adjunctive therapy include a 5HTi agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g. an NKi antagonist); a cannabinoid; acetaminophen or phenacetin; a 5 -lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g. methotrexate); gabapentin and related compounds; a tricyclic antidepressant (e.g. amitryptilline); a neurone stabilising antiepileptic drug; a mono-aminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; an inhibitor of the release, or action, of tumour necrosis factor .alpha.; an antibody therapy, such as a monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g. interferon); an opioid analgesic; a local anaesthetic; a stimulant, including caffeine; an H2-antagonist (e.g. ranitidine); a proton pump inhibitor (e.g. omeprazole); an antacid (e.g. aluminium or magnesium hydroxide; an antiflatulent (e.g. simethicone); a decongestant (e.g. phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine); an antitussive (e.g. codeine, hydrocodone, carmiphen, carbetapentane, or dextramethorphan); a diuretic; or a sedating or non-sedating antihistamine.

Matrix metalloproteinases (MMPs) are a family of zinc-dependent neutral endopeptidases collectively capable of degrading essentially all matrix components. Over

20 MMP modulating agents are in pharmaceutical develop, almost half of which are indicated for cancer. The University of Toronto researchers have reported that HDACs regulate MMP expression and activity in 3T3 cells. In particular, inhibition of HDAC by trichostatin A (TSA), which has been shown to prevent tumorigenesis and metastasis, decreases mRNA as well as zymographic activity of gelatinase A (MMP2; Type IV collagenase), a matrix metalloproteinase, which is itself, implicated in tumorigenesis and metastasis (Ailenberg M., Silverman M., Biochem Biophys Res Commun., 2002 , 298:110- 115). Another recent article that discusses the relationship of HDAC and MMPs can be found in Young D.A., et al., Arthritis Research & Therapy, 2005, 7: 503. Furthermore, the commonality between HDAC and MMPs inhibitors is their zinc-binding functionality.

Therefore, in one aspect of the invention, compounds of the invention can be used as MMP inhibitors and may be of use in the treatment of disorders relating to or associated with dysregulation of MMP. The overexpression and activation of MMPs are known to induce tissue destruction and are also associated with a number of specific diseases including rheumatoid arthritis, periodontal disease, cancer and atherosclerosis.

The compounds may also be used in the treatment of a disorder involving, relating to or, associated with dysregulation of histone deacetylase (HDAC). There are a number of disorders that have been implicated by or known to be mediated at least in part by HDAC activity, where HDAC activity is known to play a role in triggering disease onset, or whose symptoms are known or have been shown to be alleviated by HDAC inhibitors. Disorders of this type that would be expected to be amenable to treatment with the compounds of the invention include the following but are not limited to: Anti-proliferative disorders (e.g. cancers); Neurodegenerative diseases including Huntington's disease, Polyglutamine disease, Parkinson's disease, Alzheimer's disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome; Metabolic diseases including Type 2 diabetes; Degenerative diseases of the Eye including Glaucoma, Age-related macular degeneration, Rubeotic glaucoma; Inflammatory diseases and/or Immune system disorders including Rheumatoid Arthritis (RA), Osteoarthritis, Juvenile chronic arthritis,

Graft versus Host disease, Psoriasis, Asthma, Spondyloarthropathy, Crohn's Disease, inflammatory bowel disease Colitis Ulcerosa, Alcoholic hepatitis, Diabetes, Sjoegrens's syndrome, Multiple Sclerosis, Ankylosing spondylitis, Membranous glomerulopathy, Discogenic pain, Systemic Lupus Erythematosus; Disease involving angiogenesis including cancer, psoriasis, rheumatoid arthritis; Psychological disorders including bipolar disease, schizophrenia, mania, depression and dementia; Cardiovascular Diseases including heart failure, restenosis and arteriosclerosis; Fibrotic diseases including liver fibrosis, cystic fibrosis and angiofibroma; Infectious diseases including Fungal infections, such as Candida Albicans, Bacterial infections, Viral infections, such as Herpes Simplex, Protozoal infections, such as Malaria, Leishmania infection, Trypanosoma brucei infection,

Toxoplasmosis and coccidlosis and Haematopoietic disorders including thalassemia, anemia and sickle cell anemia.

In one embodiment, compounds of the invention can be used to induce or inhibit apoptosis, a physiological cell death process critical for normal development and homeostasis. Alterations of apoptotic pathways contribute to the pathogenesis of a variety of human diseases. Compounds of the invention, as modulators of apoptosis, will be useful in the treatment of a variety of human diseases with aberrations in apoptosis including cancer (particularly, but not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, immune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, and autoimmune diabetes mellitus), neurodegenerative disorders (including, but not limited to, Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), AIDS, myelodysplastic syndromes, aplastic anemia, ischemic injury associated myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol induced liver diseases, hematological diseases (including, but not limited to, chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including, but not limited to, osteoporosis and arthritis), aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases, and cancer pain.

In one aspect, the invention provides the use of compounds of the invention for the treatment and/or prevention of immune response or immune-mediated responses and diseases, such as the prevention or treatment of rejection following transplantation of synthetic or organic grafting materials, cells, organs or tissue to replace all or part of the function of tissues, such as heart, kidney, liver, bone marrow, skin, cornea, vessels, lung, pancreas, intestine, limb, muscle, nerve tissue, duodenum, small-bowel, pancreatic-islet- cell, including xeno-transplants, etc.; to treat or prevent graft-versus-host disease, autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, thyroiditis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes uveitis, juvenile-onset or recent-onset diabetes mellitus, uveitis, Graves disease, psoriasis, atopic dermatitis, Crohn's disease, ulcerative colitis, vasculitis, auto-antibody mediated diseases, aplastic anemia, Evan's syndrome, autoimmune hemolytic anemia, and the like; and further to treat infectious diseases causing aberrant immune response and/or activation, such as traumatic or pathogen induced immune disregulation, including for example, that which are caused by hepatitis B and C infections, HIV, staphylococcus aureus infection, viral encephalitis, sepsis, parasitic diseases wherein damage is induced by an inflammatory response (e.g., leprosy); and to prevent or treat circulatory diseases, such as arteriosclerosis, atherosclerosis, vasculitis, polyarteritis nodosa and myocarditis. In addition, the present invention may be used to prevent/suppress an immune response associated with a gene therapy treatment, such as the introduction of foreign genes into autologous cells and expression of the encoded product. Thus in one embodiment, the invention relates to a method of treating an immune response disease or disorder or an immune-mediated response or disorder in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.

In one aspect, the invention provides the use of compounds of the invention in the treatment of a variety of neurodegenerative diseases, a non-exhaustive list of which includes: I. Disorders characterized by progressive dementia in the absence of other prominent neurologic signs, such as Alzheimer's disease; Senile dementia of the Alzheimer type; and Pick's disease (lobar atrophy); II. Syndromes combining progressive dementia with other prominent neurologic abnormalities such as A) syndromes appearing mainly in adults (e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-

Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration); and B) syndromes appearing mainly in children or young adults (e.g., Hallervorden-Spatz disease and progressive familial myoclonic epilepsy); III. Syndromes of gradually developing abnormalities of posture and movement such as paralysis agitans (Parkinson's disease), striatonigral degeneration, progressive supranuclear palsy, torsion dystonia (torsion spasm; dystonia musculorum deformans), spasmodic torticollis and other dyskinesis, familial tremor, and Gilles de Ia Tourette syndrome; IV. Syndromes of progressive ataxia such as cerebellar degenerations (e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)); and spinocerebellar degeneration (Friedreich's atazia and related disorders); V. Syndrome of central autonomic nervous system failure (Shy-Drager syndrome); VI. Syndromes of muscular weakness and wasting without sensory changes (motorneuron disease such as amyotrophic lateral sclerosis, spinal muscular atrophy (e.g., infantile spinal muscular atrophy (Werdnig-Hoffman), juvenile spinal muscular atrophy (Wohlfart-Kugelberg-Welander) and other forms of familial spinal muscular atrophy), primary lateral sclerosis, and hereditary spastic paraplegia; VII.

Syndromes combining muscular weakness and wasting with sensory changes (progressive neural muscular atrophy; chronic familial polyneuropathies) such as peroneal muscular atrophy (Charcot-Marie-Tooth), hypertrophic interstitial polyneuropathy (Dejerine-Sottas), and miscellaneous forms of chronic progressive neuropathy; VIII. Syndromes of progressive visual loss such as pigmentary degeneration of the retina (retinitis pigmentosa), and hereditary optic atrophy (Leber's disease). Furthermore, compounds of the invention can be implicated in chromatin remodeling.

The invention encompasses pharmaceutical compositions comprising pharmaceutically acceptable salts of the compounds of the invention as described above. The invention also encompasses pharmaceutical compositions comprising hydrates of the compounds of the invention. The term "hydrate" includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like. The invention further encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention. For example, the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form.

The compounds of the invention, and derivatives, fragments, analogs, homo logs, pharmaceutically acceptable salts or hydrate thereof can be incorporated into pharmaceutical compositions suitable for administration, together with a pharmaceutically acceptable carrier or excipient. Such compositions typically comprise a therapeutically effective amount of any of the compounds above, and a pharmaceutically acceptable carrier. Preferably, the effective amount when treating cancer is an amount effective to selectively induce terminal differentiation of suitable neoplastic cells and less than an amount which causes toxicity in a patient.

Compounds of the invention may be administered by any suitable means, including, without limitation, parenteral, intravenous, intramuscular, subcutaneous, implantation, oral, sublingual, buccal, nasal, pulmonary, transdermal, topical, vaginal, rectal, and transmucosal administrations or the like. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Pharmaceutical preparations include a solid, semisolid or liquid preparation (tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection etc.) containing a compound of the invention as an active ingredient, which is suitable for selected mode of administration. In one embodiment, the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e., as a solid or a liquid preparation. Suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like. Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In one embodiment of the present invention, the composition is formulated in a capsule. In accordance with this embodiment, the compositions of the present invention comprise in addition to the active compound and the inert carrier or diluent, a hard gelatin capsule.

Any inert excipient that is commonly used as a carrier or diluent may be used in the formulations of the present invention, such as for example, a gum, a starch, a sugar, a cellulosic material, an acrylate, or mixtures thereof. A preferred diluent is microcrystalline cellulose. The compositions may further comprise a disintegrating agent (e.g., croscarmellose sodium) and a lubricant (e.g., magnesium stearate), and may additionally comprise one or more additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof.

Furthermore, the compositions of the present invention may be in the form of controlled release or immediate release formulations.

For liquid formulations, pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, emulsions or oils. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Examples of oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish-liver oil. Solutions or suspensions can also include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.

In addition, the compositions may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (e.g., tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g., sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycerol, cyclodextrins), a glidant (e.g., colloidal silicon dioxide), antioxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g., hydroxypropyl cellulose, hydroxypropylmethyl cellulose), viscosity increasing agents (e.g., carbomer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweeteners (e.g., sucrose, aspartame, citric acid), flavoring agents (e.g., peppermint, methyl salicylate, or orange flavoring), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g., stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow- aids (e.g., colloidal silicon dioxide), plasticizers (e.g., diethyl phthalate, triethyl citrate), emulsifϊers (e.g., carbomer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer

coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g., ethyl cellulose, acrylates, polymethacrylates) and/or adjuvants.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat No. 4,522,811.

It is especially advantageous to formulate oral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration. Daily administration may be repeated continuously for a period of several days to several years. Oral treatment may continue for between one week and the life of the patient. Preferably the administration may take place for five consecutive days after which time the patient can be evaluated to determine if further administration is required. The administration can be continuous or intermittent, e.g., treatment for a number of consecutive days followed by a rest period. The compounds of the present invention may be administered intravenously on the first day of treatment, with oral administration on the second day and all consecutive days thereafter.

The preparation of pharmaceutical compositions that contain an active component is well understood in the art, for example, by mixing, granulating, or tablet-forming processes. The active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient. For oral administration, the active agents are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions and the like as detailed above.

The amount of the compound administered to the patient is less than an amount that would cause toxicity in the patient. In certain embodiments, the amount of the compound that is administered to the patient is less than the amount that causes a concentration of the compound in the patient's plasma to equal or exceed the toxic level of the compound. Preferably, the concentration of the compound in the patient's plasma is maintained at about 10 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 25 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 50 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 100 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 1000 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 2500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 5000 nM. The optimal amount of the compound that should be administered to the patient in the practice of the present invention will depend on the particular compound used and the type of cancer being treated.

DEFINITIONS

Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.

An "aliphatic group" or "aliphatic" is non-aromatic moiety that may be saturated (e.g. single bond) or contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic, contain carbon,

hydrogen or, optionally, one or more heteroatoms and may be substituted or unsubstituted. An aliphatic group preferably contains between about 1 and about 24 atoms, more preferably between about 4 to about 24 atoms, more preferably between about 4-12 atoms, more typically between about 4 and about 8 atoms. The term "acyl" refers to hydrogen, alkyl, partially saturated or fully saturated cycloalkyl, partially saturated or fully saturated heterocycle, aryl, and heteroaryl substituted carbonyl groups. For example, acyl includes groups such as (Ci-C 6 )alkanoyl (e.g., formyl, acetyl, propionyl, butyryl, valeryl, caproyl, t-butylacetyl, etc.), (C 3 -Ce)cycloalkylcarbonyl (e.g., cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), heterocyclic carbonyl (e.g., pyrrolidinylcarbonyl, pyrrolid-2-one-5 -carbonyl, piperidinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl, etc.), aroyl (e.g., benzoyl) and heteroaroyl (e.g., thiophenyl-2-carbonyl, thiophenyl-3 -carbonyl, furanyl-2- carbonyl, furanyl-3 -carbonyl, lH-pyrroyl-2-carbonyl, lH-pyrroyl-3 -carbonyl, benzo[b]thiophenyl-2-carbonyl, etc.). In addition, the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be any one of the groups described in the respective definitions. When indicated as being "optionally substituted", the acyl group may be unsubstituted or optionally substituted with one or more substituents (typically, one to three substituents) independently selected from the group of substituents listed below in the definition for "substituted" or the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be substituted as described above in the preferred and more preferred list of substituents, respectively.

The term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about eight carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like.

The term "alkenyl" embraces linear or branched radicals having at least one carbon- carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl.

The terms "alkenyl", and "lower alkenyl", embrace radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations.

The term "alkynyl" embraces linear or branched radicals having at least one carbon- carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkynyl radicals include propargyl, 1-propynyl, 2-propynyl, 1-butyne, 2- butynyl and 1-pentynyl.

The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called "cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl. The term "alkoxy" embraces linear or branched oxy-containing radicals each having alkyl portions of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to about ten carbon atoms and more preferably having one to about eight carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert- butoxy.

The term "alkoxyalkyl" embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals.

The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.

The term "carbonyl", whether used alone or with other terms, such as "alkoxycarbonyl", denotes (C=O).

The term "carbanoyl", whether used alone or with other terms, such as "arylcarbanoylyalkyl", denotes C(O)NH.

The terms "heterocyclyl", "heterocycle", "heterocyclic" or "heterocyclo" embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring-shaped radicals, which can also be called "heterocyclyl", "heterocycloalkenyl" and "heteroaryl" correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. morpholinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., thiazolidinyl, etc.). Examples of partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals. The term "heterocycle" also embraces radicals where heterocyclyl radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like.

The term "heteroaryl" embraces unsaturated heterocyclyl radicals. Examples of heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H-l,2,4-triazolyl, 1H-1,2,3- triazolyl, 2H-l,2,3-triazolyl, etc.) tetrazolyl (e.g. lH-tetrazolyl, 2H-tetrazolyl, etc.), etc.; unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[l,5-b]pyridazinyl, etc.), etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom, for example, thienyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. benzoxazolyl, benzoxadiazolyl, etc.); unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1

to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4- thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like. The term "heterocycloalkyl" embraces heterocyclo-substituted alkyl radicals. More preferred heterocycloalkyl radicals are "lower heterocycloalkyl" radicals having one to six carbon atoms in the heterocyclo radicals.

The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. Preferred alkylthio radicals have alkyl radicals of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylthio radicals have alkyl radicals are "lower alkylthio" radicals having one to about ten carbon atoms. Most preferred are alkylthio radicals having lower alkyl radicals of one to about eight carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio.

The terms "aralkyl" or "arylalkyl" embrace aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl.

The term "aryloxy" embraces aryl radicals attached through an oxygen atom to other radicals. The terms "aralkoxy" or "arylalkoxy" embrace aralkyl radicals attached through an oxygen atom to other radicals.

The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. Preferred aminoalkyl radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred aminoalkyl radicals are "lower aminoalkyl" that have alkyl radicals having one to about ten carbon atoms. Most preferred are aminoalkyl radicals having lower alkyl radicals having one to eight carbon atoms. Examples of such radicals include aminomethyl, aminoethyl, and the like.

The term "alkylamino" denotes amino groups which are substituted with one or two alkyl radicals. Preferred alkylamino radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylamino radicals are "lower alkylamino" that have alkyl radicals having one to about ten carbon atoms. Most preferred are alkylamino radicals having lower alkyl radicals having

one to about eight carbon atoms. Suitable lower alkylamino may be monosubstituted N- alkylamino or disubstituted N,N-alkylamino, such as N-methylamino, N-ethylamino, N ,N- dimethylamino, N,N-diethylamino or the like.

The term "linker" means an organic moiety that connects two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR 8 , C(O), C(O)NH, SO, SO 2 , SO 2 NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO 2 , N(R 8 ), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R 8 is hydrogen, acyl, aliphatic or substituted aliphatic. In one embodiment, the linker B is between 1-24 atoms, preferably 4-24 atoms, preferably 4-18 atoms, more preferably 4-12 atoms, and most preferably about 4-10 atoms. The term "substituted" refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, acyl, aralkoxycarbonyl, carboxylic acid,

sulfonic acid, sulfonyl, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic. It is understood that the substituent may be further substituted.

For simplicity, chemical moieties are defined and referred to throughout can be univalent chemical moieties (e.g., alkyl, aryl, etc.) or multivalent moieties under the appropriate structural circumstances clear to those skilled in the art. For example, an "alkyl" moiety can be referred to a monovalent radical (e.g. CH3-CH2-), or in other instances, a bivalent linking moiety can be "alkyl," in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., -CH 2 -CH 2 -), which is equivalent to the term "alkylene." Similarly, in circumstances in which divalent moieties are required and are stated as being "alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl",

"heteroaryl", "heterocyclic", "alkyl" "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl", those skilled in the art will understand that the terms alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl", "heteroaryl", "heterocyclic", "alkyl", "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl" refer to the corresponding divalent moiety. The terms "halogen" or "halo" as used herein, refers to an atom selected from fluorine, chlorine, bromine and iodine.

As used herein, the term "aberrant proliferation" refers to abnormal cell growth. The phrase "adjunctive therapy" encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention, including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs. The term "angiogenesis," as used herein, refers to the formation of blood vessels.

Specifically, angiogenesis is a multi-step process in which endothelial cells focally degrade and invade through their own basement membrane, migrate through interstitial stroma toward an angiogenic stimulus, proliferate proximal to the migrating tip, organize into blood vessels, and reattach to newly synthesized basement membrane (see Folkman et al., Adv. Cancer Res., Vol. 43, pp. 175-203 (1985)). Anti-angiogenic agents interfere with this process. Examples of agents that interfere with several of these steps include thrombospondin-1, angiostatin, endostatin, interferon alpha and compounds such as matrix metalloproteinase (MMP) inhibitors that block the actions of enzymes that clear and create

paths for newly forming blood vessels to follow; compounds, such as .alpha.v.beta.3 inhibitors, that interfere with molecules that blood vessel cells use to bridge between a parent blood vessel and a tumor; agents, such as specific COX-2 inhibitors, that prevent the growth of cells that form new blood vessels; and protein-based compounds that simultaneously interfere with several of these targets.

The term "apoptosis" as used herein refers to programmed cell death as signaled by the nuclei in normally functioning human and animal cells when age or state of cell health and condition dictates. An "apoptosis inducing agent" triggers the process of programmed cell death. The term "cancer" as used herein denotes a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis.

The term "compound" is defined herein to include pharmaceutically acceptable salts, solvates, hydrates, polymorphs, enantiomers, diastereoisomers, racemates and the like of the compounds having a formula as set forth herein.

The term "devices" refers to any appliance, usually mechanical or electrical, designed to perform a particular function.

As used herein, the term "dysplasia" refers to abnormal cell growth, and typically refers to the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.

As used herein, the term "effective amount of the subject compounds," with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards. This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.

The term "hyperplasia," as used herein, refers to excessive cell division or growth.

The phrase an "immunotherapeutic agent" refers to agents used to transfer the immunity of an immune donor, e.g., another person or an animal, to a host by inoculation. The term embraces the use of serum or gamma globulin containing performed antibodies produced by another individual or an animal; nonspecific systemic stimulation; adjuvants; active specific immunotherapy; and adoptive immunotherapy. Adoptive immunotherapy refers to the treatment of a disease by therapy or agents that include host inoculation of sensitized lymphocytes, transfer factor, immune RNA, or antibodies in serum or gamma globulin.

The term "inhibition," in the context of neoplasia, tumor growth or tumor cell growth, may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. The term "metastasis," as used herein, refers to the migration of cancer cells from the original tumor site through the blood and lymph vessels to produce cancers in other tissues. Metastasis also is the term used for a secondary cancer growing at a distant site.

The term "neoplasm," as used herein, refers to an abnormal mass of tissue that results from excessive cell division. Neoplasms may be benign (not cancerous), or malignant (cancerous) and may also be called a tumor. The term "neoplasia" is the pathological process that results in tumor formation.

As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated.

The term "proliferation" refers to cells undergoing mitosis. The phrase a "radio therapeutic agent" refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia.

The term "recurrence" as used herein refers to the return of cancer after a period of remission. This may be due to incomplete removal of cells from the initial cancer and may occur locally (the same site of initial cancer), regionally (in vicinity of initial cancer, possibly in the lymph nodes or tissue), and/or distally as a result of metastasis.

The term "treatment" refers to any process, action, application, therapy, or the like, wherein a mammal, including a human being, is subject to medical aid with the object of improving the mammal's condition, directly or indirectly.

The term "vaccine" includes agents that induce the patient's immune system to mount an immune response against the tumor by attacking cells that express tumor associated antigens (Teas).

As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66:1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid or inorganic acid. Examples of pharmaceutically acceptable nontoxic acid addition salts include, but are not limited to, salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy- ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, /?-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.

As used herein, the term "pharmaceutically acceptable ester" refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the

parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.

The term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. "Prodrug", as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard- Larsen, et al., (ed). "Design and Application of Prodrugs, Textbook of Drug Design and Development", Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, "Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology," John Wiley and Sons, Ltd. (2002).

As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration, such as sterile pyrogen- free water. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is

incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated. The term "subject" as used herein refers to an animal. Preferably the animal is a mammal. More preferably the mammal is a human. A subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.

The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.

The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. As can be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.

The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- , or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic

mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et ah, Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefmic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers and/or cis- and trans- isomers. Likewise, all tautomeric forms are also intended to be included. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond or carbon-heteroatom double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion. Pharmaceutical Compositions

The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.

As used herein, the term "pharmaceutically acceptable carrier or excipient" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; cyclodextrins such as alpha- (α), beta- (B) and gamma- (γ) cyclodextrins; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.

The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid

compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide- polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or micro emulsions that are compatible with body tissues.

Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non- irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures

thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.

Examples of embedding compositions that can be used include polymeric substances and waxes.

Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.

The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.

Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

For pulmonary delivery, a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration

e.g., inhalation into the respiratory system. Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al, U.S. Pat. No. 5,508,269 to Smith et al, and WO 98/43650 by Montgomery, all of which are incorporated herein by reference). A discussion of pulmonary delivery of antibiotics is also found in U.S. Pat. No. 6,014,969, incorporated herein by reference. By a "therapeutically effective amount" of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.

The total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In general, treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.

The compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with pharmaceutically excipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations may contain from about 20% to about 80% active compound.

Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.

Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms. Synthetic Methods

The compounds of the invention may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes for making certain intermediates include, for example, those illustrated in PCT publication numbers WO 2005049593, WO 2005049594, US Publication nos. 2006/0258657 and 2006/0128706, which are herein incorporated by reference. Necessary starting materials

may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non- limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of a chemist.

The compounds and processes of the present invention will be better understood in connection with the following representative synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared, which are intended as an illustration only and not limiting of the scope of the invention.

Scheme 1

HBrZHOAc JUU

0104

0105

Scheme 2

208 0209

0101 0

0210

0211

EXAMPLES

The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures,

substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.

EXAMPLE 1: Preparation of (R)-4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1- yl)-7V-(4-(4-((2-(hydroxyamino)-2-oxoethyl)(methyl)amino)-l- (phenylthio)- butan-2- ylamino)-3-nitrophenylsulfonyl)benzamide (Compound 1) Step Ia: (7?)-Benzyl 5-oxo-tetrahydrofuran-3-ylcarbamate (Compound 0101)

To a stirred slurry of sodium borohydride (8.38 g, 0.223 mol) in THF (290 ml) at O 0 C was added a solution of 0100 (46 g, 0.185 mol) in THF (290ml) over a period of 3 h. After stirring at room temperature for 1 h, the reaction mixture was carefully acidified to pH 2 with 6 N HCl and then concentrated to approximately one-fourth the volume under reduced pressure. The resulting solution was diluted with water and extracted with four portions of ether, and then the combined organic extracts were concentrated under reduced pressure to a heterogeneous residue. The yellow residue was taken up in toluene (200 ml), containing p-TsOH (200 mg), and then water was azeotropically removed by using a Dean-Stark apparatus. After the mixture refluxed for 5 h, the toluene was removed under reduced pressure to afford a viscous residue, which gave 0101 (37 g, 85%) as a white crystals upon triturated with ether. LCMS: 236 [M+l] + ; 1 H NMR (DMSO-J 6 ): δ 2.39 (dd, IH, J 1 = 3.6 Hz, J 2 = 18.0 Hz), 2.86 (dd, IH, J 1 = 8.1 Hz, J 2 = 17.7 Hz), 4.11 (dd, IH, J 1 = 3.6 Hz, J 2 = 9.3 Hz), 4.319 (m, IH), 4.43 (dd, IH, J 1 = 6.0 Hz, J 2 = 9.0 Hz), 5.05 (s, 2H), 7.365 (m, 5H), 7.88 (d, IH, J= 4.5 Hz).

Step Ib: (i?)-Benzyl l-hydroxy-4-(methylamino)-4-oxobutan-2-ylcarbamate (Compound 0102) 0101 (5.04 g, 21.4 mmol) was added into a solution of methanamine (31.06g, 1 mol) in ethanol (100 ml) and stirred for 15 m, during this period 0101 was dissolved gradually and then new solid appeared. The solvent was evaporated under reduced pressure to obtain 0102 (5.016 g, 88%) as a white solid which was used in the next step reaction without further purification. LCMS: 267 [M+l] + ; 1 H NMR (DMSO-J 6 ): δ 2.18 (dd, IH, J 1 = 8.4 Hz 5 J 2 = 14.1 Hz), 2.31 (dd, IH, J 1 = 6.3 Hz 5 J 2 = 14.4 Hz), 2.54 (d, 3H, J= 5.1 Hz), 3.33 (m, IH), 3.82 (m, IH), 4.703 (m, IH), 5.00 (s, 2H), 6.98 (d, IH, J= 8.4 Hz), 7.35 (m, 5H), 7.68 (m, IH).

Step Ic: (7?)-Benzyl 4-(methylamino)-4-oxo-l-(phenylthio)butan-2-ylcarbamate (Compound 0103)

A mixture of 0102 (5.02 g, 18.85 mmol), (PhS) 2 (8.23 g, 37.70 mmol) and PBu 3 (9.44 g, 40.98 mmol) in toluene (100 ml) was heated to 8O 0 C and stirred for 18 h . The mixture was cooled down and petroleum ether (500 ml) was added. The precipitate was filtered and washed with petroleum ether to obtain 0103 (5.45 g, 80.7%) as a white solid which was used in the next step reaction without further purification. LCMS: 359 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 2.39 (m, IH), 2.55 (d, 3H, J= 3.9 Hz), 3.068 (m, 2H), 3.33 (m, IH), 3.98 (m, IH), 5.00 (s, 2H), 7.18 (m, IH), 7.35 (m, 10H), 7.78 (m, IH). Step Id: (i?)-3-Amino-λ/-methyl-4-(phenylthio)butanamide (Compound 0104)

0103 (5.4 g, 15.06 mmol) was dissolved in a mixture of acetic acid (100 ml) and 40% aqueous HBr solution (9.Ig) and stirred at 8O 0 C for 4 h. Water (100 ml) was added to the mixture after it's cooled down, extracted with methylene chloride (50 ml x 2). The solution was adjusted pH=12 with 6N KOH, extracted with methylene chloride (100 ml x 3), and the extract was dried with anhydrous sodium sulfate, evaporated under reduced pressure to obtain 0104 (2.5 g, 74%) as a colorless oil which was used in the next step reaction without further purification. LCMS: 225 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 2.11 (dd, IH, J 1 = 7.8 Hz 5 J 2 = 14.4 Hz), 2.31 (dd, IH, J 1 = 5.1 Hz 5 J 2 = 15.0 Hz), 2.56 (d, 3H, J= 4.5 Hz), 2.86 (dd, IH, J 1 = 6.6 Hz, J 2 = 12.6 Hz), 3.03 (dd, IH, J 1 = 5.1 Hz, J 2 = 12.6 Hz), 3.12 (m, IH), 7.17 (m, IH), 7.33 (m, 4H), 7.86 (m, IH).

Step Ie: (i?)-λ/-Methyl-3-(2-nitro-4-sulfamoylphenylamino)-4-(phenyl thio) butanamide (Compound 0105)

To the solution of 0104 (2.5 g, 11.14mmol) in DMF (36 ml) were added 4-fluoro-3- nitrobenzenesulfonamide(2.7g, 12.26mmol) and DIPEA (1.9 ml). The mixture was stirred for 4 h. The solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel (methylene chloride / methanol = 50:1) to yield 0105 (2.6 g, 55%) as a yellow solid. LCMS: 425 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 2.55 (d, 3H, J= 5.2 Hz), 2.63 (m, 2H), 3.34 (d, 2H, J= 11.4 Hz), 4.38 (m, IH), 7.07 (d, IH, J= 9.0 Hz), 7.23 (m, 7H), 7.72 (dd, IH, J 1 = 2.1 Hz, J 2 = 9.0 Hz), 8.00 (d, IH, J= 4.5 Hz), 8.39 (d, IH, J = 2.1 Hz), 8.68 (d, IH, J= 9.6 Hz).

Step If: (i?)-4-(4-(Methylamino)- 1 -(phenylthio)butan-2-ylamino)-3- nitrobenzenesulfonamide (Compound 0106)

A mixture of 0105 (2 g, 4.7 mmol) and 1 M solution of BH 3 in THF (17 ml) was stirred for 16 h, and treated with methanol (5 ml) and concentrated HCl (2 ml). The resulting mixture was stirred at 8O 0 C for 2 h, cooled to room temperature, adjusted to pH=10 with 4 M Na 2 CO 3 . The solution was diluted with water (100 ml), extracted with methylene chloride (100 ml x 2). The extracts was concentrated and purified by column chromatography on silica gel (methylene chloride / methanol = 30:1) to yield 0106 (1.2 g, 62%) as a yellow solid. LCMS: 411 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.90 (m, 2H), 2.28 (s, 3H), 2.61 (t, 2H, J= 6.6 Hz), 3.36 (m, 2H), 4.19 (m, IH), 7.22 (m, 7H), 7.73 (dd, IH, J 1 = 2.7 Hz, J 2 = 9.3 Hz), 8.39 (d, IH, J= 2.7 Hz), 8.52 (m, IH). Step Ig: (i?)-Ethyl 2-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio) butyl) amino)acetate (Compound 0107-1) A mixture of 0106 (313 mg, 0.762 mmol), ethyl 2-bromoacetate (127 mg, 0.762 mmol), Na 2 CO 3 (323 mg, 3.05 mmol) in DMF (11 ml) was stirred at 5O 0 C for 16 h. DMF was evaporated under vacuum, and the residue was purified by column chromatography on silica gel (methylene chloride / methanol = 30:1) to yield 0107-1 (323 mg, 85%) as a yellow solid. LCMS: 497 [M+l] + . 1 H NMR (DMSO-J 6 ): ^ 1.15 (t, 3H, J= 7.5 Hz), 1.83 (m, IH), 1.95 (m, IH), 2.24 (s, 3H), 2.54 (m, 2H), 3.21 (s, 2H), 3.38 (m, 2H), 4.04 (q, 2H, J= 7.2 Hz), 4.16 (m, IH), 7.22 (m, 8H), 7.70 (dd, IH, J 1 = 2.7 Hz, J 2 = 9.3 Hz), 8.40 (d, IH, J= 2.7 Hz), 8.52 (d, IH, J= 8.7 Hz).

Step Ih: (R)-Ethyl 2-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- l-yl)- benzoyl)sulfamoyl)-2-nitrophenylamino)-4-(phenylthio)butyl)( methyl)amino)acetate (Compound 0108-1) A mixture of 0107 (323 mg, 0.651mmol), 0109 (291 mg, 0.716 mmol), EDCI (155 mg, 0.814 mmol) and DMAP (40 mg, 0.326 mmol) in anhydrous methylene chloride (4 ml) was stirred at room temperature for 16 h. The mixture was diluted with methylene chloride (50 ml), washed with brine (50 ml), dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica gel (methylene chloride / methanol =100:1) to yield 0108-1 (107 mg, 18.6%) as a yellow solid. LCMS: 443 [M/2+l] + .

Step Ii: (i?)-4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin- 1 -yl)-N-(4-(4-((2- (hydroxyamino)-2-oxoethyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 -nitro- phenylsulfonyl)benzamide (Compound 1)

To a stirred solution of hydro xylamine hydrochloride (4.67 g, 67 mmol) in methanol (24 ml) at O 0 C was added a solution of potassium hydroxide (5.61 g, 100 mmol) in methanol (14 ml). After addition, the mixture was stirred for 30 minutes at O 0 C, and was allowed to stand at low temperature. The resulting precipitate was isolated to obtain the solution of free hydroxylamine in methanol.

A mixture of 0108-1 (107 mg, 0.121 mmol) and the NH 2 OH solution (1.77 M, 3 ml) was stirred for 15 min at room temperature. The mixture was adjusted to pH 7.0 with acetic acid. The solution was concentrated to a small volume and water was added. The precipitate was filtered, and the collected solid was purified by prep-HPLC to afford compound 1 (47 mg, 44.6%) as a yellow solid. Mp.: 179-201 0 C, LCMS: 872 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.97 (m, 2H), 2.34 (s, 3H), 2.41 (m, 4H), 2.66 (m, 2H), 3.12 (m, 2H), 3.22 (m, 4H), 3.35 (m, 2H), 3.41 (s, 2H), 4.20 (s, IH), 6.87 (d, 2H, J= 8.4 Hz), 7.19 (m, 7H), 7.49 (m, 7H), 7.75 (d, 2H, J= 8.1 Hz), 7.83 (d, IH, J= 8.7 Hz), 8.42 (d, IH, J= 9.9 Hz), 8.50 (s, IH), 8.95 (s, IH), 10.61 (s, IH). Step Ij: Ethyl 4-(piperazin-l-yl)benzoate (Compound 0110)

A mixture of piperazine (12.80 g, 0.15 mol), ethyl-4-fluorobenzoate (8.4 g, 0.05 mol) and K 2 CO 3 (13.80 g, 0.10 mol) in DMSO (20 ml) was stirred at 12O 0 C for 6 h. The mixture was poured into water. The mixture was extracted with ethyl acetate and the organic layer was washed with water and brine, dried over Na 2 SO 4 , concentrated to give compound 0110 (12.4Og, 83 %) as a white solid. LCMS: 235 [M+l] + . Step Ik: Ethyl 4-(4-(2-bromobenzyl)piperazin-l-yl)benzoate (Compound 0111) A mixture of compound 0110 (3.778 g, 16.10 mmol), 2-bromobenzyl bromide (4.000 g, 16.10 mmol), and DIEA (3.4 ml) in acetonitrile (32 ml) was stirred at r.t. for 2 h. The precipitate was filtered to obtain compound 0111 (5.2Og, 80%) as a white solid. LCMS: 403 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.29 (t, J= 7.2 Hz, 3H), 2.55-2.59 (m, 4H), 3.29-3.34 (m, 4H), 3.60 (s, 2H), 4.25 (q, J= 7.2 Hz, 2H), 6.97 (d, J= 9 Hz, 2 H), 7.19-7.25 (m, IH), 7.38 (t, J= 7.2 Hz, IH), 7.52 (d, J= 7.2 Hz, IH), 7.61 (d, J= 7.8 Hz, IH), 7.77 (d, J= 9 Hz, 2H).

Step 11: Ethyl 4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-yl)benzoate

(Compound 0112)

A mixture of compound 0111 (6.915 g, 0.017 mol), 4-chlorophenylboronic acid (3.520 g, 0.023 mol), bis(triphenylpheosphine)palladium dichloride (240 mg, 0.340 mmol) and 2 M sodium carbonate (11.25 mL) in 7:3:2 DME/water/ethanol (100 mL) was stirred at 9O 0 C for 5 h. The mixture was cooled to room temperature and extracted with ethyl acetate. The extract was dried over anhydrous Na 2 SO 4 , filtered, and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/petroether=2/5) to afford product (6.40 g, 86.7 %). LCMS: 435 [M+l] + . Step Im: 4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)benzoic acid

(Compound 0109)

A mixture of compound 0112 (2.40 g, 5.53 mmol) and lithium hydroxide hydrate (0.70 g, 16.68 mmol) in a mixed solvents of dioxane (46 ml) and water (18 ml) was stirred at 95 0 C overnight. The solvent was removed under reduced pressure and the residue was treated with 1 M HCl (15 mL), filtered to obtain compound 0109 (2.10 g, 93 %) as a white solid. LCMS: 407 [M+ 1] + .

EXAMPLE 2: Preparation of (R)-4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1- yl)-7V-(4-(4-((3-(hydroxyamino)-3-oxopropyl)(methyl)amino)-l -(phenylthio)- butan-2- ylamino)-3-nitrophenylsulfonyl)benzamide (Compound 2)

Step 2a: (i?)-Methyl 3-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio)- butyl)amino)propanoate (Compound 0107-2) The title compound 0107-2 was prepared as a yellow solid (247 mg, 45.0%) from compound 0106 (454 mg, 1.11 mmol), methyl 3-bromopropanoate (185 mg, 1.11 mmol), Na 2 CO 3 (469 mg, 4.44 mmol) in DMF (15 ml) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 497 [M+l] + .

Step 2b: (R)-Methyl 3-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- l- yl)benzoyl)sulfamoyl)-2-nitrophenylamino)-4-

(phenylthio)butyl)(methyl)amino)propanoate (Compound 0108-2) The title compound 0108-2 was prepared as a yellow solid (231 mg, 52.5%) from compound 0107-2 (247 mg, 0.497 mmol), 0109 (222 mg, 0.547 mmol), EDCI (119 mg,

0.621 mmol) and DMAP (31 mg, 0.249 mmol) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 443 [M/2+l] + .

Step 2c: (i?)-4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-N- (4-(4-((3- (hydroxyamino)-3 -oxopropyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonyl)benzamide (Compound 2)

The title compound 2 was prepared as a yellow solid (53 mg, 38.4%) using a procedure similar to that described for compound 1 (Example 1): M .p.: 130 ~138°C.

LCMS: 886 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 2.05 (m, 2H), 2.29 (s, 3H), 2.40 (m, 6H), 2.98 (m, 4H), 3.17 (m, 6H), 3.39 (s, 2H), 4.20 (s, IH), 6.83 (d, 2H, J= 8.4 Hz), 6.99 (d, IH, J = 9.3 Hz), 7.41 (m, 13H), 7.73 (d, 2H, J= 9.0 Hz), 7.82 (d, IH, J= 9 Hz), 8.28 (d, IH, J = 8.1 Hz), 8.47 (s, IH), 8.88 (s, IH), 10.56 (s, IH).

EXAMPLE 3: Preparation of (R)-4-(4-((4'-chlorobiphenyl-2-yl)methyl)- piperazin-l-yl)- 7V-(4-(4-((4-(hydroxyamino)-4-oxobutyl) (methyl)amino)-l- (phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)benzamide (Compound 3) Step 3a: (i?)-Ethyl 4-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio)- butyl)amino)butanoate (Compound 0107-3)

The title compound 0107-3 was prepared as a yellow solid (198mg, 52%) from compound 0106 (300mg, 0.731 mmol), ethyl 4-bromobutanoate (143 mg, 0.731 mmol), Na 2 CO 3 (310 mg, 2.924 mmol) in DMF (10 ml) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 525 [M+l] + . 1 H NMR (DMSO-J 6 ): «5 1.15 (t, 3H, J= 6.9 Hz), 1.60 (m, 2H), 1.83 (m, IH), 1.95 (m, IH), 2.09 (s, 3H), 2.22 (m, 5H), 3.36 (m, 2H), 4.01 (q, 2H, J= 6.9 Hz), 4.12 (m, IH), 7.06 (d, IH, J= 9.0 Hz), 7.27 (m, 7H), 7.72 (dd, IH, J 1 = 2.1, J 2 = 9.0), 8.40 (d, IH, J= 2.1 Hz), 8.50 (d, IH, J= 9.3 Hz). Step 3b: (R)-Ethyl 4-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- l-yl)- benzoyl)sulfamoyl)-2-nitrophenylamino)-4-(phenylthio)butyl)( methyl)amino)- butanoate (Compound 0108-3)

The title compound 0108-3 was prepared as a yellow solid (150 mg, 43.6%) from compound 0107-3 (198mg, 0.377mmol), 0109 (230 mg, 0.566 mmol), EDCI (108 mg, 0.566 mmol) and DMAP (23 mg, 0.189 mmol) using a procedure similar to that described for compound 0108-1 (Example 1): LCMS: 457 [M/2+l] + . 1 H NMR (DMSO-J 6 ): δ 1.16 (t, 3H, J= 7.2 Hz), 1.76 (m, 2H), 2.06 (m, 2H), 2.32 (t, 2H, J= 7.5 Hz), 2.40 (m, 4H), 2.55 (m, 3H), 2.80 (m, 4H), 3.16 (m, 4H), 3.24 (m, 2H), 3.39 (s, 2H), 4.04 (q, 2H, J= 6.9 Hz), 4.12 (m, IH), 6.82 (d, 2H, J= 9.0 Hz), 6.97 (d, IH, J= 9.6 Hz), 7.47 (m, 14H), 7.73 (d, 2H, J= 8.7 Hz), 7.82 (d, IH, J= 9.6 Hz), 8.24 (d, IH, J= 8.4 Hz), 8.48 (s, IH).

Step 3c: (i?)-4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-N- (4-(4-((4- (hydroxylamino)-4-oxobutyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 -nitro- phenylsulfonyl)benzamide (Compound 3)

The title compound 3 was prepared as a yellow solid (19 mg, 12.8%) using a procedure similar to that described for compound 1 (Example 1): LCMS: 900 [M+ 1] + . 1 H NMR (DMSO-J 6 ): δ 1.64 (m, 2H), 1.93 (m, 4H), 2.67 (m, 2H), 2.40 (m, 6H), 3.13 (m, 4H), 3.38 (s, 2H), 4.06 (s, IH), 6.79 (d, 2H, J= 9.3 Hz), 6.86 (d, IH, J= 9.6 Hz), 7.32 (m, 14H), 7.73 (m, 3H), 8.32 (m, IH), 8.43 (s, IH), 8.70 (m, IH), 10.42 (m, IH).

EXAMPLE 4 : Preparation of (R)-4-(4-((4 '-chlor obiphenyl-2-yl)methyl)- piperazin-l-yl)-7V-(4-(4-((5-(hydroxyamino)-5-oxopentyl)(met hyl)amino)-l- (phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)benzamide (Compound 4) Step 4a: (i?)-Methyl 5-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio)- butyl)amino)pentanoate (Compound 0107-4) The title compound 0107-4 was prepared as a yellow solid (194 mg, 5 l%)from compound 0106 (300mg, 0.731 mmol), methyl 5-bromopentanoate (143 mg, 0.731 mmol), Na 2 CO 3 (310 mg, 2.924 mmol) in DMF (10 ml) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 525 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.36 (m, 2H), 1.44 (m, 2H), 1.83 (m, IH), 1.95 (m, IH), 2.08 (s, 3H), 2.24 (m, 5H), 2.44 (m, IH), 3.35 (m, 2H), 3.56 (s, 3H), 4.12 (m, IH), 7.06 (d, IH, J= 9.3 Hz), 7.32 (m, 8H), 7.71 (dd, IH, J 1 = 2.4, J 2 = 9.0), 8.41 (d, IH, J= 1.5 Hz), 8.51 (d, IH, J= 8.4 Hz). Step 4b: (i?)-Methyl 5-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- l- yl)benzoyl)sulfamoyl)-2-nitrophenylamino)-4-(phenylthio)buty l)(methyl)amino)pentanoate (Compound 0108-4) The title compound 0108-4 was prepared as a yellow solid (167 mg, 49.4%) from compound 0107-4 (194mg, 0.370mmol), 0109 (225 mg, 0.555 mmol), EDCI (106 mg, 0.555 mmol) and DMAP (230 mg, 0.189 mmol) using a procedure similar to that described for compound 0108-1 (Example 1): LCMS: 457 [M/2+l] + . 1 U NMR (DMSO-J 6 ): δ 1.45 (m, 3H), 2.32 (m, 3H), 2.40 (m, 4H), 2.60 (m, 2H), 2.72 (m, 2H), 3.07 (m, 3H), 3.14 (m, 4H), 3.25 (m, 2H), 3.56 (s, 2H), 4.06 (m, IH), 6.79 (d, 2H, J= 7.5 Hz), 6.90 (m, IH), 7.26 (m, 6H), 7.49 (m, 5H), 7.75 (m, 2H), 8.16 (d, IH, J= 7.2 Hz), 8.28 (d, IH, J= 8.6 Hz), 8.44 (d, IH, J= 2.1 Hz). Step 4c: (i?)-4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-N- (4-(4-((5-

(hydroxyamino)-5 -oxopentyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonyl)benzamide (Compound 4)

The title compound 4 was prepared as a yellow solid (50 mg, 30%) using a procedure similar to that described for compound 1 (Example 1): M.p.:126 ~ 13O 0 C, LCMS: 914 [M+l] + . 1 H NMR (DMSO-J 6 ) δ 1.47 (m, 4H), 1.95 (m, 2H), 2.10 (m, 2H), 2.40 (m, 4H), 2.64 (m, 3H), 3.15 (m, 4H), 3.39 (s, 2H), 4.10 (m, IH), 6.80 (d, 2H, J= 8.7 Hz), 6.93 (d, IH, J= 9.0 Hz), 7.24 (m, 7H), 7.48 (m, 6H), 7.72 (d, 2H, J= 8.7 Hz), 7.81 (d, IH, J= 9.6 Hz), 8.21 (m, IH), 8.46 (d, IH, J= 2.1 Hz), 8.70 (s, IH), 10.38 (s, IH).

EXAMPLE 5 : Preparation of (R)-4-(4-((4 '-chlor obiphenyl-2-yl)methyl)- piperazin-1-yl)- 7V-(4-(4-((6-(hydroxyamino)-6-oxohexyl) (methyl)amino)- 1- (phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl) benzamide (Compound 5) Step 5a: (i?)-Ethyl 6-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio)- butyl)amino)hexanoate (Compound 0107-5) The title compound 0107-5 was prepared as a yellow solid (220 mg, 54.5%) from compound 0106 (300mg, 0.731 mmol), ethyl 6-bromohexanoate (163 mg, 0.731 mmol), Na 2 CO 3 (310 mg, 2.924 mmol) in DMF (10 ml) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 553 [M+l] + . 1 H NMR (DMSO-J 6 ): ^ 1.17 (m, 5H), 1.31 (m, 2H), 1.45 (m, 2H), 1.81 (m, IH), 1.96 (m, IH), 2.08 (s, 3H), 2.20 (m, 4H), 2.43 (m, 2H), 3.33 (m, 2H), 4.03 (q, 2H, J= 6.9 Hz), 4.12 (m, IH), 7.04 (d, IH, J= 9.6

Hz), 7.30 (m, 7H), 7.69 (dd, IH, J 1 = 2.1, J 2 = 9.0), 8.39 (d, IH, J= 2.1 Hz), 8.51 (d, IH, J

= 8.7 Hz).

Step 5b: (i?)-Ethyl 6-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- l-yl)benzoyl)sulfamoyl)-2-nitrophenylamino)-4-(phenylthio)bu tyl)(methyl)amino)- hexanoate (Compound 0108-5)

The title compound 0108-5 was prepared as a yellow solid (165 mg, 48%) from compound 0107-5 (202mg, 0.365mmol), 0109 (163mg, 0.402mmol), EDCI (87mg, 0.457 mmol) and DMAP (190mg, 0.152 mmol) in anhydrous methylene chloride (2.6 ml) using a procedure similar to that described for compound 0108-1 (Example 1): LCMS: 471 [M/2+l] + . 1 H NMR (DMSO-J 6 ): δ 1.21 (m, 5H), 1.51 (m, 4H), 2.09 (m, 2H), 2.26 (t, 2H, J = 6.6 Hz), 2.28 (m, 4H), 2.60 (m, 3H), 3.15 (m, 4H), 3.39 (s, 2H), 4.06 (m, 3H), 6.80 (d, 2H, J= 9.3 Hz), 6.93 (d, IH, J= 9.6 Hz), 7.48 (m, 13H), 7.72 (d, 2H, J= 9.3 Hz), 7.82 (d, IH, J= 9.6 Hz), 8.18 (m, IH), 8.47 (s, IH).

Step 5c: (i?)-4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-N- (4-(4-((6- (hydroxyamino)-6-oxohexyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 -nitro- phenylsulfonyl)benzamide (Compound 5)

The title compound 5 was prepared as a yellow solid (18 mg, 28%) using a procedure similar to that described for compound 1 (Example 1): LCMS: 928 [M+l] + . 1 H NMR

(DMSO-J 6 ): δ 1.20 (m, 2H), 1.48 (m, 4H), 1.93 (t, 2H, J= 7.5 Hz), 2.09 (m, 2H), 2.40 (m, 4H), 2.66 (s, 3H), 2.91 (m, 2H), 3.13 (m, 6H), 3.41 (m, 4H), 4.13 (m, IH), 6.80 (d, 2H, J = 9.3 Hz), 6.93 (d, IH, J= 9.3 Hz), 7.26 (m, 8H), 7.48 (m, 6H), 7.72 (d, 2H, J= 8.7 Hz), 7.82 (dd, IH, J 1 = 1.8 Hz, J 2 = 9.0 Hz), 8.19 (m, IH), 8.46 (d, IH, J= 2.4 Hz), 8.68 (s, IH), 10.35 (s, IH).

EXAMPLE 6: Preparation of (R)-4-(4-((4'-chlorobiphenyl-2-yl)methyl)- piperazin-1- yl)-7V-(4-(4-((7-(hydroxyamino)-7-oxoheptyl)(methyl)amino)-l - (phenylthio)butan-2- ylamino)-3-nitrophenylsulfonyl)benzamide (Compound 6) Step 6a: (i?)-Ethyl 7-(methyl(3-(2-nitro-4-sulfamoylphenylamino)-4-(phenylthio)- butyl)amino)heptanoate (Compound 0107-6)

The title compound 0107-6 was prepared as a yellow solid (224mg, 54%) from compound 0106 (300mg, 0.731 mmol), ethyl 7-bromoheptanoate (173 mg, 0.731 mmol), Na 2 CO 3 (310 mg, 2.924 mmol) in DMF (10 ml) using a procedure similar to that described for compound 0107-1 (Example 1): LCMS: 567 [M+l] + . 1 U NMR (DMSO-J 6 ): ^ 1.16 (m, 7H), 1.30 (m, 2H), 1.45 (m, 2H), 1.81 (m, IH), 1.96 (m, IH), 2.09 (s, 3H), 2.22 (m, 4H), 2.46 (m, 2H), 3.33 (m, 2H), 4.03 (q, 2H, J= 6.9 Hz), 4.12 (m, IH), 7.05 (d, IH, J= 9.6 Hz), 7.33 (m, 7H), 7.70 (m, IH), 8.40 (s, IH), 8.54 (d, IH, J= 8.1 Hz). Step 6b: (i?)-Ethyl 7-((3-(4-(N-(4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1- yl)benzoyl)sulfamoyl)-2-nitrophenylamino)-4-(phenylthio)buty l)(methyl)amino)- heptanoate (Compound 0108-6)

The title compound 0108-6 was prepared as a yellow solid (190 ml, 41%) from compound 0107-6 (220mg, 0.395 mmol), 0109 (241mg, 0.593 mmol), EDCI (94 mg, 0.494 mmol) and DMAP (240 mg, 0.196 mmol) using a procedure similar to that described for compound 0108-1 (Example 1): LCMS: 478 [M/2+l] + . 1 U NMR (DMSO-J 6 ): ^ 1.16 (t, 3H, J= 7.5 Hz), 1.25 (m, 5H), 1.49 (m, 3H), 2.10 (m, 2H), 2.25 (t, 2H, J= 7.2 Hz), 2.40 (m, 4H), 2.60 (m, 3H), 2.85 (m, 2H), 3.15 (m, 4H), 3.24 (m, 2H), 3.39 (s, 2H), 4.03 (q, 2H,

J= 7.2 Hz), 4.08 (m, IH), 6.80 (d, IH, J= 9.3 Hz), 6.93 (m, IH), 7.38 (m, 13H), 7.76 (m, 4H), 8.19 (d, IH, J= 7.5 Hz), 8.46 (d, IH, J= 1.5 Hz).

Step 6c: (i?)-4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1 -yl)-N-(4-(4-((7- (hydroxyamino)-7-oxoheptyl)(methyl)amino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonyl)benzamide (compound 6)

The title compound 6 was prepared as a yellow solid (60 mg, 33%) using a procedure similar to that described for compound 1 (Example 1): M.p.: 125 ~ 130 0 C. LCMS: 942 [M+l] + . 1 H NMR (DMSO-J 6 ;: δ 1.21 (m, 4H), 1.46 (m, 4H), 1.92 (t, 2H, J= 5.2 Hz), 2.10 (m, 2H), 2.40 (m, 4H), 2.58 (s, 3H), 2.85 (m, 4H), 3.14 (m, 4H), 3.35 (m, 2H), 3.39 (s, 2H), 4.09 (m, IH), 6.80 (d, 2H, J= 8.7 Hz), 6.93 (d, IH, J= 9.3 Hz), 7.26 (m, 7H), 7.48 (m, 6H), 7.73 (d, 2H, J= 9.0 Hz), 7.81 (dd, IH, J 1 = 1.8 Hz 5 J 2 = 9.0 Hz), 8.21 (m, IH), 8.46 (d, IH, J= 1.8 Hz), 8.67 (s, IH), 10.34 (s, IH).

EXAMPLE 7: Preparation of (R)-7V 1 -(2-(4-((4'-chlorobiphenyl-2-yl)methyl)- piperazin-l-yl)-5-(4-(4-(dimethylamino)-l-(phenylthio)butan- 2-ylamino)-3- nitrophenylsulfonylcarbamoyl)phenyl)-N 5 -hydroxyglutaramide (Compound 7) Step 7a: tert-Butyl 4-fluoro-3-nitrobenzoate (Compound 0201)

To a solution of 4-fluoro-3-nitro benzoic aicd (370 mg, 2 mmol) in 10 mL of t-BuOH were added (BoC) 2 O (872 mg, 4 mmol) and DMAP (24 mg, 0.2 mmol). The solution was stirred for 24 hours. The solvent was evaporated. The residue was dissolved in ethyl acetate and washed with IN HCl. The separated organic phase was evaporated. The residue was subjected to a flash column chromatography on silica gel eluting with 12.5% EtOAc/Petroleum ether to give compound 0201 (240mg, 49.8%). 1 H NMR (DMSO-J 6 ): δ 1.55 (s, 9H), 7.69 (m, IH), 8.26 (m, IH), 8.48 (m, IH). Step 7b: tert-Butyl 3-nitro-4-(piperazin-l-yl)benzoate (Compound 0202)

A mixture of piperazine(451 mg, 5.2 mmol), tert-butyl 4-fluoro-3-nitro-benzoate (211 mg, 0.9 mmol) and K 2 CO 3 (234 mg, 1.7 mmol) in DMF(IO ml) was stirred at 12O 0 C for 6 hours. The mixture was poured into water, and extracted with ethyl acetate. The organic phase was washed with water (100 ml), concentrateded in vacuo. The residue was purified with flash column chromatography on silica gel eluting with 25% ethyl acetate/petroleum ether to provide 0202 (190 mg, 70.7%). LC-MS: 308 [M+l] + . 1 H NMR (CDCl 3 ): δ 1.58 (s, 9H), 1.84 (s, IH), 3.01 (m, 4H), 3.12 (m, 4H), 7.03 (d, J= 6.0 Hz, IH), 8.02 (dd, J= 2.1, 6.0 Hz, IH), 8.33 (d, J= 2.1 Hz, IH).

Step 7c: tert-Butyl 4-(4-(2-bromobenzyl)piperazin-l-yl)-3-nitrobenzoate (Compound 0203)

A mixture of 0202 (262 mg, 0.85 mmol), 2-bromobenzyl bromide (161 mg, 0.65 mmol), and DIEA (149 mg, 1.3 mmol) in acetonitrile (6 ml) was stirred at 25 0 C for 2 hours and filtered. The solid was subjected to column chromatography on silica gel eluting with ethyl acetate to give 0203 (320 mg, 78.7%). LC-MS: 476 [M+l] + . 1 H NMR (CDCl 3 ): δ 1.57 (s, 9H), 2.67 (t, J= 4.8 Hz, 4H), 3.18 (t, J = 4.8 Hz, 4H), 3.66 (s, 2H), 7.03 (d, J = 8.4 Hz, IH), 7.12 (m, IH), 7.28 (m, IH), 7.45 (m, IH), 7.56 (m, IH), 8.00 (dd, J = 2.1, 6.0 Hz, IH), 8.33 (d, J= 2.1 Hz, IH). Step 7d: tert-Butyl 4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l- yl)-3-nitrobenzoate (Compound 0204)

A mixture of 0203 (160 mg, 0.3 mmol), 4-chlorophenylboronic acid (51 mg, 0.3 mmol), bis(triphenylphosphine)palladium dichloride (7 mg, 0.01 mmol) and 2M sodium carbonate (0.15 mL) in a mixed solvent of DME/water/ethanol (7/3/2, 5 mL) was stirred at 9O 0 C overnight and extracted with ethyl acetate. The extract was dried (MgSO 4 ), filtered, and concentrated. The residue was purified by flash column chromotography on silica gel eluting with 5%-40% ethyl acetate/petroleum ether to give 0204(90 mg, 52.7%). LC-MS: 508 [M+l] + . 1 H NMR (CDCl 3 ): δ 1.57 (s, 9H), 2.50 (t, J= 4.8 Hz, 4H), 3.10 (t, J = 4.8 Hz, 4H), 3.43 (s, 2H), 7.00 (d, J= 8.7 Hz, IH), 7.25 (m, IH), 7.32 (m, 2H), 7.35 (m, 4H), 7.49 (m, IH), 8.00 (m, IH), 8.32 (d, J= 2.1 Hz, IH).

Step 7e: tert-Butyl 3-amino-4-(4-((4'-chlorobiphenyl-2-yl)methyl)- piperazin-1- yl)benzoate (Compound 0205)

Compound 4705 ( 13.4 g, 26 mmol ) was dissolved in methnol (300 ml), and the solution was heated to 6O 0 C. To the solution Fe powder (14.6 g, 260 mmol) and diluted HCl (2.3 g in 10 mL of CH 3 OH) were added. The mixture was stirred for 4 hours, and then the solvent was removed under vacuo. The residue was purified by flash column chromatography on silica gel eluting with 10% MeOH/CH 2 Cl 2 to give 0205 (6.0 g, 50.3%). LC-MS: 478 [M+l] + . 1 H NMR (CDCl 3 ): δ 1.55 (s, 9H), 2.52 (br, 4H), 2.91 (br, 4H), 3.39 (s, 2H), 3.91 (s, 2H), 6.95 (m, IH), 7.24 (m, IH), 7.33 (m, 4H), 7.38 (m, 4H), 7.52 (m, IH). Step 7f: tert-butyl4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-y l)-3- (5-methoxy-5- oxopentanamido)benzoate (Compound 0206-7)

To a mixture of 0205 (1 g, 2 mmol) and DIEA (516 mg, 4 mmol) in CH 2 Cl 2 (20 ml) was added methyl 5-chloro-5-oxopentanoate (343 mg, 2 mmol) at O 0 C. The mixture was then warmed to room temperature and stirred for one hour. The solvent was removed in vacuo, and the residue was subjected to column chromatography on silica gel eluting with 25% EtOAc/petroleum ether to provide 0206-7 (1.03 g, 81.1%). LC-MS: 606 [M+l] + . 1 U NMR (CDCl 3 ):^ 1.57 (s, 9H), 2.04 (m, 2H), 2.45 (m, 4H), 2.54 (br, 4H), 2.84 (t, J= 4.5 Hz, 4H), 3.46 (S, 2H), 3.66 (s, 3H), 7.11 (m, IH), 7.23 (m, IH), 7.38 (m, 6H), 7.57 (m, IH), 7.71 (m, IH), 8.23 (s, IH), 8.87 (s, IH).

Step 7g: 4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin- 1 -yl)-3-(5-methoxy-5- oxopentanamido)benzoic acid (Compound 0207-7)

To a solution of 0206-7 ( 900 mg, 1.5 mmol ) in CH 2 Cl 2 (IO ml) was added trifluoroacetic acid (1 ml). The resulting mixture was stirred overnight at room temperature. The solvent was removed in vacuo to give 0207-7 (760 mg, 93.2%). The compound was used in the next step reaction without further purification. LC-MS: 550 [M+ 1] + .

Step 7h: (i?)-Benzyl 4-(dimethylamino)-4-oxo-l-(phenylthio)butan-2- ylcarbamate (Compound 0208)

Compound 0101 (24 g, 0.1 mol) was added to the solution OfMe 2 NH (45 g, 1 mol) in CH 2 Cl 2 (500 ml). The mixture was stirred overnight. The solid was collected by filtration. Toluene (500 mL) was added to dissolve the solid, followed by (PhS) 2 (32.7 g, 0.15 mol) and Bu 3 P (40 g, 0.2 mol). The mixture was heated to 8O 0 C and stirred for 18 h. The solvent was removed in vacuo. The residue was subjected to flash column chromatography on silica gel eluting with 50% EtO Ac/petroleum ether to provide 0208 (13.4 g, 35.3%). LC- MS: 373 [M+l] + . 1 H NMR (CDCl 3 ):^ 2.46 (m, IH), 2.82 (s, 3H), 2.84 (s, 3H), 2.88 (m, IH), 3.20 (m, IH), 3.33 (m, IH), 4.13 (m, IH), 5.07 (s, 2H), 6.30 (d, J= 9.0 Hz, IH), 7.15 (m, IH), 7.32 (m, 9H). Step 7i: (i?)-3-Amino-N,N-dimethyl-4-(phenylthio)butanamide (Compound 0209):

To a solution of 0208 (664 mg, 1.8 mmol) in 12 ml of HOAc was added HBr (432 mg, 40% water solution) at room temperature. The mixture was heated to 80 0 C and stirred for 2 hours. The mixture was adjusted to pH > 12 with KOH, extracted with EtOAc. The extracts were washed with water and dried. The solvents were removed in vacuo to give 0209 (305 mg, 71.8%). The product was used in next step reaction without further purification.

Step 7j: (i?)-λ/,λ/-Dimethyl-3-(2-nitro-4-sulfamoylphenylamino)-4- (phenylthio)butanamide (Compound 0210):

A solution of 0209 (424 mg, 1.8 mmol), 4-Fluoro-3-nitro-benzenesulfonamide (396 mg,1.8 mmol), and DIPEA (232 mg,1.8 mmol) in DMF (10 mL) was stirred for 4 hours. The mixture was poured into water and extracted with EtOAc (50ml). The extracts were washed with water, dried (Na 2 SO 4 ), concentrated. The residue was subjected to flash column chromatography on silica gel eluting with 5% MeOHZCH 2 Cl 2 to provide 0210(680 mg, 87.2%). LC-MS: 439 [M+l] + . 1 H NMR (DMSO-J 6 ):^ 2.77 (s, 3H), 2.89 (s, 3H), 3.00 (m, IH), 3.40 (d, J= 6.5 Hz, 2H), 4.40 (b, IH), 7.06 (d, J= 10.0 Hz, IH), 7.19 (m, IH), 7.25 (m, 2H), 7.32 (m, 4H), 7.72 (m, IH), 8.38 (d, J= 2.3 Hz, IH), 8.75 (d, J= 10.0 Hz, IH).

Step 7k: (i?)-4-(4-(Dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3- nitrobenzenesulfonamide (Compound 0211)

A mixture of compound 0210 (6.7g, 15 mmol) and IM BH3 in THF (30 ml) was stirred for 16 hours. To the resulting mixture were added MeOH (8ml) and concentrated HCl (3 ml) and the mixture was stirred at 8O 0 C for 3 hours. The mixture was cooled to room temperature, adjusted to pHIO with 4M Na 2 CO 3 . To the mixture ethyl acetate (300 mL) was added. The separated organic layer was washed with water (70 ml), dried (MgSO4), filtered and concentrated. The residue was subjected to flash column chromatography on silica gel eluting with 20% MeOH/CH 2 Cl 2 to provide 0211(3.0 g, 46.3%). LC-MS: 425 [M+l] + . 1 H NMR (CDCl 3 ): δ 1.86 (m, IH), 2.04 (m, IH), 2.21 (s, 6H), 2.30 (m, IH), 2.50 (m, IH), 3.13 (d, J= 5.7 Hz, 2H), 4.00 (m, IH), 5.22 (br, 2H), 6.74 (d, J= 9.3 Hz, IH), 7.23 (m, 3H), 7.34 (m, 2H), 7.72 (d, J= 9.3 Hz, IH), 8.63 (s, IH), 8.97 (d, J= 8.1 Hz, IH). Step 71: (i?)-Methyl 5-(2-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-5-(4 -(4- (dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoyl)phenylamino)-5 -oxopentanoate (Compound 0212-7)

A mixture of 0207-7 (549 mg, 1 mmol), 0211 (297 mg, 0.7 mmol), EDAC (390 mg, 2 mmol), and DMAP (244 mg, 2 mmol) in dichloromethane (20 ml) was stirred overnight at 25 0 C. The mixture was washed with saturated NH 4 Cl (100 ml), dried (MgSO 4 ), filtered, and concentrated. The residue was subjected to flash column chromatography on silica gel eluting with 15% methanol/CH 2 Cl 2 to afford 0212-7 (324 mg, 48.4%). LC-MS: 956 [M+l] + . 1 H NMR (DMSO-J 6 + D 2 O):^ 1.79 (m, 2H), 2.07 (m, 2H), 2.31 (m, 4H), 2.48 (m, 4H), 2.67 (s, 6H), 2.74 (m, 4H), 3.03 (m, 2H), 3.31 (m, 2H), 3.40 (s, 2H), 3.52 (s, 3H), 4.05

(m, IH), 6.90 (m, IH), 7.25 (m, 5H), 7.35 (m, 2H), 7.50 (m, 5H), 7.59 (m, IH), 7.79 (m, IH), 8.10 (d, J= 9.0 Hz, IH), 8.19 (s, IH), 8.42 (d, J= 1.8 Hz, IH), 8.73 (br, IH). Step 7m: (i?)-N 1 -(2-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)- 5-(4-(4- (dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoyl)phenyl)-N 5 -hydroxyglutaramide (Compound 7)

Compound 0212-7 (100 mg, 0.1 mmol) was added into the saturated NH 2 OH solution in methanol (0.56mL, 1.76 mol/L). The mixture was reacted for 5 minutes with ultrasonication. Then the mixture was neutralized with diluted HOAc. The solvent was removed in vacuo. The residue was purified with preparative liquid chromatography to obtain 7 (20 mg, 20.9%) as a yellow solid. Mp: 146 0 C. 1 H NMR (DMSO-J 6 + D 2 O): δ 1.76 (m, 2H), 2.00 (br, 4H), 2.26 (m, 2H), 2.36 (m, 4H), 2.64 (m, 10H), 3.01 (m, 2H), 3.15 (m, IH), 3.29 (m, IH), 3.41 (m, 2H), 4.05 (m, IH), 6.91 (m, IH), 7.04 (m, 6H), 7.31 (m, 8H), 7.55 (m, IH), 7.72 (m, IH), 8.04 (s, IH), 8.31 (s, IH).

EXAMPLE 8: Preparation of (R)-N 1 -(2-(4-((4'-chlorobiphenyl-2-yl)methyl)- piperazin-l-yl)-5-(4-(4-(dimethylamino)-l-(phenylthio)butan- 2-ylamino)-3- nitrophenylsulfonylcarbamoyl)phenyl)-N 6 -hydroxyadipamide (Compound 8) Step 8a: tert-butyl 4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-3- (6-ethoxy-6- oxohexanamido)benzoate (Compound 0216-8) The title compound 0216-8 was prepared (500 mg, 75.4%) from compound 0205 (500 mg, 1 mmol), DIEA (250 mg, 2 mmol), and ethyl 6-chloro-6-oxohexanoate (192 mg, 1 mmol) using a procedure similar to that described for compound 206-7 (Example 7): LC- MS: 634 [M+l] + . 1 H NMR (CDCl 3 )^ 1.25 (t, J= 7.4 Hz, 3H),1.57 (s, 9H), 1.69 (m, 4H), 2.34 (m, 4H), 2.55 (br, 4H), 2.84 (br, 4H), 3.47 (s, 2H), 4.12 (q, J= 7.4 Hz, 2H), 7.14 (q, J = 2.1 Hz, IH), 7.26 (m, 2H), 7.40 (m, 6H), 7.52 (m, IH), 7.31 (dd, J= 2.1, 8.1 Hz, IH), 8.19 (br, IH).

Step 8b: 4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-3-(6- ethoxy-6- oxohexanamido)benzoic acid (Compound 0207-8)

To the solution of 0206-8 ( 500 mg, 0.79 mmol ) in CH 2 Cl 2 (IO ml) was added trifluoroacetic acid (1 ml). The solution was stirred overnight at room temperature. The solvent was removed in vacuo to afford 0207-8 (380 mg, 83.2%). The product was used in next step reaction without further purification. LC-MS: 578 [M+l] + . 1 H NMR (CDCl 3 ): δ

1.22 (t, J= 7.2 Hz, 3H), 1.62 (br, 4H), 2.30 (br, 4H), 2.93 (br, 4H), 3.19 (s, 2H), 3.54 (s, 2H), 4.03 (q, J= 7.2 Hz, 2H), 4.47 (s, 2H), 6.98 (m, IH), 7.24 (m, 3H), 7.30 (m, IH), 7.45 (m, 4H), 7.57 (m, IH), 7.74 (m, IH), 8.20 (s, IH), 8.58 (s, IH). Step 8c: (i?)-Ethyl 6-(2-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l- yl)-5-(4-(4- (dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoyl)phenylamino)-6-oxohexanoate (Compound 0212-8)

A mixture of 0207-8 (480 mg, 0.8 mmol), 0211 (293 mg, 0.7 mmol), EDAC (191 mg, 1 mmol), and DMAP (122 mg, 1 mmol) in dichloromethane (20 mL) was stirred at 25 0 C overnight. The mixture was washed with saturated NH 4 Cl (100 mL), and dried (MgSO4), filtered, and concentrated. The residue was subjected to flash column chromatography on silica gel eluting with 15% methanol/CH 2 Cl 2 to afford 0212-8 (420 mg, 60.0%). 1 H NMR (DMSO-J 6 ):^ 1.13 (t, J= 7.4 Hz, 3H), 1.52 (br, 4H), 2.10 (m, 2H), 2.30 (m, 4H), 2.55 (m, 4H), 2.72 (s, 6H), 2.84 (m, 4H), 3.09 (m, 2H), 3.28 (m, 2H), 3.42 (m, 2H), 3.97 (q, J= 7.4 Hz, 2H), 4.12 (s, IH), 6.96 (m, IH), 7.00 (m, IH), 7.15 (m, 3H), 7.18 (m, IH), 7.26 (m, 3H), 7.30 (m, 2H), 7.39 (m, IH), 7.48 (m, 4H), 7.60 (m, IH), 7.80 (m, IH), 8.20 (m, IH), 8.48 (m, IH), 8.80 (s, IH), 9.5 (br, IH).

Step 8d: (i?)-N 1 -(2-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l- yl)-5-(4-(4- (dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoyl)phenyl)-λ^-hydroxyadipamide (Compound 8) . Compound 0212-8 (100 mg, 0.1 mmol) was added into the saturated NH 2 OH solution in methanol (0.56mL, 1.76 mol/L). The solution was sonicated for 5 minutes. Then the mixture was neutralized with acetic acid. Solvent was removed in vacuo. The residue was purified with preparative HPLC to afford compound 8 (20 mg, 20.6%) as a yellow solid. Mp.: 15O 0 C. LC-MS: 971 [M+l] + . 1 H NMR (DMSO-J 6 + D 2 O): δ 1.50 (br, 4H), 1.95 (m, 2H), 2.05 (m, 2H), 2.29 (m, 2H), 2.49 (br, 4H), 2.66 (s, 6H), 2.72 (br, 4H), 3.04 (m, 2H), 3.30 (m, 2H), 3.40 (m, 2H), 4.05 (m, IH), 6.86 (d, J= 9.6 Hz, IH), 6.94 (d, J= 8.1 Hz, IH), 7.18 (m, 6H), 7.31 (m, 2H), 7.47 (m, 5H), 7.55 (d, J= 8.1 Hz, IH), 7.78 (d, J= 9.0 Hz, IH), 8.17 (br, IH), 8.39 (s, IH).

Example 9: Preparation of (R)-7V 1 -(2-(4-((4'-chlorobiphenyl-2-yl)methyl) piperazin-1- yl)-5-(4-(4-(dimethylamino)-l-(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoylJphenylJ-λ^-hydroxyoctanediamid e (Compound 9) Step 9a: tert-butyl 4-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-3- (8-methoxy-8- oxooctanamido)benzoate (Compound 0206-9)

A mixture of compound 0205 (500 mg, 1 mmol) and DIEA (193 mg, 1.5 mmol) in 20 ml Of CH 2 Cl 2 WaS cooled to O 0 C. To the solution methyl 8-chloro-8-oxooctanoate (216 mg, 1 mmol) was added. The mixture was warmed to room temperature and stirred for one hour. The solvent was removed in vacuo, and the residue was subtected to column chromatography on silica gel eluting with 25% EtO Ac/petroleum ether to provide 0206-9 (630 mg, 92.7%). LC-MS: 648 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.39 (m, 2H), 1.53 (s, 9H), 1.64 (m, 4H), 1.75 (m, 2H), 2.30 (m, 2H), 2.38 (m, 2H), 2.50 (b, 4H), 2.84 (t, J= 5.7 Hz, 4H), 3.46 (s, 2H), 3.66 (s, 3H), 7.14 (m, IH), 7.26 (m, IH), 7.39 (m, 5H), 7.51 (m, IH), 7.73 (m, IH), 8.19 (s, IH), 8.88 (m, IH). Step 9b: 4-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-3-(8-me thoxy-8- oxooctanamido)benzoic acid (Compound 0207-9)

To a solution of compound 0206-9 ( 720 mg, 1.1 mmol ) in 10 ml Of CH 2 Cl 2 was added

1 ml of trifluoroacetic acid. The solution was stirred overnight at room temperature. The solvent was removed in vacuo to give product, 0207-9 (550 mg, 83.6%) which was used in next step reaction without further purification. LC-MS: 592 [M+l] + .

Step 9c: (i?)-Methyl 8-(2-(4-((4'-chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-5-(4 -(4- (dimethylamino)- 1 -(phenylthio)butan-2-ylamino)-3 - nitrophenylsulfonylcarbamoyl)phenylamino)-8-oxooctanoate (Compound 0212-9) A mixture of compound 0207-9 (540 mg, 0.9 mmol), 0211(387 mg, 0.9 mmol), EDAC(382 mg, 2 mmol), and DMAP (244 mg, 2 mmol) in dichloromethane (20 niL) was stirred at 25 0 C overnight. The mixture was washed with saturated NH 4 Cl (100 ml), dried (MgSO4), filtered, and concentrated. The residue was subjected to flash column chromatography on silica gel eluting with 15% methano 1/CH 2 Cl 2 to afford 0212-9 (423 mg, 46.7%). LC-MS: 998 [M+l] + . 1 H NMR (DMSO-J 6 ): δ 1.26 (m, 4H), 1.50 (m, 4H), 2.07 (m, 2H), 2.22 (m, 4H), 2.46 (m, 4H), 2.67 (s, 6H), 2.76 (b, 4H), 3.04 (m, 2H), 3.40 (m, 2H), 3.54 (s, 3H), 4.05 (m, IH), 6.89 (d, J= 10.0 Hz, IH), 6.98 (d, J= 10.0 Hz, IH),

7.18 (m, IH), 7.25 (m, 3H), 7.29 (m, 2H), 7.37 (m, 2H), 7.47 (m, 5H), 7.58 (m, IH), 7.81 (m, IH), 8.12 (d, J= 10.0 Hz, IH), 8.22 (s, IH), 8.44 (m, IH), 8.67 (s, IH). Step 9d: (i?)-N 1 -(2-(4-((4'-Chlorobiphenyl-2-yl)methyl)piperazin-l-yl)-5-(4- (4- (dimethylamino) - 1 -(phenylthio)butan-2-ylamino)-3-itrophenylsulfonylcarbamoyl) phenyl)- λ^-hydroxyoctanediamide (Compound 9).

Compound 0212-9 (300 mg, 0.3 mmol) was added into the saturated NH 2 OH solution in methanol(l .7 ml, 1.76 mol/L). The mixture was sonicated for 5 minutes. Then the mixture was neutralized with acetic acid. The solvent was removed in vacuo. The residue was purified with preparative HPLC to afford compound 9 (17 mg, 5.7%). 1 H NMR (CD 3 OD): δ 1.32 (m, 6H), 1.59 (m, 4H), 2.06 (m, 2H), 2.19 (m, 2H), 2.35 (m, 2H), 2.88 (s, 6H), 2.94 (b, 4H), 3.26 (m, 2H), 3.31 (m, 6H), 4.04 (s, IH), 6.80 (m, IH), 7.07 (m, 3H), 7.21 (m, 2H), 7.32 (m, IH), 7.39 (m, 2H), 7.45 (m, 5H), 7.68 (m, 2H), 7.80 (m, IH), 8.31 (s, IH), 8.58 (m, IH).

Biological Assays:

As stated hereinbefore the derivatives defined in the present invention possess anti- proliferation activity. These properties may be assessed, for example, using one or more of the procedures set out below: (a) Bcl-2 and Bcl-xL Competition Binding (Fluorescence Polarization) Assay Background:

Bcl-2 and Bcl-xL proteins are antiapoptotic proteins whose biological function can be inhibited by proapototic proteins such as Bak, Bad and Bax through protein interaction. The interaction between antiapoptotic and proapototic proteins are mediated primarily by Bcl-2 homology (BH) 3 domain of Bak, Bad, Bax that bind to the hydrophobic groove of Bcl-2 and Bcl-xL. The demonstration of BH3 peptide alone induce apoptosis encourage the possibility of design or identify a chemical compound that mimics the function of BH3 peptide by blocking Bcl-2 or Bcl-xLs' interaction with their downstream binding partners. These chemical compounds are expected to bind to the hydrophobic groove of Bcl-xL or Bcl-2 proteins with high affinity. A labeled BH3 peptide can be used for competition binding and to monitor the interaction between compounds and Bcl-2 and Bcl-xL proteins.

Bcl-2 and Bcl-xL Competition Binding (Fluorescence Polarization) Assay

The fluorescence-labeled 23 amino acid peptide BH3

(NLWAAQRYGRELRRMSDKFVD) was purchased from CalBiochem. An unbound Fluorescein labeled BH3 peptide emits random light with respect to the plane of polarization plane of excited light, resulting in a lower polarization degree (mP) value. When the peptide is bound to Bcl-xl or Bcl-2, the complex tumble slower and the emitted light can have a higher level of polarization, resulting in a higher mP value. This binding assay was performed in 96-well plate and with each assay contained 15 and 3OnM of labeled peptide and purified Bcl-xL (purchased from R&D Systems, Inc.) or Bcl-2 protein (purchased from R&D Systems, Inc.) respectively. The assay buffer contained 2OmM Hepes (pH 7.0), 5OmM KCl, 5mM MgCl 2 , 2OmM Na 2 MoO 4 , O.lmg/ml Bovine Gamma Globulin and 0.01% NP40. Compounds were diluted in DMSO and added to the final assay with concentration range from 2OuM to 2nM. The polarization degree (mP) value was determined by BioTek Synergy II with background subtraction after 3 hours of incubation at room temperature.

The following TABLE B lists compounds representative of the invention and their activity in the Bcl-2 and HDAC assay under the conditions of Assay B. In this assay, the following grading was used: I > 10 μM, 10 μM > II > 1 μM, 1 μM > III > 0.1 μM, and IV

≤ O.l μM for IC 50 . (b) An in vitro assay which determines the ability of a test compound to inhibit HDAC enzymatic activity

HDAC inhibitors were screened using an HDAC fluorimetric assay kit (AK-500,

Biomol, Plymouth Meeting, PA). Test compounds were dissolved in dimethylsulphoxide

(DMSO) to give a 20 mM working stock concentration. Fluorescence was measured on a WALLAC Victor 2 plate reader and reported as relative fluorescence units (RFU). Data were plotted using GraphPad Prism (v4.0a) and IC50's calculated using a sigmoidal dose response curve fitting algorithm.

Each assay was setup as follows: Defrosted all kit components and kept on ice until use. Diluted HeLa nuclear extract 1 :29 in Assay Buffer (50 mM Tris/Cl, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgC12). Prepared dilutions of Trichostatin A (TSA, positive control) and tested compounds in assay buffer (5x of final concentration). Diluted Fluor de

LysTM Substrate in assay buffer to 100 μM (50 fold = 2x final). Diluted Fluor de LysTM developer concentrate 20-fold (e.g. 50 μl plus 950 μl Assay Buffer) in cold assay buffer.

Second, diluted the 0.2 mM Trichostatin A 100-fold in the Ix Developer (e.g. 10 μl in 1 ml; final Trichostatin A concentration in the Ix Developer = 2 μM; final concentration after addition to HDAC/Substrate reaction = 1 μM). Added Assay buffer, diluted trichostatin A or test inhibitor to appropriate wells of the microtiter plate. Added diluted HeLa extract or other HDAC sample to all wells except for negative controls. Allowed diluted Fluor de LysTM Substrate and the samples in the microtiter plate to equilibrate to assay temperature (e.g. 25 or 37°C. Initiated HDAC reactions by adding diluted substrate (25 μl) to each well and mixing thoroughly. Allowed HDAC reactions to proceed for 1 hour and then stopped them by addition of Fluor de LysTM Developer (50 μl). Incubated plate at room temperature (25°C) for 10-15 min. Read samples in a microtiter-plate reading fluorimeter capable of excitation at a wavelength in the range 350- 380 nm and detection of emitted light in the range 440-460 nm.

The following TABLE B lists compounds representative of the invention and their activity in HDAC and Bcl-2 assays. In these assays, the following grading was used: I > 10 μM, 10 μM > II > 1 μM, 1 μM > III > 0.1 μM, and IV < 0.1 μM for IC 50 .

TABLE B

The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.