Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BONDING AGENTS AND SEALANTS BASED ON LIQUID RUBBERS
Document Type and Number:
WIPO Patent Application WO/2007/118529
Kind Code:
A1
Abstract:
Hot-hardening, reactive compositions based on natural and/or synthetic olefinic, double-bonded elastomers and vulcanizing agents are described that contain at least one fluid polyene with a molecular weight between 400 and 80,000 as well as at least one fluid polybutadiene with a tight molecular weight distribution and a microstructure of 10% to 20% of vinylic 1,2 double bonds, 50% to 60% trans 1,4 double bonds, and 25% to 35% eis 1,4 double bonds. These compositions also contain a vulcanization system made up of sulfur and accelerators and/or quinonoximes, if necessary. Given their tensile shear and peel strengths, these compositions are suited for use as single-component bonding agents, sealants, or coating substances in the construction of automobiles, especially at lower temperatures.

Inventors:
KOHLSTRUNG RAINER (DE)
RAPPMANN KLAUS (DE)
Application Number:
PCT/EP2007/000728
Publication Date:
October 25, 2007
Filing Date:
January 29, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL KGAA (DE)
KOHLSTRUNG RAINER (DE)
RAPPMANN KLAUS (DE)
International Classes:
C08L9/00; C09D107/00; C09D109/00; C09J9/00; C09J107/00; C09J109/00
Domestic Patent References:
WO2002048255A22002-06-20
Foreign References:
DE19502381A11996-08-01
DE3834818C11989-11-09
EP0097394A11984-01-04
EP0369165A11990-05-23
Download PDF:
Claims:

Patentansprüche

1. Einkomponentige, heißhärtende reaktive Zusammensetzung auf der Basis von natürlichen und/oder synthetischen oiefinische Doppelbindungen enthaltenden Elastomeren und Vulkanisationsmitteln, dadurch gekennzeichnet, dass sie a) mindestens ein flüssiges Polyen mit einem Molekulargewicht zwischen 400 und 80.000, vorzugsweise zwischen 800 und 25.000, b) mindesten ein flüssiges Polybutadien mit 10 - 20 % vinyl 1 ,2-, 50 - 60 % trans 1 ,4-, 25 - 35 % eis 1 ,4- Doppelbindungen als Mikrostruktur und c) ein Vulkanisationssystem aus Schwefel und Beschleunigern und/oder ggf. Chinonoximen enthalten.

2. Einkomponentige, heißhärtende reaktive Zusammensetzung nach Anspruch 1 gekennzeichnet durch zusätzlichen Gehalt an mindestens einem Festkautschuk aus der Gruppe cis-1 ,4-Polybutadien, Styrol-Butadien- Kautschuk, synthetischer Isoprenkautschuk, Naturkautschuk, Ethylen- Propylen-Dien-Kautschuk (EPDM), Polycyclooctenamer, Nitrilkautschuk, ButyJkautschuk, Acrylkautschuk oder Polychloropren.

3. Einkomponentige, heißhärtende reaktive Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das flüssige Polybutadien b) ein Molekulargewicht (Mn) zwischen 2 000 und 12 000, vorzugsweise zwischen 5 000 und 9 000 aufweisen.

4. Einkomponentige, heißhärtende reaktive Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, gekennzeichnet durch zusätzlichen Gehalt an mindestens einem thermoplastischen Polymerpulver.

5. Heißhärtende Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Härtung ein Vulkanisations-

System aus Schwefel, organischen Vulkanisationsbeschleunigern und Zinkverbindungen verwendet wird.

6. Heißhärtende Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Vulkanisationssystem aus 4 Gew.% bis 25 Gew.%, vorzugsweise 5 Gew.% bis 15 Gew.% pulverförmigem Schwefel, 0,25 Gew.% bis 8 Gew.-%, vorzugsweise 0,4 Gew.% bis 6 Gew.% organischem Beschleuniger und 0,5 Gew.% bis 10 Gew.%, vorzugsweise 2 Gew.% bis 8 Gew.% Zinkverbindungen, vorzugsweise Zinkoxid bestehen, wobei die Gew.% auf die Gesamtzusammensetzung bezogen sind.

7. Heißhärtende Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Vulkanisationssystem zusätzlich 0 bis 2 Gew.% eines bifunktionellen Vulkanisationsvernetzers enthält.

8. Heißhärtende Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, als bifunktioneller Vulkanisationsvernetzer bifunktionelle Dithiocarbamate, insbesondere das 1 ,6-bis(N,N-dibenzylthiocarbamoyldithio)-hexan verwendet wird.

9. Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie zusätzlich Füllstoffe, Rheologiehilfsmittel, Extenderöle, Treibmittel, Pigmente, Haftvermittler und/oder Alterungsschutzmittel enthält.

10. Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche, enthaltend

- Festkautschuk: 0 - 15 Gew.%, vorzugsweise 0 - 12 Gew.%,

- Polybutadien flüssig mit 10 - 20 % vinyl- 1 ,2-, 50 - 60 % trans 1,4-, 25 - 35 % und eis 1 ,4- Doppelbindungen: 2 - 50 % Gew.%, vorzugsweise 5 - 42 Gew.%,

- Polybutadien mit Carboxylgruppen: 0-25 % Gew.%, vorzugsweise 1 -15 Gew.%,

- Schwefel: 4-25 Gew.%, vorzugsweise 5 - 15 % Gew.%,

- Beschleuniger: 0,25 - 8,0 Gew.%, vorzugsweise 0,4 - 6 Gew.%,

- bifunktioneller Vulkanisationsvernetzer: 0-2 Gew.%, vorzugsweise 0 - 1 Gew.%,

- Zinkoxid: 0,5-10 Gew.%, vorzugsweise 2-8 Gew.%, Phenolharz: 0-8 Gew.%, vorzugsweise 0-6 Gew.%, Dinatriumsalz des Hexamethylen-1 ,6-bis(thiosulfat): 0 - 2,5 Gew.%, vorzugsweise 0,1 - 1,8 Gew.%,

- Antioxidans: 0-2 Gew.%, vorzugsweise 0,1 - 1,0 Gew.%,

- Calciumoxid: 0-8 Gew.%, vorzugsweise 1 -6 Gew.%,

- Ruß: 0-4 Gew.%, vorzugsweise 0,1 -2 Gew.%, Calciumcarbonat, nicht gecoatet: 10-45 Gew.%, vorzugsweise 15-40 Gew.%,

- Calciumcarbonat, gecoatet: 0-30 % Gew.%, vorzugsweise 5-18 Gew.%, wobei sich die Summe der Bestandteile der Zusammensetzung zu 100 % ergänzt.

11. Verwendung der Zusammensetzung nach mindestens einem der vorhergehenden Ansprüche als einkomponentiger Klebstoff, Dichtstoff oder Beschichtungsmasse im Automobilrohbau.

Description:

„Kleb- / Dichtstoffe auf Basis von Flüssigkautschuken"

Die vorliegende Erfindung betrifft eine einkomponentige, heißhärtende reaktive Zusammensetzung auf der Basis von natürlichen und/oder synthetischen olefinische Doppelbindungen enthaltenden Elastomeren und Vulkanisationsmitteln sowie deren Verwendung als einkomponentiger Klebstoff, Dichtstoff, Versiegelungsmasse oder Beschichtungsmasse im Fahrzeugbau, insbesondere im Automobilrohbau.

Im Maschinen-, Fahrzeug- oder Gerätebau, insbesondere im Flugzeugbau, Schienenfahrzeugbau oder Kraftfahrzeugbau werden die Bauteile aus den verschiedenen metallischen Komponenten und/oder Verbundwerkstoffen in zunehmendem Maße mit Hilfe von Klebstoffen gefügt. Für strukturelle Klebungen werden dabei hohe Anforderungen an die Festigkeit des Klebeverbundes gestellt. Hochfeste und gleichzeitig schlagzähe, schälfeste und schlagschälfeste Klebstoffe, die heute für die Anwendung im Automobilrohbau eingesetzt werden, sind bisher hauptsächlich auf Basis von Epoxiden und Elastomer-modifizierten Epoxiden bzw. Acrylaten bekannt.

Dabei werden diese heißhärtenden, reaktiven Klebstoffe (oft auch als Heißschmelzklebstoffe formuliert) für Bördelnahtverklebungen bzw. überlappende Klebungen im Rohbau auf beöltes Blech aufgetragen und gefügt. Die Aushärtung der hierbei eingesetzten Klebstoffe oder Dichtstoffe erfolgt später in den Lacktrockenöfen. Vorher durchlaufen die geklebten bzw. abgedichteten oder versiegelten Teile Reinigungs-, Phosphatier- und Tauchgrundierungsstufen. Durch die in diesen Stufen verwendeten Behandlungsmittel können die Kleb- bzw. Dichtoder Versiegelungsmittel aus den Klebefugen gespült werden. Um dieses zu verhindern, wird das Kleb-, Dicht- oder Versiegelungsmittel mittels Vorhärtungsmechanismen wie zum Beispiel mit Induktionsheizungen,

Rohbauöfen, Infrarot-Strahlern vorgehärtet oder rheologisch entsprechend eingestellt, um die nachfolgende Vorbehandlung zu überstehen ohne ausgewaschen zu werden. Zusätzlich können Schweißpunkte zur Versteifung der Karosserieteile gesetzt werden. Die Aushärtung der Klebstoffe erfolgt beim Durchlaufen der anschließenden Lacköfen (für den Kathodischen Tauchlack (KTL), Füller, Decklack, etc.).

Aus der EP-A-O 308 664 sind Epoxidharz-Zusammensetzungen bekannt, die ein Epoxid-Addukt eines carboxylgruppenhaltigen Copolymeren auf Basis von Butadien-Acrylnitril oder ähnlichen Butadiencopolymeren enthalten sowie ein Umsetzungsprodukt eines in Epoxidharzen löslichen oder dispergierbaren elastomeren Prepolymeren mit endständigen Isocyanatgruppen mit einem Polyphenol oder Aminophenol sowie nachfolgender Umsetzung dieses Adduktes mit einem Epoxidharz. Weiterhin können diese Zusammensetzungen ein oder mehrere Epoxidharze enthalten. Fernerhin werden zur Härtung für diese Zusammensetzungen aminofunktionelle Härter, Polyaminoamide, Polyphenole, Polycarbonsäuren und ihre Anhydride oder katalytische Härtungsmittel und gegebenenfalls Beschleuniger vorgeschlagen. Es wird angegeben, dass diese Zusammensetzungen sich als Klebstoffe eignen, die je nach konkreter Zusammensetzung hohe Festigkeit, hohe Glasübergangstemperatur, hohe Schälfestigkeit, hohe Schlagzähigkeit oder hohe Rissfortpflanzungsbeständigkeit haben können.

Die EP-A-338985 beschreibt modifizierte Epoxidharze, die ein flüssiges Copolymeres auf der Basis von Butadien, einem polaren, ethylenisch ungesättigten Comonomeren und ggf. weiteren ethylenisch ungesättigten Comonomeren enthalten und weiterhin ein Umsetzungsprodukt aus dihydroxyterminierten bzw. diaminoterminierten Polyalkylenglycolen und Diisocyanaten sowie einem Monophenol, einem Mercaptoalkohol oder einem aliphatischen Lactam. Gemäß der Lehre dieser Schrift lassen sich diese Zusammensetzungen zur Flexibilisierung von Epoxidharzen einsetzen. Zusätzlich zu den vorgenannten Bestandteilen sollen diese Zusammensetzungen noch

Epoxidharze und einen Härter bzw. Beschleuniger enthalten. Derartige Gemische sollen sich als Klebstoffe, Klebefilme, Patches, Matrixharze, Lacke oder Dichtungsmassen verwenden lassen.

Die WO01/94492 beschreibt Kondensationsprodukte aus cyclischen Carbonsäureanhydriden von Dicarbonsäuren, Tricarbonsäureanhydriden oder Tetracarbonsäureanhydriden und difunktionellen Polyaminen, insbesondere Polyoxyalkylen- aminen als Aufbaukomponenten für Epoxidharzzusammensetzungen. Die Kondensationsprodukte auf Basis von Tricarbonsäureanhydriden oder Tetracarbonsäureanhydriden zeichnen sich durch im Mittel mehr als eine Imidgruppe und Carboxylgruppe pro Molekül aus. Ggf. können noch Kondensationsprodukte aus tri- oder mehrfunktionellen Polyolen und/oder tri- oder mehrfunktionellen aminoterminierten Polymeren und cyclischen Carbonsäureanhydriden in den Zusammensetzungen enthalten sein. Zusätzlich enthalten diese Zusammensetzungen übliche kautschukmodifizierte Epoxidharze sowie flüssige und/oder feste Polyepoxydharze und übliche Härter und Beschleuniger und ggf. Füllstoffe und Rheologiehilfsmittel. Es wird vorgeschlagen, diese modifizierten Epoxidharzzusammensetzungen als schlagfeste, schlagschälfeste und schälfeste Klebstoffe im Fahrzeugbau und in der Elektronik einzusetzen, insbesondere da sie bei sehr tiefen Temperaturen sehr gute Schlag- und Schäl-Eigenschaften aufweisen und eine sehr gute Korrosionsbeständigkeit und Alterungsbeständigkeit der Klebung gewährleisten sollen.

JP 2000-313786 A beschreibt eine schlagfeste Acrylharz-Zusammensetzung enthaltend ein (Meth)acrylatpolymer als Komponente A und ein Elastomermodifiziertes Acrylatharz als Komponente B. Dabei soll die Komponente B als teilchenförmiges Material mit 0,2 bis 10 μm durchschnittlicher Teilchengröße als disperse Phase vorliegen, die mit einer kontinuierlichen Phase der Komponente A umgeben ist. Dabei soll das Verhältnis des Volumens der Komponente A zum Volumen der Komponente B 0,5 bis 4 betragen und mindestens ein Teil der Komponente A soll chemisch an einen Teil der Komponente B gebunden sein. Es

wird angegeben, dass diese Harzzusammensetzungen eine verbesserte Schlagfestigkeit bei gleichzeitig gegebener guter Alterungsbeständigkeit aufweisen soll.

In ähnlicher Weise beschreibt JP 2000-319475 A eine schlagfeste Harzzusammensetzung aus einer (Meth)acrylatcopolymerkomponente A und einer modifizierten Polyurethan-Elastomer-Komponente B. Hier soll die Polyurethan- Elastomer-Komponente B als diskontinuierliche dispergierte Phase in der kontinuierlichen Phase A vorliegen, wobei die disperse Phase eine Struktur aufweist, die eine Mikrophasenseparation hat. Es soll hier wiederum zumindest ein Teil der Komponente A chemisch an einen Teil der Komponente B gebunden sein. Es wird vorgeschlagen, einen Acrylatsirup C unter Scherung anzupolymerisieren, so dass die Phasenseparation folgt. Diese Harzzusammensetzungen sollen eine verbesserte Schlagfestigkeit aufweisen, ohne die Alterungsbeständigkeit und Witterungsbeständigkeit zu verschlechtern.

EP 0270318 A2 beschreibt eine modifizierte Zusammensetzung für die Anwendung als Strukturklebstoff. Diese Klebstoff-Zusammensetzungen enthalten einen Flüssigkautschuk mit olefinisch ungesättigten Endgruppen, der mit einer Monoisocyanat-Komponente umgesetzt worden ist. Es wird vorgeschlagen, zur Herstellung dieser flüssigen Elastomeren Carboxyl-terminiertes Polybutadien oder ein Polybutadien-Acrylnitril- oder Polybutadien-Methacrylnitril-Styrol- Copolymer mit Glycidylmethacrylat umzusetzen und anschließend die entstandenen sekundären Hydroxylgruppen mit Monoisocyanat-Verbindungen umzusetzen. Derartig modifizierte flüssige Elastomere mit olefinischen Endgruppen werden dann mit olefinisch ungesättigten Monomeren, ausgewählt aus Acrylsäure-Estem, Acrylsäure, Styrol, substituierten Styrol, und freiradikalischen Initiatoren gemischt, um einen bei Raumtemperatur härtbaren Strukturklebstoff bereitzustellen. Es wird angegeben, dass derartige Klebstoff-Zusammensetzungen, im Vergleich zu anderen Strukturklebstoffen auf der Basis von Acrylatmonomeren, eine verbesserte Alterungsbeständigkeit und verbesserte Tieftemperatureigenschaften aufweisen.

WO 02/070619 beschreibt elastische (Meth)acrylatklebstoff-Zusammensetzungen mit hoher Bruchdehnung. Gemäß dieser Schrift sollen die Klebstoffzusammensetzungen mindestens ein monofunktionelles (Meth)acrylatmonomer A aufweisen, dessen Homopolymer oder Copolymer eine Glasübergangstemperatur zwischen 40 0 C und 140 0 C aufweist. Weiterhin soll die Zusammensetzung ein monofunktionelles (Meth)acrylatmonomer B mit der nachfolgenden Struktur enthalten:

Hierin soll R Wasserstoff oder eine Methylgruppe sein, R' ist Wasserstoff oder Ci bis C 3 -Alkyl, insbesondere Wasserstoff oder Ethyl und R soll eine C3-C 2 0- Alkylgruppe oder eine Phenoxygruppe oder eine Alkoxygruppe sein. Als weitere Komponente soll ein Elastomer mit einem Molekulargewichtbereich zwischen 1000 und 9000 mit (meth)acrylatischen Gruppen in der Zusammensetzung anwesend sein. Diese Schrift gäbt an, dass die dort offenbarten Zusammensetzungen besonders zum Kleben von Materialien mit unterschiedlichen thermischen Expansions-Koeffizienten geeignet sind, wie sie zum Beispiel in der Fahrzeugindustrie Einsatz finden. Exemplarisch genannt ist die Klebung von Seitenblechen von Trailern oder die Direktverglasung. Es wird angegeben, dass diese Zusammensetzungen eine sehr hohe Schlagfestigkeit bei tiefen Temperaturen aufweisen.

Nachteile der vorgenannten Klebstoffe auf Epoxid- oder (Meth)acrylat-Basis sind:

- hohe Rohstoff kosten,

- die notwendige arbeitshygienische Kennzeichnung (meistens mit Xi),

- bedingte ölaufnahme,

- mangelnder Korrosionsschutz,

- mangelnde Alterungsbeständigkeit.

Es sind auch hochfeste Klebstoffe auf Kautschukbasis bekannt geworden. Die WO 96/23040 beschreibt einkomponentige, hitzehärtende Strukturklebstoffe auf der Basis von Flüssigkautschuken, die gegebenenfalls anteilig funktionelle Gruppen enthalten können, Festkautschuken, thermoplastischen Polymerpulvern und Schwefel sowie Vulkanisationsbeschleunigern. Diese Klebstoffe eignen sich zum Verkleben von Metallteilen. Es können Zugscherfestigkeiten von über 15 MPa bei gleichzeitiger hoher Bruchdehnung von über 15 % erhalten werden. Diese Klebstoffe sind im Wesentlichen frei von niedermolekularen Epoxidharzen und eignen sich insbesondere für den Einsatz im Rohbau in der Automobilindustrie.

Aus der WO99/03946 sind warm pumpbare, heißhärtende Massen auf Basis von Ethylen-Vinylacetat-Copolymeren (EVA), enthaltend mindestens ein festes EVA- Copolymer mit einem Erweichungspunkt über 50 "C 1 gemessen nach der Ring & Ball-Methode nach ASTM D 28, mindestens einen flüssigen reaktiven Weichmacher mit olefinisch ungesättigten Doppelbindungen und mindestens ein peroxidisches Vernetzungsmittel, bekannt. Nach den Angaben dieser Schrift eigenen sich diese Zusammensetzungen als Versiegelungsmittel von Fein- und Grobnähten im Fahrzeugbau. Bei Zusatz von Treibmitteln lassen sich diese auch als Unterfütterungskiebstoffe einsetzen. Die bevorzugten Einsatzgebiete sind im Rohbau bei der Fertigung von Automobilen.

WO02/48252 offenbart heißhärtende, reaktive Zusammensetzungen auf der Basis von natürlichen und/oder synthetischen olefinische Doppelbindungen enthaltenden Elastomeren auf der Basis von flüssigen Polyenen, und ggf. Festkautschuken. Das Vulkanisations-System besteht aus Schwefel und/der Metalloxiden und einem oder mehreren organischen Beschleunigern, die eine oder mehrere hetero- cyclische Verbindung(en) enthalten, die mindestens 2 Stickstoffatome im Ring haben. Diese Zusammensetzungen lassen sich unter Vermeidung bzw. starker Reduktion der Geruchsbelästigung durch Schwefel und Schwefelverbindungen vulkanisieren. Es wird angegeben, dass sich diese Zusammensetzungen als

Klebstoffe, Dichtstoffe oder Beschichtungsmassen, insbesondere im Automobilbau eignen.

Aus der WO02/48255 sind heißhärtende reaktive Zusammensetzungen auf der Basis von natürlichen und/oder synthetischen olefinische Doppelbindungen enthaltenden flüssigen Elastomeren und Vulkanisationsmitteln, die neben herkömmlichen, flüssigen Polyenen mindestens ein flüssiges cis-1 ,4-Polyisopren mit einem Molekulargewicht zwischen 20 000 und 70 000 sowie ein Vulkanisationssystem aus Schwefel, Beschleunigern und Chinonoximen enthalten, bekannt. Diese Klebstoffe zeigen ein Plastisol-artiges Fließverhalten, so dass sie bei Raumtemperatur mit herkömmlichen Spritzanlagen applizierbar sind. Es wird angegeben, dass sich diese Zusammensetzungen als Nahtabdichtungs- und Versiegelungsmasse, als Unterfütterungsklebstoff sowie als Strukturklebstoff wie z. B. als Bördelnahtklebstoff eignen sollen.

Die hochfesten Klebstoffe des vorgenannten Standes der Technik auf Kautschukbasis sind in Ihren Eigenschaften bei tiefen Temperaturen verbesserungsbedürftig, sie weisen insbesondere bei tiefen Temperaturen keine elastischen und schlagzähen Eigenschaften auf, da sie, vermutlich aufgrund des hohen Vernetzungsgrades, bei tiefen Temperaturen zu stark verspröden.

Aufgabe der vorliegenden Erfindung war daher, hochfeste und gleichzeitig schlagzähe Klebstoffe bereitzustellen, die für die Anwendung im Automobilrohbau eingesetzt werden können und die nicht Epoxidharze oder (Meth)acrylatharze als wesentlichen Bestandteil enthalten, ohne die Verwendung teurer Spezialpolymerer oder Copolymerer.

Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen, sie besteht im Wesentlichen in der Bereitstellung einer ein- komponentigen, heißhärtenden reaktiven Zusammensetzung auf der Basis von natürlichen und/oder synthetischen olefinische Doppelbindungen enthaltenden Elastomeren und Vulkanisationsmitteln, die

a) mindestens ein flüssiges Polyen mit einem Molekulargewicht zwischen 400 und 80.000, vorzugsweise zwischen 800 und 25.000, b) mindesten ein flüssiges Polybutadien mit 10 - 20 % vinyl 1 ,2-, 50 - 60 % trans 1 ,4-, 25 - 35 % eis 1 ,4- Doppelbindungen als Mikrostruktur und c) ein Vulkanisationssystem aus Schwefel und Beschleunigern und/oder ggf. Chinonoximen enthalten.

Unter „flüssig" wird hier „flüssig bei Raumtemperatur (22°C)" verstanden.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der vorgenannten heißhärtenden, reaktiven Zusammensetzungen als einkomponentiger Klebstoff, Dichtstoff oder Beschichtungsmasse oder Versiegelungsmasse im Automobilrohbau.

Das oder die flüssigen Polyen(e) oder Elastomere a) enthalten dabei pro Molekül mindestens eine olefinisch ungesättigte Doppelbindung. Sie können dabei aus der folgenden Gruppe der Homo- und/oder Copolymeren ausgewählt werden:

Polybutadiene, insbesondere die 1 ,3- und 1 ,2-Poly-butadiene, Polybutene, Polyisobutylene, 1 ,4- und 3,4-Polyisoprene, Styrol-Butadien-Copolymere, Butadien-Acrylnitril-Copolymere, wobei eines oder mehrere dieser Polymeren endständige und/oder (statistisch verteilte) seitenständige funktionelle Gruppen haben können. Beispiele für derartige funktionelle Gruppen sind Hydroxy-, Amino-, Carboxyl-, Carbonsäureanhydrid- oder Epoxygruppen. Das Molekulargewicht dieser Flüssigkautschuke ist typischerweise unterhalb von 80 000 und oberhalb von 400, vorzugsweise zwischen 800 und 25 000. Der Anteil an Flüssigkautschuk an der Gesamtzusammensetzung hängt dabei von der gewünschten Rheologie der ungehärteten Zusammensetzung und der erwünschten mechanischen Steifigkeit oder Festigkeit des Verbundes und gegebenenfalls den akustischen Dämpfungseigenschaften der ausgehärteten Zusammensetzung ab. Der Anteil an flüssigem Kautschuk bzw. Elastomer variiert normalerweise zwischen 2 und 55 Gew.% der Gesamtformulierung. Dabei hat es sich als zweckmäßig erwiesen, vorzugsweise Mischungen von Flüssigkautschuken unterschiedlicher

Molekulargewichte und unterschiedlicher Konfiguration in Bezug auf die restlichen Doppelbindungen einzusetzen. Außerdem können als Copolymere sowohl Blockcopolymere als auch solche mit statistischer Verteilung der Comonomeren eingesetzt werden. Zur Erzielung optimaler Haftung auf den diversen Substraten wird in den besonders bevorzugten Formulierungen anteilig eine Flüssigkautschukkomponente mit Hydroxylgruppen, Carboxylgruppen bzw. Säureanhydridgruppen eingesetzt. Der Anteil an carboxylgruppenhaltigem Flüssigkautschuk kann 0 bis 25 Gew.%, vorzugsweise 1 bis 15 und ganz besonders bevorzugt 3 bis 10 Gew.% betragen.

Ein wesentlicher Bestandteil der erfindungsgemäßen Zusammensetzungen sind flüssige Polybutadiene, vorzugsweise mit enger Molekulargewichtsverteilung, die durch anionische Polymerisation herstellbar sind. Diese niedermolekularen flüssigen Polybutadiene enthalten in der Polymerkette drei Strukturtypen: vinylische 1 ,2-Doppelbindungen, eis 1 ,4-Doppelbindungen und trans 1 ,4- Doppelbindungen, wobei diese flüssigen Polymeren 10 bis 20 % vinylische 1 ,2- Doppelbindungen, 50 bis 60 % trans 1 ,4-Doppelbindungen und 25 bis 35 % eis 1 ,4-Doppelbindungen in ihrer Mikrostruktur aufweisen. Die Molekulargewichte dieser flüssigen Butadiene liegen zwischen 2.000 und 12.000, vorzugsweise zwischen 5.000 und 9.000 (zahlenmittleres Molekulargewicht). Aufgrund ihrer engen Molekulargewichtsverteilung weisen sie eine sehr niedrige Viskosität zwischen 3 und 15 Pa s bei 25 C C auf. Sie können gegebenenfalls, bedingt durch die anionische Polymerisation, eine oder zwei terminale bzw. eine oder mehrere statistisch verteilte Hydroxylgruppe(n) pro Molekül aufweisen. Alternativ können diese Polymere auch eine oder zwei terminale bzw. eine oder mehrere statistisch verteilte Carboxylgruppe(n) aufweisen. Der Vorteil des Einsatzes dieser flüssigen Polybutadiene mit enger Molekulargewichtsverteilung ist ein höheres Molekulargewicht im Vergleich zu üblichen flüssigen Polybutadienen bei trotzdem niedriger Viskosität.

Zusätzlich kann die erfindungsgemäße Klebstoff-Zusammensetzung auch noch einen Anteil an Festkautschuken enthalten. Geeignete Festkautschuke haben im

Vergleich zu den Flüssigkautschuken ein signifikant höheres Molekulargewicht (MW=100000 oder höher). Beispiele für geeignete Kautschuke sind Polybutadien, vorzugsweise mit einem sehr hohen Anteil an cis-1,4-Doppelbindungen (typischerweise über 95%), Styrol-Butadien-Kautschuk, Butadien-Acrylnitril- Kautschuk, synthetischer oder natürlicher Isoprenkautschuk, Polycyclooctenamer, Butylkautschuk oder Polyurethankautschuk. Der Anteil an Festkautschuk kann dabei bis zu 15 Gew.% betragen, vorzugsweise liegt er zwischen 0 und 12 Gew.% und ganz besonders bevorzugt zwischen 0 und 9 Gew.%.

Weiterhin enthalten die erfindungsgemäßen einkomponentigen, heißhärtenden reaktiven Zusammensetzungen ein Vulkanisationssystem aus Schwefel und Beschleunigern und/oder ggf. Chinonoximen.

Für das Vulkanisationssystem eignen sich eine Vielzahl von Vulkanisationsmitteln in Kombination mit elementarem Schwefel, aber auch Vulkanisationssysteme ohne freien Schwefel. Zu letzteren zählen die Vulkanisationssysteme auf der Basis von Thiuramdisulfiden, organischen Peroxiden, polyfunktionellen Aminen, Chinonen, p-Benzochinondioxim, p-Nitrosobenzol und Dinitrosobenzol oder auch die Vernetzung mit (blockierten) Diisocyanaten. Ganz besonders bevorzugt sind jedoch Vulkanisationssysteme auf der Basis von elementarem Schwefel und organischen Vulkanisationsbeschleunigern sowie Zinkverbindungen. Der pulverförmige Schwefel wird dabei in Mengen von 4 bis 25 Gew.%, bezogen auf die Gesamtzusammensetzung eingesetzt, besonders bevorzugt werden Mengen zwischen 5 und 15 Gew.% eingesetzt. Als organische Beschleuniger eignen sich Dithiocarbamate (in Form ihrer Ammonium- bzw. Metallsalze), Xanthogenate, Thiuram-Verbindungen (Monosulfide und Disulfide), Thiazolverbindungen, Aldehyd/Aminbeschleuniger (z.B. Hexamethylentetramin) sowie Guanidin- beschleuniger, ganz besonders bevorzugt wird Dibenzothiazyldisulfid (MBTS), 2- Mercaptobenzthiazol (MBT), dessen Zinksalz (ZMBT), Zinkdibenzyldithiocarbamat (ZBEC), N-Cyclohexylbenzodithiazylsulfenamid (CBS) oder Diphenylguanidin. Die Beschleuniger werden in Mengen zwischen 0,25 und 8,0 Gew.%, besonders bevorzugt zwischen 0,4 und 6 Gew.%, verwendet. Für die Erzielung besonders

hoher Temperatur- und Reversionsfestigkeit des Klebstoffes kann das Vulkanisationsgemisch auch bifunktionelle Vernetzer enthalten. Konkrete Beispiele sind Vernetzer auf Basis von bifunktionellen Dithiocarbamaten wie z.B. das 1 ,6-bis(N,N-dibenzylthiocarbamoyldithio)-hexan. Derartige Vernetzer in Mengen zwischen 0 und 2, vorzugsweise zwischen 0 und 1 Gew.% in den Zusammensetzungen enthalten.

Bei den als Beschleuniger wirkenden Zinkverbindungen kann zwischen den Zinksalzen von Fettsäuren, Zinkdithiocarbamaten, basischen Zinkcarbonaten sowie insbesondere feinteiligem Zinkoxid gewählt werden. Der Gehalt an Zinkverbindungen liegt im Bereich zwischen 0,5 und 10 Gew.%, vorzugsweise zwischen 2 und 8 Gew.%. Zusätzlich können weitere typische Kautschuk- Vulkanisationshilfsmittel wie Fettsäuren (z.B. Stearinsäure) in der Formulierung vorhanden sein.

Erfindungsgemäß kann auch ein kombiniertes Vulkanisationssystem aus elementarem Schwefel, den oben genannten organischen Beschleunigern und Chinondioximen eingesetzt werden. Beispielhaft erwähnt sei p- Benzochinondioxim. Es können jedoch auch andere Chinondioxime in Kombination mit den vorgenannten Schwefelsystemen verwendet werden. Das Vulkanisationssystem kann auch nur aus Chinondioximen bestehen.

Zusätzlich können die erfindungsgemäßen Zusammensetzungen für Kautschukmischungen übliche Füllstoffe, Beschleuniger, Vernetzungsmittel wie Schwefel und/oder Peroxide, Antioxidantien, Co-Aktivatoren und weitere Katalysatoren, Ruße, Treibmittel, öle, Alterungsschutzmittel, Fasern ggf. auch Graphit, Rheologiehilfsmittel, Haftungsvermittler, Pigmente und thermoplastische Polymere enthalten.

Die erfindungsgemäßen Zusammensetzungen können weiterhin feinverteilte thermoplastischen Polymerpulver enthalten. Diese sollten eine Glasübergangstemperatur im Bereich zwischen -80 0 C und 50 0 C aufweisen. Beispiele für

geeignete thermoplastische Polymere sind Polypropylen, Polyethylen, thermoplastische Polyurethane, (Meth)acrylatcopolymere, Styrolcopolymere, Polyvinylchlorid, Polyvinylacetal sowie Polyvinylacetat und dessen Copolymere, insbesondere Ethylenvinylacetat (EVA). Obwohl die Teilchengröße bzw. Teilchengrößenverteilung des thermoplastischen Polymerpulvers nicht besonders kritisch ist, sollte die mittlere Teilchengröße unter 1 mm, vorzugsweise unter 350 μm, besonders bevorzugt zwischen 100 und 20 μm liegen. Wenn thermoplastische Polymerpulver mitverwendet werden, liegt ihr Anteil an der Gesamtformulierung zwischen 1 und 20 Gew.%, vorzugsweise zwischen 5 und 15 Gew.%.

Die Füllstoffe können aus einer Vielzahl von Materialien ausgewählt werden, insbesondere sind hier zu nennen Kreiden, natürliche oder gemahlene Calciumcarbonate, Calcium-Magnesiumcarbonate, Silikate, Talkum, Schwerspat sowie Ruß. Es kann ggf. zweckmäßig sein, dass zumindest ein Teil der Füllstoffe oberflächenvorbehandelt ist, insbesondere hat sich bei den verschiedenen Calciumcarbonaten bzw. Kreiden eine Beschichtung mit Stearinsäure zur Verminderung der eingetragenen Feuchtigkeit und zur Verminderung der Feuchtigkeitsempfindlichkeit der ausgehärteten Zusammensetzung als zweckmäßig erwiesen. Die erfindungsgemäßen Zusammensetzungen können noch zwischen 0 und 8 Gew.%, vorzugsweise zwischen 1 und 6 Gew.% an Calciumoxid enthalten. Der Gesamtanteil an Füllstoffen in der Formulierung kann zwischen 10 und 80 Gew.% variieren, der Vorzugsbereich liegt zwischen 20 und 65 Gew.%.

Gegen den thermischen, thermooxidativen oder Ozon - Abbau der erfindungsgemäßen Zusammensetzungen können konventionelle Stabilisatoren oder Alterungsschutzmittel, wie z.B. sterisch gehinderte Phenole (beispielsweise 2,2- Methylen-bis-(4-methyl-6-tert.-butylphenol)) oder Aminderivate eingesetzt werden, typische Mengenbereiche für diese Stabilisatoren sind 0 bis 2 Gew.%.

Obwohl die Rheologie der erfindungsgemäßen Zusammensetzungen auch durch die Auswahl der Füllstoffe und das Mengenverhältnis der niedermolekularen Flüssigkautschuke in den gewünschten Bereich gebracht werden kann, können konventionelle Rheologiehilfsmittel wie z.B. pyrogene Kieselsäuren, Bentone oder fibrillierte oder Pulp-Kurzfasern im Bereich zwischen 0,1 und 7% oder auch hydrierte Ricinusöl-Derivate - bekannt z.B. unter dem Handelsnamen Rilanit (Fa. Cognis) - zugesetzt werden. Außerdem können weitere konventionelle Hilfs- und Zusatzmittel in den erfindungsgemäßen Zusammensetzungen Verwendung finden.

Zum Erzielen der Aufschäumung während des Härtungsvorganges können prinzipiell alle gängigen Treibmittel verwendet werden, vorzugsweise jedoch organische Treibmittel aus der Klasse der Azoverbindungen, N-Nitro- soverbindungen, Sulfonylhydrazide oder Sulfonylsemicarbazide. Für die erfindungsgemäß zu verwendenden Azoverbindungen seien beispielhaft das Azobisisobutyronitril und insbesondere das Azodicarbonamid genannt, aus der Klasse der Nitrosoverbindungen sei beispielhaft das Di-Nitrosopentamethylen- tetramin genannt, aus der Klasse der Sulfohydrazide das 4,4'-Oxybis- (benzolsulfonsäurehydrazid), das Diphenylsulfon-3,3'-disulfohydrazid oder das Benzol-1 ,3-disulfohydrazid und aus der Klasse der Semicarbazide das p-Toluol- sulfonylsemicarbazid genannt.

An die Stelle der vorgenannten Treibmittel können auch die so genannten expandierbaren Mikrohohlkugeln ("expandable microspheres"), d.h. nicht expandierte thermoplastische Polymerpulver treten, die mit niedrigsiedenden organischen Flüssigkeiten getränkt bzw. gefüllt sind. Derartige "Microspheres" sind beispielsweise in der EP-A-559254, der EP-A-586541 oder der EP-A-594598 beschrieben. Obwohl nicht bevorzugt, können auch bereits expandierte Mikrohohlkugeln verwendet bzw. mit verwendet werden. Gegebenenfalls können diese expandierbaren/expandierten Mikrohohlkugeln in beliebigem Mengenverhältnis mit den oben genannten „chemischen" Treibmitteln kombiniert werden. Die chemischen Treibmittel werden in schäumbaren Zusammensetzungen in

Mengen zwischen 0,1 und 3 Gew.%, vorzugsweise zwischen 0,2 und 2 Gew.%, die Mikrohohlkugeln zwischen 0,1 und 4 Gew.%, vorzugsweise zwischen 0,2 und 2 Gew.% verwendet.

Obwohl die erfindungsgemäßen Zusammensetzungen aufgrund des bevorzugten Gehaltes an Flüssigkautschuk mit funktionellen Gruppen in der Regel bereits eine sehr gute Haftung auf den Substraten haben, können, falls erforderlich, Klebrigmacher und/oder Haftvermittler zugesetzt werden. Hierzu eignen sich beispielsweise Kohlenwasserstoffharze, Phenolharze, Terpen-Phenolharze, Resorcinharze oder deren Derivate, modifizierte oder unmodifizierte Harzsäuren bzw. -ester (Abietinsäurederivate), Polyamine, Polyaminoamide, Anhydride und Anhydrid enthaltende Copolymere. Auch der Zusatz von Polyepoxydharzen in geringen Mengen kann bei manchen Substraten die Haftung verbessern. Hierfür werden dann jedoch vorzugsweise die festen Epoxidharze mit einem Molekulargewicht von über 700 in fein gemahlener Form eingesetzt. Falls Klebrigmacher bzw. Haftvermittler eingesetzt werden, hängt deren Art und Menge von der Polymerzusammensetzung sowie dem Substrat, auf welches die Zusammensetzung appliziert wird, ab. Typische klebrigmachende Harze (Tackifier) wie z.B. Terpenphenolharze oder Harzsäurederivate werden in Konzentrationen zwischen 5 und 20 Gew.% verwendet, typische Haftvermittler wie Polyamine, Polyaminoamide oder Phenolharze oder Resorcinderivate werden im Bereich zwischen 0,1 und 10 Gew.% verwendet.

Vorzugsweise sind die erfindungsgemäßen Zusammensetzungen frei von Weichmachern und Extenderölen. Es kann jedoch notwendig sein, die Rheologie der ungehärteten Zusammensetzung und/oder die mechanischen Eigenschaften der gehärteten Zusammensetzung durch Zugabe von sog. Extenderölen, d.h. aliphatischen, aromatischen oder naphtenischen ölen zu beeinflussen. Vorzugsweise geschieht diese Beeinflussung zwar durch zweckmäßige Auswahl der πiedrigmolekularen Flüssigkautschuke oder durch die Mitverwendung von niedermolekularen Polybutenen oder Polyisobutylenen. Falls Extenderöle

eingesetzt werden, werden Mengen im Bereich zwischen 2 und 15 Gew.% verwendet.

Zur Erzieluπg hochfester, schlagschälfester und schälfester Kautschukmischungen enthalten die erfindungsgemäßen Zusammensetzungen vorzugsweise (Angabe in Gew.%):

allgemeine bevorzugte besonders bevorzugte

Zusammensetzung Zusammensetzung Zusammensetzung

Festkautschuk 0-15% 0-12% 0- 9,0 %

Polybutadien flüssig

(MW= 5000), (10-20% vinyl 1,2-, 50-60% trans 1 ,4-, 25 - 35 % eis

1.4) 2-50 % 5 - 42 % 8 - 36 %

Polybutadien mit aktiven

Carboxylgruppen (MW =

1000- 10.000 g/mol) 0-25 % 1 -15% 3-10%

Schwefel 4-25 % 5-15% 7,5-12,5%

Beschleuniger 0,25 - 8 % 0,4 - 6 % 0,5 - 3,5 % bifunktionaler

Vulkanisationsvernetzer 0 - 2 % 0 - 1 % 0 - 0,5 %

Zinkoxid 0,5-10% 2 - 8 % 3 - 7 %

Phenolharz 0 - 8 % 0 - 6 % 0 - 3 %

Dinatriumsalz des

Hexamethyfen-1,6- bis(thiosulfat) 0-2,5% 0,1 -1,8% 0,4-1,3%

Antioxidans 0 - 2,0 % 0,1 -1,0% 0,2 - 0,7 %

Calciumoxid 0 - 8 % 1 - 6 % 2,5 - 5,5 %

Ruß 0 - 4 % 0,1 -2% 0,2 - 1 %

Calciumcarbonat 10-45% 15-40% 25 - 36 %

Calciumcarbonat, gecoatet 0-30 % 5-18% 3-12%

Daneben können, wie vorstehend genannt, weitere Füllstoffe wie Graphit, Fasern, Talkum, Silikate, Tonerden, weitere typische Beschleuniger, Vernetzungsmittel wie Peroxide, andere Antioxidantien, Co-Aktivatoren und weitere Katalysatoren, Treibmittel, öle, Alterungsschutzmittel mit verwendet werden. Ggf. können auch Rheologiehilfsmittel, Haftungsvermittler, Pigmente und thermoplastische Polymere in der Zusammensetzung enthalten sein. Die Summe der Bestandteile der Zusammensetzung ergänzt sich in jedem Falle zu 100 %.

Die erfindungsgemäßen heißhärtenden, reaktiven, einkomponentigen Klebstoffe können wie die bisher bekannten Klebstoffe auf Kautschukbasis im Rohbau

eingesetzt werden, beispielsweise für Bördelnahtverklebungen oder überlappende Verklebungen. Sie können auf geölte Bleche, wie sie im Automobilrohbau eingesetzt werden, aufgetragen werden und die Bauteile werden anschließend gefügt. Die erfindungsgemäßen Zusammensetzungen benötigen in der Regel keine Vorhärtungsmechanismen wie Induktionsheizung, Rohbauöfen oder IR- Strahler zur Vorhärtung, da sie wie die bisher bekannten Kautschukzusammensetzungen wäscherbeständig sind. Gegenüber den bisher bekannten Kautschukzusammensetzungen weisen sie eine sehr viel höhere Elastizität auf und sind in der Lage, hohe Energie in Form von Schlagschäl-Arbeit bzw. Schlagschäl-Energie in der Klebstoff-Fuge aufzunehmen. Insbesondere weisen die erfindungsgemäßen Kautschukzusammensetzungen sehr gute Schlagschäl- Eigenschaften im ausgehärteten Zustand auf. Diese Eigenschaften sind erwünscht, damit die strukturell geklebten Bauteile auch im Falle eines Unfalls den modernen Sicherheitsanforderungen (Crash-Verhalten) im Fahrzeugbau entsprechen. Weil die erfindungsgemäßen Zusammensetzungen ohne teure Spezialpolymere oder Copolymere formuliert werden können, lassen sich diese besonders kostengünstig fertigen.

Die erfindungsgemäßen Zusammensetzungen können in sich bekannter Weise in Mischaggregaten mit hoher Scherwirkung hergestellt werden, hierzu gehören z.B. Kneter, Planetenmischer, Innenmischer, so genannte „Banbury-Mischer" und ähnliche dem Fachmann bekannte Mischaggregate.

In den nachfolgenden Ausführungsbeispielen soll die Erfindung näher erläutert werden, wobei die Auswahl der Beispiele keine Beschränkung des Umfanges des Erfindungsgegenstandes darstellen soll.

Beispiele:

Die nachfolgend aufgeführten Klebstoffzusammensetzungen wurden durch Mischen der Bestandteile einem evakuierbaren Laborkneter hergestellt.

Beispiel 1 (Vergleich):

Polybutadien cis-1,4- (fest) 2,80

Calciumoxid 2,50

2,2-Methylen-bis-(4-methyl-6-tert.-butylphenol) 0,50

Ruß 0,50

Zinkoxid 3,00 gefälltes Calciumcarbonat 20,00 niedermolekulares Polybutadienöl (MW = 1800), vinyl 50 % 19,00 niedermolekulares stereospezifisches Polybutadienöl 2) 7,55

Schwefel 6,50

ZMBT 2,50

Polybutadien mit aktiven Carboxylgruppen (MW = 2100) 10,00

Calciumcarbonat, gecoatet mit Stearat 15,00

MBTS 0,95

Dinatriumsalz des Hexamethylen-1 ,6-bis(thiosulfat) 0,50

Mikrohohlkugeln 0,20

Polyvinylacetat, EVA-Copolymer, T 9 ca. 40 °C 8,50

Beispiel 2 (erfindunqsqemäß):

Polybutadien cis-1 ,4- (fest) 2,80

Calciumoxid 4,20

2,2-Methylen-bis-(4-methyl-6-tert.-butylphenol) 0,50

Ruß 0,50

Zinkoxid 4,00 gefälltes Calciumcarbonat 31 ,22

Calciumcarbonat, gecoatet mit Stearat 6,65 niedermolekulares Polybutadienöl 1) 30,58

MBTS 0,95

Schwefel 10,00 bifunktioneller Vernetzer zur Vulkanisation 0,15

Dinatriumsalz des Hexamethylen-1 ,6-bis(thiosulfat) 0,95

Phenolharz 2,50

Polybutadien mit aktiven Carboxylgruppen (MW = 2100) 5,00

Beispiel 3 (erfindungsgemäß):

Polybutadien cis-1 ,4- (fest) 2,80

Calciumoxid 4,20

2,2-Methylen-bis-(4-methyl-6-tert.-butylphenol) 0,50

Ruß 0,50

Zinkoxid 4,00 gefälltes Calciumcarbonat 29,49

Calciumcarbonat, gecoatet mit Stearat 6,65 niedermolekulares Polybutadienöl 1) 30,58

MBTS 1 ,20

Schwefel 11 ,50 bifunktioneller Vernetzer zur Vulkanisation 0,15

Dinatriumsalz des Hexamethylen-1 ,6-bis(thiosulfat) 0,95

Phenolharz 2,50

Polybutadien mit aktiven Carboxylgruppen (MW = 2100) 5,00

Beispiel 4 (erfindungsgemäß):

Polybutadien eis- 1 ,4- (fest) 5,09

Calciumoxid 4,20

2,2-Methylen-bis-(4-methyl-6-tert.-butylphenol) 0,50

Ruß 0,50

Zinkoxid 4,00 gefälltes Calciumcarbonat 31 ,37

Calciumcarbonat, gecoatet mit Stearat 6,65 niedermolekulares Polybutadienöl 1) 22,04

MBTS 1 ,20

Schwefel 11,50 bifunktioneller Vernetzer zur Vulkanisation 0,15

Dinatriumsalz des Hexamethylen-1 ,6-bis(thiosulfat) 0,95

Phenolharz 2,50

Polybutadien mit aktiven Carboxylgruppen (MW = 2100) 5,00

Polycyclooctenamer 5,00

Anmerkung:

1) MW = 5000, Mikrostruktur: 10 - 20 % vinyl- 1.2-.50 - 60 % trans 1 ,4-, 25 - 35 % eis 1 ,4- Doppelbindungen

2) MW = 1800, vinyl- Doppelbindungen 50 %

Mit den vorbeschriebenen Kautschukzusammensetzungen der Beispiele 1 bis 4 wurden Prüfkörper aus Stahlblech für die Bestimmung der Zugscherfestigkeit - Abmessungen der Klebefuge 25x12,5x0,2 mm - sowie der Schlagschälfestigkeit (impact peel energy) angefertigt. Dabei die Prüfkörper zum Aushärten der Klebstoffmischung für 30 Minuten bei 180 0 C im Umlufttrockenschrank ausgehärtet. Die Messergebnisse der Zugscherfestigkeit bei Raumtemperatur sowie der Schlagschälfestigkeit nach ISO 11343 bei Raumtemperatur und -3O 0 C sind in der nachfolgenden Tabelle aufgeführt:

Aus den Zugscherfestigkeiten und den Schlagschälarbeiten der vorstehenden Tabelle ist deutlich ersichtlich, dass die erfindungsgemäßen Klebstoffzusammensetzungen auf Basis flüssiger Kautschuke gegenüber vergleichbaren Kautschukzusammensetzungen des Standes der Technik sowohl höhere Zugscherfestigkeiten als auch deutlich höhere Schlagschälarbeiten gewährleisten, insbesondere bei Raumtemperatur aber auch bei tiefen Temperaturen bis zu -30°C. Diese höheren Schlagschälarbeiten sind ein wesentliches Kriterium für den Fahrzeugbau, da derartige Klebungen im Falle einer stoßartigen Belastung bei Unfällen sehr viel mehr Energie aufnehmen können.