Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CIRCULARLY POLARIZED MICROSTRIP ANTENNA ARRAY
Document Type and Number:
WIPO Patent Application WO/1989/008933
Kind Code:
A1
Abstract:
An antenna arrangement (10) is disclosed for radiating and receiving circularly polarized radiation. A first antenna array (20) having parallel stripline conductors (17) is disposed on the top surface of a dielectric substrate (40). The stripline conductors (12) have radiating tabs (22) protruding outwardly therefrom in a direction about 45 degrees from the stripline conductors (12). A second antenna array (21) having a second plurality of stripline conductors (14) is disposed on the substrate (40). The second stripline conductors (14) are interdigitated with the first stripline conductors (12). The second stripline conductors (14) also have a plurality of outwardly protruding radiating elements (24) which form about a 90 degree angle with the first radiating elements (22). The first and second antenna arrays (20 and 21) are fed with two independent signals about 90 degrees apart and will independently radiate a horizontally linearly polarized wave and a vertically linearly polarized wave respectively, which becomes a circularly polarized wave at far field. The interdigitated antenna pattern allows a compact antenna arrangement to be fabricated while lessening the tendency of adjacent antennas to cross-couple and distort the transmitted signal.

Inventors:
TRINH TRANG N (US)
KUNO JOHN H (US)
Application Number:
PCT/US1989/000128
Publication Date:
September 21, 1989
Filing Date:
January 13, 1989
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HUGHES AIRCRAFT CO (US)
International Classes:
H01Q1/38; H01Q21/00; H01Q21/06; H01Q21/24; (IPC1-7): H01Q21/24; H01Q21/06; H01Q1/38
Foreign References:
FR2393439A11978-12-29
FR2301110A11976-09-10
Other References:
Patent Abstracts of Japan, vol. 10, no. 370 (E-463)(2427), 10 December 1986; & JP-A-61164303 (SUMITOMO ELECTRIC IND LTD) 25 July 1986
Patent Abstracts of Japan, vol. 4, no. 145 (E-29)(627), 14 October 1980; & JP-A-55097703 (NAOHISA GOTOU) 25 July 1980
Download PDF:
Claims:
CLAIMS
1. What is Claimed is; A circularly polarized antenna arrangement, comprising: a pair of linearly polarized antennas for radiating and receiving circularly polarized electro magnetic radiation, each antenna having a plurality of essentially parallel fingerlike stripline conductors arranged in an interdigitated pattern, each of said stripline conductors having a plurality of radiating elements protruding outwardly therefrom, said protrud ing radiating elements along said stripline conductors of one of said antennas being arranged orthoganally to said protruding radiating elements along said stripline conductors of the other of said antennas.
2. An antenna arrangement as defined in Claim 1 wherein said protruding radiating elements form about a 45 degree angle with their respective stripline conductor.
3. An antenna arrangement as defined in Claim 1 further including a quadrature coupler having first, second, third and fourth branchline terminals, said linearly polarized antenna arrays being electrically coupled between said second and third branchline terminals.
4. An antenna arrangement as defined in Claim 1 further comprising a dielectric substrate, wherein said antenna arrays and directional coupler are mounted on said dielectric substrate.
5. An antenna arrangement as defined.in Claim 3. further comprising means for generating a signal, said: first branchline terminal of said directional coupler. being electrically coupled to said signal generating means.
6. An antenna arrangment as defined in Claim 1 wherein said protruding radiating elements are about onehalf wavelength long and are spaced about one wave¬ length apart based on the desired operating frequency of the antenna arrangement.
7. An antenna arrangement as defined in Claim 6 wherein said stripline conductors are spaced apart about onehalf wavelength based on the desired operating fre¬ quency of the antenna arrangement.
8. An antenna array arrangement for transmitting and receiving circularly polarized electromagnetic radiation, comprising: a dielectric substrate; a first linearly polarized antenna including at least one stripline conductor having a plurality of conductive radiating tabs protruding outwardly there¬ from, said first antenna being disposed on said substrate; a second linearly polarized antenna including at least one stripline conductor having a plurality of conductive radiating tabs protruding outwardly therefrom; said second antenna being displosed on said substrate such that said stripline conductors of said first and second antennas are substantially parallel to each other and said protruding radiating tabs of said first antenna are arranged essentially orthogonal to said protruding radiating tabs of said second antenna.
9. An antenna array as defined in Claim 8 further including a quadrature coupler having first, second, third, and fourth branchline terminals, said first and second antennas being electrically coupled between said second and third branchline terminals of said directional coupler.
10. An antenna arrangement as defined in Claim 9 further including means for providing a signal to branchline terminal one of said quadrature coupler.
11. An antenna arrangement as defined in Claim 8 where said radiating tabs are about onehalf wavelength long and are spaced about one wavelength apart along said conductors based on the anticipated operating frequency of the antenna array arrangement.
12. A circularly polarized antenna arrangement having two linearly polarized antennas for radiating two independent linearly polarized electromagnetic waves about 90 degrees out of phase, comprising: a dielectric substrate; a first antenna array having a first plurality of essentially parallel stripline conductors coupled together at one end, each of said first strip¬ line conductors having a plurality of radiating elements protruding outwardly therefrom in a first preselected direction; a second antenna array having a second plurality of essentially parallel stripline conductors coupled together at one end, each of said second strip line conductors having a plurality of radiating elements protruding outwardly therefrom in a second preselected direction which is about 90 degrees from said first preselected direction; said first and second antenna arrays being interdigitedly mounted on said dielectric substrate; a 3 dB directional coupler having first, second, third and fourth branchline terminals, said first and second antenna arrays being electrically coupled to said second and third branchline terminals respectively.
13. An antenna arrangement as defined in Claim 12 wherein said first and second radiating elements form about a 45 degree angle with their respective first and second stripline conductors.
14. An antenna array as defined in Claim 12 wherein said first and second plurality of radiating elements are substantially rectangular in shape.
15. An antenna arrangement as defined in Claim 12 wherein said first and second plurality of radiating elements are spaced about one wavelength apart based on the desired operating frequency of the antenna arrangement along said first and second stripline conductors, respectively.
16. An antenna arrangement as defined in Claim 15 wherein said first stripline conductors are spaced apart about one wavelength and said second stripline conductors are spaced apart about one wavelength, based on the desired operating frequency of the antenna arrangement.
Description:
CIRCULARLY POLARIZED MICROSTRIP ANTENNA ARRAY

BACKGROUND OF THE INVENTION

1. Field of the Invention This invention relates to microstrip antenna structures and more particularly to microstrip antenna arrays which radiate and receive circularly polarized electromagnetic radiation.

2. Background of the Invention In the past various antenna arrangements have been developed to transmit and receive circularly polarized microwave radiation. A classical arrange¬ ment is the horn antenna which is disclosed in European Patent No. 0,071,069 issued to Werner Lange on February 9, 1983. Lange's microwave antenna includes a horn shaped waveguide and two excitation radiators arranged orthoganally to one another and perpendicular to the axis of the horn waveguide. The excitation radiators are driven from a 90 degree 3dB hybrid coupler. This antenna arrangement, however, is expensive and difficult to manufacture. Additionally, it is rather large and therefore cannot be used in applications requiring compact transceivers.

Another conventional antenna arrangement is disclosed in U.S. Patent Nos. 4,180,817 and 4,217,549, issued to Gary Sanford and Bengt Henoch, respectively. Sanford and Henoch disclose a two-dimensional antenna array having a plurality of square radiating elements

arranged in rows and columns. Each sguare'radiating. element is excited by two signals 90 degrees out of " phase which are applied to adjacent sides of the element. Each square radiating element therefore radiates two signals, one of a first polarization and the other of a second polarization. However, since two - signals are applied to each radiating element, these two signals tend to cross-couple which may distort the transmitted signals. Additionally, the radiating elements must be exactly square to radiate circularly polarized radiation and not elliptically polarized radiation. This factor can adversely increase manufacturing costs.

In a further development which is in pending application no. 894,526 and assigned to the same assignee herein, a transceiver is disclosed having two linearly polarized antennas arranged orthogonally side by side. However, in certain applications, such as automobile anticollision radar transceivers, it is desirable to have even a more compact antenna arrangement.

SUMMARY OF THE INVENTION It is therefore an object of this invention to provide an antenna arrangement that radiates and receives circularly polarized radiation and at the same time is simple, compact and easy to manufacture.

It is a feature of this invention to have two independent linearly polarized arrays which are disposed adjacent to each other but spaced apart mitigating cross-couplin .

A circularly polarized antenna arrangement according to the present invention includes a pair of linearly polarized antenna arrays each array having a

plurality of essentially parallel stripline conductors. Each stripline conductor has a plurality of radiating elements protruding outwardly therefrom. The linearly polarized antenna arrays are arranged in an interdigi¬ tated pattern, with the radiating elements of one antenna array being essentially orthononal to the radiating elements of the other antenna array. The antenna arrays are coupled to different terminals of a quadrature coupler, such that one antenna array will radiate a signal of a substantially first polarization, and the other antenna array will radiate a second signal of a substantially second polarization, about ninety degrees out of phase with said first signal. Since the two antenna arrays are arranged in an interdigitated pattern, the circularly polarized antenna can be made very compact. However, because the two antennas are spaced apart from one another, cross- coupling will be reduced and substantially circularly polarized radiation achieved.

Additional objects, advantages and characteristic features of the present invention will become readily apparent from the following detailed description of the preferred embodiment of the invention when considered in conjunction with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

The sole figure is a plain view of a circularly polarized antenna arrangement constructed in accordance with the invention.

DETAILED DESCRIPTION

Referring now with greater particularity to the figure, there is shown an antenna structure according to the principles of the invention which includes a

plurality of essentially parallel and coplanar non- radiating microstrip transmission lines 12 and 14. These transmission lines are stripline conductors, of copper for example, and are spaced apart about one wavelength based on the desired operating frequency of the antenna. Nonradiating microstrip transmission lines 12 and 14 are coupled together by nonradiating microstrip transmission lines 16 and 18, respectively, which also may be copper stripline conductors. Accord¬ ingly, microstrip transmission lines 12 and 14 form a plurality of fingers which are arranged in an inter- digitating pattern. The non-radiating microstrip transmission lines 12, 14, 16, and 18 all may have an impedence of 50 ohms in impedence to match the impedence of 3dB quadrature coupler 30. The quadrature coupler 30 generally has four ports as indicated by numerals 1, 2, 3 and 4 in the figure. Microstrip transmission line 16 is electrically coupled to terminal 2 of the quadrature coupler, and microstrip transmission line 18 is electrically coupled to terminal 3. Stripline conductors 12 and 14 each have a plurality of radiating elements disposed along the conductors. The radiating elements 22 and 24 are pre¬ ferably substantially rectangular in shape; however, other shapes can be used. Radiating elements 22 and 24 protrude outwardly from conductors 12 and 14, extending therefrom about 1/2 wavelength. Radiating elements 22 and 24 may be spaced apart along their respective transmission lines by typically about 1/2 wavelength based on the desired operating frequency or integral multiples thereof; however a spacing of one wavelength is preferred. Additionally, the radiating elements 22 and 24 may be about 1/8 wavelength wide and desireably match the impedence of transmission lines 12 and 14, to minimize any losses. Radiating

elements 22 and 24 may form an angle of about 45 degrees with their respective stripline conductors 12 and 14, and are co-planar therewith. However, the respective radiating elements 22 and 24 of adjacent pairs of microstrip transmission lines 12 and 14 are arranged orthoganally to each other.

Microstrip transmission lines 16 and 18 are electrically coupled to terminals 2 and 3 of 3dB quadrature coupler, respectively. Quadrature coupler 30 maybe a 3 dB branchline coupler, a line coupler, or a lumped element, for example. Any signal to be transmitted by the antenna arrangement 10 is fed into terminal 1 of quadrature coupler 30. Quadrature coupler 30 splits this signal into two signals of about the same amplitude but 90 degrees out of phase, which signals appear at terminals 2 and 3. The signals at terminals 2 and 3 are in turn fed through microstrip transmission lines 16 and 18, and 12 and 14 respectively, into radiating elements 22 and 24. Accordingly, radi¬ ating elements 22 will radiate a first signal of a substantially first polarization, e.g., a horizontally linearly polarized wave, and radiating elements 24 will radiate a second signal of a substantially second polarization, e.g., a vertically linearly polarized wave. At far-field, i.e., about 10 wavelengths away from antenna 10, these horizontally and vertically linearly polarized waves will form a single circularly polarized waveform. To generate a circularly polarized waveform, the electrical distance of transmission lines 16 and 18 should desireably be equal. The number of stripline conductors 12 and 14, as well as the number and the geometry of the radiating elements 22 and 24, may be varied to achieve the desired radiation pattern and beam width.

Antenna 10 also receives any signals reflected back toward it. Upon reflection by a distant object * ,. . the sense of the circularly polarized waveform will be reversed. The two antenna arrays 20 and 21 receive the two orthogonal components, e.g., the horizontal and vertical components, of the circularly polarized waver- « form, which appear at terminals 2 and 3 of quadrature. coupler 30. Quadrature coupler 30 recombines the two orthogonal components into a single signal which appears at terminal 4. The antenna arrays 20 and 21 and quadrature coupler 30 may be mounted on dielectric substrate 40. The dielectric substrate may be of Teflon based fiber¬ glass having an underlying conductive layer which may be copper. Accordingly, antenna arrangement 10 may be fabricated using standard printed circuit board tech¬ niques. An off-the-shelf dielectric substrate, which may be copper-clad on both sides, may be used. The copper on one side is merely etched away using tech¬ niques well known in the art to yield the conductor patterns shown in the figure. The copper clad on the opposite side of the board serves as the ground plane.

The antenna circuit structure and layout shown and described above provides a high degree of isola¬ tion between the transmitted orthogonal linearly polarized signals. Additionally, interdigitating the antenna arrays provides a compact antenna arrangement.

Although the present invention has been shown and described with reference to a particular embodiment, nevertheless, various changes and modifications which are obvious to a person skilled in the art to which the invention pertains are deemed to lie within the spirit, scope, and contemplation of the invention.




 
Previous Patent: A SOLID DIELECTRIC LENS AERIAL

Next Patent: ELECTRICAL CONNECTORS