Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METAL TYPE DETECTOR
Document Type and Number:
WIPO Patent Application WO/1979/000855
Kind Code:
A1
Abstract:
A combination of magnetics and a special geometric environment is employed to distinguish whether an instrument is positioned within a pipe formed of magnetizable or non-magnetizable material, and is the bases, in part, for a method and an apparatus used in controlling picture taking at the bottom of a well bore. A coil (20) is energized repetitively in a circuit (98, 118, 20) in which the voltage across the coil (20), or the current that flows through the coil (20), can be measured. Whether the coil (20) is in a magnetic (12) or non-magnetic (14) environment is determined by the magnitude of the change in coil voltage or current.

Inventors:
PYATT L (US)
THOMPSON R (US)
Application Number:
PCT/US1979/000195
Publication Date:
November 01, 1979
Filing Date:
March 23, 1979
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PYATT L
THOMPSON R
International Classes:
E21B47/00; E21B47/09; G01D9/42; G01N27/72; G01V3/10; (IPC1-7): E21B43/00; G01B7/00; G01N27/02
Foreign References:
US2906944A1959-09-29
US2686039A1954-08-10
US4121657A1978-10-24
US2250703A1941-07-29
US2817808A1957-12-24
US3896371A1975-07-22
US3546478A1970-12-08
Other References:
See also references of EP 0014204A4
Download PDF:
Claims:
What is claimed is:
1. The method of determining whether a coil disposed within a pipe, part of whose length is magnetic and part of whose length is nonmagnetic, is in the mag¬ netic or nonmagnetic part of the pipe, which method comprises the steps of: a) energizing said coil from a source of electrical energy whose voltage varies periodically such that a magnetic field is alternately created and collapsed around said coil and such that said field extends into said pipe; and b) measuring the magnitude of the change in current flow through said coil.
2. The method defined in Claim 1 which includes the further step of orienting said coil such that the direction of the magnetic field at the center of the coil is closer to parallel than it is normal to the axis of the pipe. /j, .
3. The method defined in Claim 1 in which the frequency of the variation in source voltage is be tween 300 and 800 cycles per second.
4. The method defined in Claim 3 in which the frequency of the variation in source voltage is be¬ tween 400 and 600 Hz. OMPI h. IPO .
5. In an instrument whose purpose is to determine whether a given position within a pipe is within a magnetic or nonmagnetic section of the pipe, in combination: a) a coil energizable to create a magnetic field; ■ b) means for holding the coil oriented with its magnetic axis pointing in a direction having a component parallel with the axis of the pipe; c) means for energizing said coil suffi¬ ciently to create a magnetic field on which the pipe can exercise an affect; and d) means for measuring the magnitude of the change in at least one of the current through said coil and the voltage across said coil.
6. The invention defined in Claim 5 in which said means for energizing said coil comprises means for repetitively altering the magnitude of the current that is permitted to flow through said coil.
7. The invention defined in Claim 5 in which said means for energizing said coil comprises an active device having a current flow path in series with said coil and a control element responsive to variation in the magnitude of voltage applied to it to control the magnitude of current made available to flow through said coil.
8. The invention defined in Claim 5 in which said means for energizing said coil comprises a means for applying a sinusoidal wave form of voltage to said con¬ trol element. OMPI .
9. The invention defined in Claim 5 in which said means for measuring the change in current through, or voltage across, said coil comprises means for measurin the voltage at a point in series circuit with said coil and which further comprises means for providing an indi¬ cating signal indicative of whether the voltage variation across said coil is greater than a selected voltage vari ation.
10. The invention defined in Claim 9 which further comprises means for providing an output signal for a preselected period beginning at the end of a given period following provision of an indicating signal indi eating that the voltage variation across said coil exceed some voltage variation. ___ hT .
11. The invention defined in Claim 5 in which said coil comprises coils of electrical conductor wound upon a magnetizable electrical insulator.
12. The invention defined in Claim 6 in which said means for energizing said coil comprises means for connecting said coil to a source of electric current and altering the magnitude of current permitted to flow through said coil repetitively at a frequency between 300 and 800 Hz.
13. The invention defined in Claim 5 in which said means for energizing said coil comprises, in series with the coil, a resistor and the primary current path of a transistor device and which further comprises a mean for applying a periodically varying potential to the control element of said transistor device.
14. The invention defined in Claim 13 in which said coil comprises a coil of wire wound upon a straight core of magnetizable., nonelectrically conductive materia and in which said means for holding the coil comprises an enclosure of nonmagnetic material and means for holding the coil with its magnetic axis more parallel than normal to the axis of a pipe in which it is disposed when so disposed.
15. The invention defined in Claim 14 in which said means for measuring the magnitude of change in cur rent flow through, or voltage across, said coil comprises means for actuating a switch in response to change greater than a selected magnitude to provide an indicating signal indicating that the change was greater than said selected magnitude. ΓRE OMPI ^ n .
16. The invention defined in Claim 15 which further comprises: a) means in the form of a switching cir cuit for controlling application of energy to a lamp; b) said switching circuit comprising a first flipflop, two counters, and a second flipflop; c) said first flipflop being responsiv to said indicating signal to initiate operation of one of said counters; d) said one of said counters being effe tive, at a given count, to alter the state of said secon flipflop to a state in which application of energy to t lamp is permitted and also to initiate operation of the other of said counters; e) said other of said counters being effective, at a given count, to alter the state of said second flipflop to a state in which application of energy to the lamp is .precluded. J fb .
17. The method of controlling photograph taking at a selected position in a well bore with photographic equipment which comprises the steps of: a) lowering the photographic equipment to said position; b) initiating a clock timer only when said photographic equipment is disposed at said position; and c) operating said photographic equipment at the end of a predetermined interval following initia¬ tion of said clock timer.
18. The invention defined in Claim 17 which comprises the further step of detecting when said photo¬ graphic equipment is disposed at said position by detecting the character of material at said position. ' OMPI fo IPO.
Description:
METAL TYPE DETECTOR

This invention relates to methods and means for determining whether a metallic enclosure, in particular, a drill pipe, is made of magnetic or non-magnetic material, and it relates to an instrument having that capability for controlling illumination of the light source in the photo- graphing of compasses at the bottom of drilled wells.

OMFI

BACKGROUND OF THE INVENTION

While not limited to that application, the in¬ vention is particularly useful in connection with the tak of photographic pictures of a compass, or inclinometer, o both, at the bottom of a well bore. Well drillers can control the direction of deep wells by control of the drilling tools. But control is accomplished in terms of adjustment to change from current direction as drilling proceeds. That means that the driller must know the well current direction from time to time. Current direction i determined by lowering a compass inclinometer to the bott of the well and then photographing the compass assembly to record its direction in azimuth and inclination. The task of photographing a compass at the bottom of a well i both complicated and expensive.

The compass needle is acted on by the earth's magnetic field. To permit that, the compass must be dis¬ posed in a non-magnetic section of pipe at the time that the photograph is taken. Current practice is to include a short length of non-magnetic pipe at or near the lower end of the drill pipe. That length of pipe is ordinarily made of Monel and it is called a "collar." The compass must be disposed in that section when it is photographed. Care must be taken to ensure that the compass assembly is not in motion at the time that the photograph is taken. Current practice is to include a detector which detects absence of motion and a means for precluding exposure of the film for some selected time interval measured from th last action which could cause movement of the compass needle.

To prevent premature exposure, it has been necessary to ensure that instrument motion does not stop

until the instrument has reached the position at which the photograph is to be taken. To overcome that require- ment, a conventional clock has been used so that photo¬ graph taking occurs at some fixed time after the clock is started at the well head. That solution is subject to failure if, for any reason, the time required to lower the instrument is other than the predicted time.

This invention relates to the problem of en¬ suring that the compass is in the non-magnetic collar and to the problem of postponing picture taking until the compass needle has "settled down" before the film is ex- posed. To pull the drilling tools from a deep well is very costly. It is important to be able to determine reliably and with a high degree of certainty whether the compass is, or is not, in the non-magnetic section of the drill pipe.

Another object is to provide an improved well compass position detector and compass picture taking controller.

These and other objects and advantages of the invention are realized in part by the provision of a coil which is energizable to create a magnetic field and of a means for holding the coil within an enclosure such that the field of the coil will be substantially confined by the enclosure, in the event that the enclosure is made of magnetizable material, and which will induce substantial circulating currents, enough to present a heavy load per¬ mitting current flow in the coil in excess of the current that would flow if the coil was located in free space, in the event that the enclosure is made of non-magnetizable but electrically conductive material.

OMPI f h WΪPO

That kind of a coil is used in conjunction with a means for measuring the voltage across, or the current through, the coil when energized. The voltage or current is indicative of whether the coil is disposed in a magneti or non-magnetic pipe or other enclosure, and it is used to develop an indicating signal which indicates the nature of the enclosure. In preferred form, the coil is energized through a transistor whose control electrode is subjected to a periodically varying voltage wave form.

It is a feature to change from analog to digital measurement by switching if the voltage or current ex- cursion exceeds some value that indicates that the coil is in one kind of enclosure and not the other. It is anot feature to house the coil in a non-magnetic casing in whic case the instrument ' can detect when it is in a magnetic environment and in a non-magnetic environment whether elec trically conductive or not.

It is a further feature to use the indicating signal to control initiation of interrelated timing circui

These and other features and advantages of the invention will become clear upon a reading of the specific tion which follows.

THE DRAWINGS

e drawings:

Figure 1 is a schematic representation of an instrument in which the invention is embodied in a section of drill pipe shown in cross-section;

Figure 2 is a diagram illustrating part of the operation of the invention when detecting pipe of magnetic material;

Figure 3 is a diagram illustrating part of the operation of the invention when detecting pipe of non-magnetic but metallic material; and

Figure 4 is a circuit diagram of a preferred embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

In Figure 1, the numeral 10 designates a sec¬ tion of drill pipe including a fragment of the lower end of a magnetic steel pipe 12 and a fragment of the upper end of a pipe 14 of non-magnetic metal. The two are interconnected at threaded region 16. Disposed within th pipe is an instrument 18 whose purpose is to photograph the position of a compass assembly on a film.

Sometimes the compass serves as an inclinometer as well as a compass, and in some cases a separate invert plumbob is added to indicate inclination. Those elements form no part of the invention, nor does the film which is placed on one side of the compass and inclinometer com¬ bination, or the lamp that is placed on the other side. The invention is concerned with illumination of the lamp and with illuminating the lamp only when the compass is in the non-magnetic, metallic portion of the pipe, after sufficient time has elapsed to allow the compass needle to become steady.

To perform those several functions, the instru¬ ment of the preferred embodiment includes a metal type detector, timers, a power source in the form of batteries, lamp, lamp circuit, a compass and inclinometer,:; and a film. In the preferred form, these elements are housed i a non-magnetic case which may be formed of electrically conductive material such, for example, as Monel metal.. The diagram of Figure 4 includes the batteries, metal type detector, timers, and terminals for connection to the lamp circuit. The metal type detector includes a sensing coil 20 and its operation will be explained in connection with Figures 2 and 3..

In preferred form, the sensing coil 20 is wound about a straight elongated form, preferably about an elongated ferrite core. It is housed in the instru¬ ment case 18 so that the axis of the coil is parallel to, and preferably coincident with, the axis of case 18. The case is arranged so that its axis can be expected to be substantially parallel with the axis of the drill pipe. The requirement, in the preferred embodiment, is that the axis of the coil be more parallel than transverse to the axis of the drill pipe. The reason for that arrangement is explained in connection with Figure 3.

In Figure 3, the coil and its core 22 are dis¬ posed within a Monel pipe 23. When current flows through the coil a magnetic field is established around the coil. That field is represented, in accordance with con¬ vention, by closed loops 25, 26, 27 and 28 shown as dashed lines which extend through the core, and than out at one end and around and back into the core at the opposite end. No loop crosses any other according to convention. Since the permeability of Monel is near unity, the flux lines pass through the pipe walls in a pattern similar to what would be expected in air. As the flux field builds, the flux lines "cut" the pipe wall and that movement of magnetism interacts with the free electrons in the elec¬ trically conductive pipe to cause a motion of those elec¬ trons according to the right hand rule. The electrons flow around the circumference of the pipe so that the pipe acts as a single "shorted" turn secondary winding of large cross sectional area. The resistance of the pipe is low so that it presents a heavy load to the primary winding 22 which draws a heavy current. Current flow is represented in Figure 3 by the "flow away" and "flow toward" symbols 30 and 32, respectively.

' OMPI

Returning to Figure 4, the coil 20 is in series with the emitter-collector circuit of a transistor 118 and a load resistor 98. The transistor is cut off during part of each cycle so the result is a large current chang and a large voltage change at the collector of transistor 118 when the coil 20 is in Monel pipe.

If the coil 20 was oriented so that its axis was normal to the pipe axis, the flux direction would be changed by 90 degrees and so would the direction of the induced current. The current would flow in the longitu¬ dinal direction of the pipe and the pipe would act as a secondary winding in much lesser degree determined pri¬ marily by dissymetry in the magnetic field.

Sensitivity is also effected by conductivity of the protective case 18. That case must be made of non- magnetic material so that the magnetic field will not be confined to the case but can reach the pipe. Sensitivity of the instrument is reduced in the sense that a portion of the current change in the coil results from current flow in the case. However, it will be seen that that effect does not lessen ability of the instrument to dis¬ tinguish steel pipe from a non-magnetic pipe.

Magnetic lines of flux follow the path of least reluctance, and when the coil 20 is disposed within a pipe 34 of magnetic material, the flux lines will extend from one end of core 22 through the non-magnetic case of instrument 18 into and along the magnetic pipe and then back through the case of instrument 18 to core 22. There will be less "cutting" of the pipe by flux lines. A current will be induced in the pipe wall as it was in the

Monel pipe of Figure 3, but higher resistance, eddy curre and other losses and phase stifling effects serve to mini-

mize that current. Further, the greater magnetic effi¬ ciency in the magnetic circuit results in a stronger field, collapse of more flux when transistor 118 cuts off cur¬ rent, and it creates a greater counter-electromotive force in coil 20. The result is a lesser current swing. That is true notwithstanding the circulating current around the case of instrument 18 and the load it represents.

The end result is that presence of coil 20 within the steel pipe results in a magnetic action which produces a counter-electromotive force in the coil and an opposition to current change which substantially nullifies the effect of the instrument case of a shorted tirn. There is no such nullification when the instrument is housed in a non-magnetic pipe so current change is large whether it be the result of the instrument case or the pipe, or both, acting as a shorted turn.

There is another effect to be accounted for. Lenz's Law describes that counter-electromotive force has a magnitude that depends upon the rate of change of magnetic flux. At very low frequencies, the counter-electromotive force opposing flow in coil 20 is very low notwithstanding that the coil is disposed within the steel portion of the pipe. Thus, at very low frequencies, the signal output at the collector of transistor 118 will be relatively high when the coil is housed in steel. That signal strength diminishes rapidly when the frequency is increased. An opposite effect occurs at low frequencies when the coil 20 is disposed in the Monel portion of the pipe. At low frequencies the flux change is slow and the magnitude of the circulating current in the "shorted turn" pipe is small. That means that the load is small and the self-inductance of coil 20 is ade¬ quate to limit current flow. Accordingly, the voltage excursion at the collector of transistor 118 is relatively

small. However, the signal magnitude increases rapidly with frequency. In an actual circumstance, the non- magnetic collar has an inside diameter of about three inches and a wall thickness greater than one inch. The instrument case has an outside diameter of about two inc and a wall thickness on the order of one-quarter inch. The lower frequency limit for operation of the instrument will be about 300 cycles. At frequencies below that it becomes impossible to distinguish Monel from steel, or t results are unreliable. As frequency is increased above 300 cycles per second, the differential in magnitude between the signal in steel and the signal in Monel is increased until some optimum frequency is reached. For the dimensions given, that frequency will fall in the ran of 400 to 800 cycles per second. Above that, the current variation in coil 20 is diminished when the coil is dis¬ posed in Monel. The effect of self-inductance in the coil overtakes the effect of the heavy loading so that at about 800 cycles per second, for the values given, the magnitude of the signal is reduced to the point where detection becomes difficult and unreliable. Accordingly, there is a frequency window in which the metal type detec tor must be operated. That window can be shifted by changing the characteristics of the coil 20, but the preferred embodiment employs the component values listed below, and a frequency of operation between 400 and 600 cycles per second. In the particular case shown, the frequency is 500 cycles per second.

At the upper portion of Figure 4, line 106 is connected to positive terminal 104 and power Line 108 is connected to ground. The circuit includes an oscillator 110 whose frequency is relatively low, and it need com¬ prise no more than a series of three inverters and some feedback resistors and a capacitor. Its output is connec

ted to the base of NPN transistor 112. Its collector is connected to the positive line 106. Its emitter is con- nected to ground through the series combination of a resistor 114 and an electrolytic capacitor 116. The junc¬ tion of the resistor and the capacitor is connected to the base of a NPN transistor 118 whose collector is con¬ nected to the positive line 106 through resistor 98, men- tioned earlier. The emitter of the transistor is con¬ nected through the sensing coil 20 to ground line 108. The output of transistor 118 is taken from its collector and applied to the base of an NPN transistor 120 whose collector is connected to the positive line through a load resistor 122 and to the base of an PNP transistor 124. The emitter of transistor 120 is connected to ground through resistor 126, and it is connected to the emitter of a transistor 128 whose collector is connected to the positive line through load resistor 130. The base of transistor 128 is connected to the junction between two resistors, 132 and 134, which are connected between the positive line and the negative line in series, in that order. The emitter of transistor 124 is connected to the positive line 106 and its collector is connected through a diode 136 to a line 138 and a terminal 140. A capacitor 142 and a resistor 144 are connected in parallel between line 138 and the negative line 108. Another output line 146 is connected from line 138 to the "D" input terminal of a. D-type flip-flop 148.

Except for the D-type flip-flop, the circuit thus far described is the metal type detector. Its func¬ tion is to apply a positive signal to the D terminal of the flip-flop when coil 20 is located within the Monel section of the pipe and to apply a negative signal to the D input of flip-flop 148 when the sensing coil 20 is located within a steel portion of the drill pipe. To do

' O PI

that, the output of oscillator 110 is applied to the base terminal of amplifier 112. Current flowing through the collector-emitter circuit of the transistor flows through resistor 114 to charge capacitor 116. The capa¬ citor discharges through the base-emitter circuit of the following transistor 118. The result is the application to the base of transistor 118 of the voltage that appears across capacitor 116. That input voltage causes a corres ponding flow of current in the emitter-collector circuit of transistor 118, except as that current flow, and count electromotive force, develops an opposing voltage across the sensing coil 20 in the manner previously described. The output signal of that transistor is applied to the ba of transistor 120 whose bias is controlled by current flo through transistor 128. The base of the latter is biased to a fixed value by the voltage divider formed by the com bination of resistors 132 and 134. Current flowing throu the transistor 128 flows through re'sistor 126 in the emit circuit of transistor 120. Only when the base voltage of the transistor exceeds a value determined by the volta across resistor 126 does current flow in transistor 120. The output of that transistor is taken from its collector and applied to the base of switching transistor 124 which, when turned on, permits current flow through the diode 13 into capacitor 142 so that the output line 138 becomes positive. The capacitor is discharged through resistor 144. The effect is that line 146 will remain positive while the coil 20 is disposed within the Monel collar, but the line will return to its negative state when the coil 20 is disposed within the steel pipe. In the latter case, the voltage at the base of transistor 120 is in¬ sufficient, in view of the voltage across resistor 126, to permit current flow through transistor 120 for the tur ing on of transistor 124. Accordingly, the charge on cap citor 142 will leak off through resistor 144 and line 146 will be returned to a low state and will remain low.

*g3

^ T

The edge clocked flip-flop 148 initiates a counting and control cycle when a high signal is applied to its D input by line 146 from the output line 138.

Clock signals for the digital portion of the circuit are generated in an oscillator 150 whose output signals are applied by a line 152 to the clock pins 3 and 13 of JK flip-flops 154 and 156, respectively. Clock signals are also applied to the clock pin 3 of flip-flop 148 and to pin 2 of each of three counters, 158, 160 and 162. The counters are cleared and preset when a low signal is ap¬ plied to their number 1 pins from the Q-bar output of flip-flop 156. Counting begins when a high signal is applied to the enable pin, number 9, of each of the counters from the Q output of flip-flop 148.

The circuit is arranged so that two counting functions are performed. Counters 158 and 162 are connected together as one counter called the exposure time counter, and counters 158 and 160 are connected together as a second counter called the settling time counter. The first of those counters is used to control the time during which the camera light source, the lamp, is illuminated. The second of the counters introduces a time delay between the time when coil 20 has sensed that it is disposed within the Monel section of pipe and the time when energization of the lamp excitation circuit is permitted. Output of the exposure time counter is taken from pin 15 of counter 162, and the output of the settling time counter is taken at pin 15 of the counter chip 160. Pin 15 of counter chip 162 is connected to the K input of flip-flop 154 and to the J input of flip-flop 156. The output of counter chip 160 at pin 15 is applied to the J input of counter 154.

Turning to the output end of the circuit, the lamp excitation circuit is connected to terminals X, Y

tJREΛ

OMPI IPO

"mty * . " !.

Ul Ul to to P 4 P 4

Ui 0 Ui O Ul 0 Ui

P-

at "0." When that counter reaches maximum count, a high appears at pin 15 and that is applied to the count enable pins 10 of both of the counter chips 160 and 162. Flip- flop 154 has been reset. A high appears at the Q-bar terminal and that is applied to pin 7 of counter 160 which is thereby enabled. A low is applied to pin 7 of counter 162 which is connected to the Q output of flip-flop 154. That means that the counter 162 is inhibited. When counter 160 reaches maximum count, a high signal appears at its pin 15 and that signal is applied to the J input of flip- flop 154. The K input of that flip-flop, and the J input of flip-flop 156 are low because they are connected to pin 15 of counter 162 which is inhibited. When counter

160 reaches its maximum count, a positive signal is applied to pin J of flip-flop 154 and that flip-flop changes state. A high appears at its Q output, thereby turning on the transistor 170 in the lamp excitation circuit and also enabling the counter 162. When counter 162 reaches full count, a positive signal from pin 15 of counter chip 162 is applied to the K input of flip-flop 154, and the J side of flip-flop 156. Flip-flop 154 resets and fl-ip-flop 156 sets. Accordingly, the Q output of flip-flop 154 goes low to turn off the transistor 170 in the lamp exci¬ tation circuit. The Q-bar output goes high, terminating the signal to counter 160. The K input of the flip-flop 156 is at ground potential, so the appearance of a high at the end of the interval count at terminal J of flip- flop 156 changes its state so that a low appears at the Q-bar output. That low is applied to clear all of the counters.

The circuit of Figure 4 is arranged so that a photograph will be taken automatically as soon as the compass photographing instrument is positioned so .that coil 20 is within the Monel collar, and a time has elapsed

OMPI WIPO

sufficient to ensure that the compass assembly has stopped fluctuating.

In a representative circuit, the components may have the following values:

Transistors 112, 120, 118, 170 are type 2N3703; Transistor 124 is type 2N3703;

D-type flip-flop 148 may be type MC 14013B; Three counter chips are type MC 14163B; Flip-flop 154 is type MC 14027B; Flip-flop 156 is type MC 14584B; Capacitor 176 has a value of .01 mf;

Capacitor 142 has a value of 1 mf; Capacitor 116 has a value of 2 mf; Resistors 122, 130 and 144 are 100K ohms; Resistors 126 and 134 are 10K ohms; Resistor 114 has the value 300 ohms;

Resistor 98 has the value 2700 ohms.

The circuit uses six inverters packaged in chip MC 14069B. Three of those are connected in series to for oscillator 150. In each case, the first inverter in the series is connected in parallel with the series combi nation of a 1 megohm and a 2 megohm resistor. The juncti between the two resistors is connected to the junction between the- second and third inverters of the series through a capacitor which, in the case of oscillator 107, has the value .001 mf. The value of the capacitor in oscillator 150 is much larger. Oscillator 150 serves as the clock for the settling time counter and for the expos time counter. The length of the settling time and exposu will depend upon the characteristics of the film and of the damping characteristics of the compass. Because of that, the value of the clock frequency controlling capa-

citor 134 is not specified and the counter-connections (number of counts) are not shown in the diagram. To select them in a given case requires no more than very ordinary skill. Settling time might be anything up to about 1.5 minutes, and the exposure time anything up to forty-five seconds, depending upon which ones are selected of the films and lamps and compasses that are currently in use.

The coil 20 has an inductance of about 233 micro¬ henries. The core material of the coil is magnetic but is non-conductive. The frequency of oscillator 110 is at or near 500 Hz.

In some applications of the invention, when used as a metal detector, or in conjunction with other instru¬ ments, it may be desirable to work with analog signals, and, for that purpose, the preferred embodiment includes a terminal 202 at the collector of transistor 118. That terminal could be positioned at any point where the voltage or current variation in coil 20 can be measured, but the collector position is now preferred.

While a preferred embodiment of the invention has been described, other embodiments of the invention are possible. A list of variations would include changes in coil configuration, changes in the type of non-magnetic material in which the coil was housed, and changes in housing configuration and, of course, other changes are possible within the invention.

OMPI