Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING AN ELECTRODE FOR AN ELECTROCHEMICAL ENERGY ACCUMULATOR, ELECTROCHEMICAL ENERGY ACCUMULATOR AND VEHICLE
Document Type and Number:
WIPO Patent Application WO/2018/033335
Kind Code:
A1
Abstract:
The invention relates to a method for producing an electrode for an electrochemical accumulator, in particular a lithium-ion cell, an electrochemical accumulator and a vehicle. According to the inventive method, a composite is produced by mixing a binder mixture, which compirses as components, carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR) and polytetrafluoroethylene (PTFE), with an active material at a temperature which is above the glass transition temperature of the binder mixture or at least one of the components of the binder mixture, resulting in, in particular plastically deformable composite applied to a metallic collector layer.

Inventors:
GENTSCHEV ANN CHRISTIN (US)
LUND ISAAC (US)
LUX SIMON (DE)
PASCHOS ODYSSEAS (DE)
WOEHRLE THOMAS (DE)
Application Number:
PCT/EP2017/068194
Publication Date:
February 22, 2018
Filing Date:
July 19, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYERISCHE MOTOREN WERKE AG (DE)
International Classes:
H01M4/133; H01M4/134; H01M4/1393; H01M4/1395; H01M4/38; H01M4/583; H01M4/62
Foreign References:
KR20150132710A2015-11-26
JP2006164883A2006-06-22
US20120156529A12012-06-21
Other References:
None
Download PDF:
Claims:
ANSPRÜCHE Verfahren zur Herstellung einer Elektrode für eine elektrochemische Energiespeicherzelle, insbesondere eine Lithium-Ionen-Zelle, mit folgenden Schritten:

- Herstellen eines, insbesondere plastisch verformbaren, Komposits (8) durch Vermischen eines Bindergemisches (9), welches als Komponenten Carboxymethylcellulose (12) (CMC), Styrol-Butadien-Kautschuk (13) (SBR) und Polytetrafluorethylen (14) (PTFE) enthält, mit einem Aktivmaterial (10) bei einer Temperatur, welche oberhalb der Glasübergangstemperatur des Bindergemisches (9) oder zumindest einer der Komponenten (12-14) des

Bindergemisches (9) liegt, und

- Aufbringen des Komposits (8) auf eine metallische Kollektorschicht (4).

Verfahren nach Anspruch 1 , wobei das Herstellen des Komposits (8) bei einer Temperatur durchgeführt wird, welche zwischen der Glasübergangstem peratur und der Schmelztemperatur des Bindergemisches (9) oder zumindest einer der Komponenten (12-14) des Bindergemisches (9) liegt.

Verfahren nach Anspruch 1 oder 2, wobei das Bindergemisch (9) mit dem Aktivmaterial (10) durch Kneten vermischt wird.

Verfahren nach einem der vorangehenden Ansprüche, wobei das Aufbringen des Komposits (8) auf die metallische Kollektorschicht (4) durch Laminieren oder direkte Beschichtung erfolgt.

Verfahren nach einem der vorangehenden Ansprüche, wobei das Aktivmaterial (10) ein Lithium-interkalierendes Material enthält, welches Kohlenstoff, insbesondere Graphit, und/oder Silizium enthält.

Verfahren nach einem der vorangehenden Ansprüche, wobei das Aktivmaterial (10) ein elektrisch leitfähiges Material, insbesondere Ruß, Graphit, Koh- lenstoffnanoröhrchen oder eine Mischung daraus, enthält.

7. Verfahren nach einem der vorangehenden Ansprüche, wobei der Anteil des Bindergemisches (9) am Komposit (8) zwischen 1 und 12 Gewichts-% beträgt. 8. Verfahren nach einem der vorangehenden Ansprüche, wobei

- der Anteil von Carboxymethylcellulose (12) (CMC) am Bindergemisch (9) zwischen 1 und 30 Gewichts-% beträgt und/oder

- der Anteil von Styrol-Butadien-Kautschuk (13) (SBR) am Bindergemisch (9) zwischen 1 und 70 Gewichts-% beträgt und/oder

- der Anteil von Polytetrafluorethylen (14) (PTFE) am Bindergemisch (9) zwischen 1 und 40 Gewichts-% beträgt.

9. Verfahren nach einem der vorangehenden Ansprüche, wobei die Kollektorschicht (4) vor oder während des Aufbringens des Komposits (8) auf eine Temperatur erwärmt wird, welche oberhalb der Glasübergangstemperatur des Bindergemisches (9) oder zumindest einer der Komponenten (12-14) des Bindergemisches (9) liegt.

10. Verfahren nach Anspruch 9, wobei die Kollektorschicht (4) erwärmt wird, in- dem diese über mindestens eine beheizte Walze (3) geführt wird, deren

Temperatur oberhalb der Glasübergangstemperatur des Bindergemisches (9) oder zumindest einer der Komponenten (12-14) des Bindergemisches (9) liegt.

1. Verfahren nach einem der vorangehenden Ansprüche, wobei das Komposit (8) mittels einer Schablone, durch welche das Komposit (8) in eine vorgegebene Form und/oder Schichtdicke gebracht wird, und/oder unter Ausübung eines Drucks auf die metallische Kollektorschicht (4) aufgebracht wird.

2. Verfahren nach einem der vorangehenden Ansprüche, wobei die Kollektorfolie (4) vor dem Aufbringen des Komposits (8) geätzt und/oder mechanisch aufgeraut und/oder, insbesondere mit einem Haftvermittler (17), beschichtet wird.

13. Elektrochemische Energiespeicherzelle, insbesondere Lithium-Ionen-Zelle, mit mindestens einer Elektrode, welche aufweist:

- ein Komposit (8), erhältlich durch Vermischen eines Bindergemisches (9), welches als Komponenten Carboxymethylcellulose (12) (CMC), Styrol- Butadien-Kautschuk (13) (SBR) und Polytetrafluorethylen (14) (PTFE) enthält, mit einem Aktivmaterial (10) bei einer Temperatur, welche oberhalb der Glasübergangstemperatur des Bindergemisches (9) oder zumindest einer der Komponenten (12-14) des Bindergemisches (9) liegt, und

- eine metallische Kollektorschicht (4), auf welcher das Komposit (8) aufgebracht ist.

14. Fahrzeug, insbesondere Kraftfahrzeug, mit elektrochemischen Energiespeicherzellen nach Anspruch 13.

Description:
VERFAHREN ZUR HERSTELLUNG EINER ELEKTRODE FÜR EINE ELEKTROCHEMISCHE ENERGIESPEICHERZELLE, ELEKTROCHEMISCHE ENERGIESPEICHERZELLE SOWIE FAHRZEUG

Die Erfindung betrifft ein Verfahren zur Herstellung einer Elektrode für eine elektro- chemische Energiespeicherzelle, insbesondere Lithium-Ionen-Zelle, eine elektrochemische Energiespeicherzelle sowie ein Fahrzeug mit einer elektrochemischen Energiespeicherzelle.

Die Speicherung elektrischer Energie spielt beispielsweise in der drahtlosen Kommunikation oder in der Elektromobilität eine große Rolle. Um die entsprechenden Kommunikationsmittel bzw. Fahrzeuge leistungsfähiger und effizienter zu machen, werden Energiespeicher mit hoher Energiedichte bzw. spezifischer Energie benötigt. Ein vielversprechender Ansatz sind Lithium-Ionen-Zellen, die eine relativ hohe Energiedichte bzw. spezifische Energie aufweisen.

Ein solcher elektrochemischer Energiespeicher weist im Wesentlichen zwei Elektro- den, die durch einen Separator getrennt sind, und einen Elektrolyten zum Transport von Ionen zwischen den Elektroden auf. In bekannten Verfahren zur Herstellung der Elektroden werden Kollektorfolien mit Suspensionen, bei denen ein Aktivmaterial in Wasser oder einem organischen Lösungsmittel suspergiert ist, beschichtet und anschließend in einem aufwändigen Verfahren vom Trägerlösemittel befreit bzw. ge- trocknet.

Es ist eine Aufgabe der Erfindung, ein Verfahren zur einfachen und sicheren Herstellung einer Elektrode und eine einfach und sicher herzustellende Elektrode für elektrochemische Energiespeicherzellen sowie ein Fahrzeug mit solchen elektrochemischen Energiespeicherzellen anzugeben. Diese Aufgabe wird durch das Verfahren zur Herstellung einer Elektrode für eine elektrochemische Energiespeicherzelle und die elektrochemische Energiespeicherzelle gemäß den unabhängigen Ansprüchen sowie ein Fahrzeug mit solchen elektrochemischen Energiespeicherzellen gelöst. Ein erfindungsgemäßes Verfahren zur Herstellung einer Elektrode für eine elektrochemische Energiespeicherzelle, insbesondere eine Lithium-Ionen-Zelle, weist folgenden Schritte auf: Herstellen eines, insbesondere plastisch verformbaren, Kom- posits durch Vermischen eines Bindergemisches, welches als Komponenten Car- boxymethylcellulose (CMC), Styrol-Butadien-Kautschuk (SBR) und Polytetrafluo- rethylen (PTFE) enthält, mit einem Aktivmaterial bei einer Temperatur, welche oberhalb der Glasübergangstemperatur des Bindergemisches oder mindestens einer der Komponenten des Bindergemisches liegt, und Aufbringen des Komposits auf eine metallische Kollektorschicht. Eine erfindungsgemäße elektrochemische Energiespeicherzelle, insbesondere Li- thium-lonen-Zelle, weist mindestens eine Elektrode auf mit einem Komposit, erhältlich durch Vermischen eines Bindergemisches, welches als Komponenten Car- boxymethylcellulose (CMC), Styrol-Butadien-Kautschuk (SBR) und Polytetrafluo- rethylen (PTFE) enthält, mit einem Aktivmaterial bei einer Temperatur, welche ober- halb der Glasübergangstemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches liegt, und einer metallischen Kollektorschicht, auf welcher das Komposit aufgebracht ist.

Ein erfindungsgemäßes Fahrzeug, insbesondere Kraftfahrzeug, weist eine Vielzahl von erfindungsgemäßen elektrochemischen Energiespeicherzellen, insbesondere Lithium-Ionen-Zellen, auf.

Ein Aspekt der Erfindung basiert auf dem Ansatz, ein Bindergemisch aus Carboxy- methylcellulose (CMC), Styrol-Butadien-Kautschuk (SBR) und Polytetrafluorethyl- en (PTFE) oder zumindest eine der Komponenten des Bindergemisches durch Erwärmung zu erweichen und/oder in eine, vorzugsweise zähflüssige, Schmelze zu überführen und mit einem Aktivmaterial zu einem Komposit zu vermischen, das auf eine metallische Kollektorschicht aufgebracht wird. Dazu wird das Bindergemisch bzw. die mindestens eine Komponente des Bindergemisches auf eine Temperatur erwärmt, die über der Glasübergangstemperatur des Bindergemisches bzw. der zumindest einen der Komponente des Bindergemisches liegt. Die Erwärmung kann zu verschiedenen Zeitpunkten bzw. in verschiedenen Zeiträumen erfolgen, beispielsweise bereits vor dem Vermischen des Bindergemisches mit dem Aktivmaterial und/oder nach einem initialen Vermischen des noch nicht erweichten Bindergemi- sches mit dem Aktivmaterial und/oder während des Vermischens des Bindergemisches mit dem Aktivmaterial.

Unter der Glasübergangstemperatur, welche auch als Erweichungstemperatur bezeichnet wird, ist die Temperatur zu verstehen, oberhalb welcher ein amorpher oder teilkristalliner Feststoff, z.B. pulverförmiges CMC oder SBR, von einem hartelastischen Zustand in einen weichelastischen oder flüssigen Zustand übergeht und eine gummiartige bis zähflüssige Schmelze erhalten wird. Je nach Art der verwendeten Komponente der Bindermischung liegen typische Glasübergangs- bzw. Erweichungstemperaturen zwischen etwa 60 und 130 C. Vorzugsweise ist unter der Glas- bzw. Erweichungstemperatur des Bindergemisches bzw. der jeweiligen Komponente die Vicat-Erweichungstemperatur (VST, Vicat softening temperature) VST/A50, VST/A120, VST/ B 50 oder VST/B 120 nach DIN EN ISO 306 zu verstehen.

Durch Vermischen des erweichten bzw. geschmolzenen Bindergemisches bzw. der zumindest einen erweichten bzw. geschmolzenen Komponente des Bindegemi- sches mit dem Aktivmaterial wird ein - insbesondere im Vergleich zu Suspensionen - leichter handhabbares, insbesondere plastisch verformbares, Komposit erhalten, das auf einfache und sichere Weise auf die metallische Kollektorschicht aufgebracht werden kann. Da der Herstellungsprozess ohne Trägerlösungsmittel auskommt, entfällt vorteilhafterweise der nach dem Aufbringen einer Suspension erfor- derliche aufwändige und energieintensive Trocknungsvorgang. Zudem werden die Gefahren aufgrund toxischer und/oder leicht entzündlicher Lösungsmittel vermieden. Nicht zuletzt wird aufgrund der lösungsmittelfreien Vermischung von Binder und Aktivmaterial eine bei der Verwendung von Suspensionen mögliche Entmischung bzw. Sedimentbildung verhindert, wodurch Qualität und Lebensdauer der Elektroden bzw. einer Energiespeicherzelle mit einer oder mehreren solcher Elektroden vorteilhaft erhöht werden.

Insgesamt ermöglicht die Erfindung eine einfache, kostenreduzierte und sichere bzw. zuverlässigere Herstellung von Elektroden für elektrochemische Energiespeicherzellen. Vorzugsweise ist das Bindergemisch und/oder mindestens eine Komponente des Bindergemisches und/oder das Aktivmaterial pulverförmig, bevor bzw. wenn diese miteinander zu dem, vorzugsweise plastisch verformbaren, Komposit vermischt werden. Unter„pulverförmig" bzw.„Pulver" ist ein im Wesentlichen trockener granulärer Feststoff aus einer Vielzahl von Partikeln zu verstehen. Je nach Größe, Größenverteilung, Agglomeratbildung und/oder Form der Partikel kann es sich bei ei- nem Pulver gegebenenfalls auch um einen Puder oder ein Granulat handeln.

Bevorzugt liegt das Bindergemisch bzw. zumindest eine der Komponenten des Bindergemisches zu Beginn des Verfahrens als Feststoff, insbesondere als pulverför- miges Polymer, vor, welcher bzw. welches bei Erwärmung auf eine Temperatur oberhalb der Glastemperatur des Bindergemisches bzw. der zumindest einen Kom- ponenten des Bindergemisches weich, insbesondere plastisch verformbar, wird. Dadurch wird die Handhabung, insbesondere die Dosierung, des Bindergemisches bzw. der zumindest einen Komponente des Bindergemisches besonders einfach.

In einer bevorzugten Ausführung wird das Herstellen des Komposits bei einer Temperatur durchgeführt, welche zwischen der Glasübergangstemperatur und der Schmelztemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches liegt. Oberhalb der Schmelztemperatur gehen kristalline oder teilkristalline Komponenten vom festen in den flüssigen Aggregatzustand über. Dadurch wird einerseits eine plastische Verformbarkeit des Bindergemisches bzw. einer der Komponenten des Bindergemisches und damit auch des Komposits ge- währleistet, und andererseits eine zumindest teilweise Verflüssigung des Bindergemisches bzw. einer der Komponenten des Bindergemisches, welche einen aufwändigeren Aushärtevorgang notwendig machen würde, vermieden. Insbesondere wird das Bindergemisch oder zumindest eine der Komponenten des Bindergemisches in eine, vorzugsweise zähflüssige, Schmelze überführt, die sich besonders einfach und sicher (weiter)verarbeiten lässt.

Die Temperatur zwischen der Glasübergangstemperatur und der Schmelztemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches hängt von den molekularen Parametern des Bindergemisches oder der zumindest einen Komponente des Bindergemisches, insbesondere von dem verwen- deten Polymer, dessen Seitengruppen und/oder dessen Kettenlänge, ab. Vorzugsweise kann die Temperatur oder zumindest der Temperaturbereich zwischen der Glasübergangstemperatur und der Schmelztemperatur mittels dynamischer Diffe- renzkalorimetrie an dem Bindergemisch bzw. an zumindest einer der Komponenten des Bindergemisches ermittelt werden. Dadurch wird sichergestellt, dass das Bindergemisch oder zumindest eine der Komponenten des Bindergemisches bei Erreichen der ermittelten Temperatur derart erwärmt ist, dass das zunächst feste, bevor- zugt pulverförmige, Bindergemisch oder die zumindest eine zunächst feste, bevorzugt pulverförmige Komponente des Bindergemisches in eine Schmelze übergegangen ist, die eine einfache und sichere Vermischung mit dem Aktivmaterial sowie ein einfaches und sicheres Aufbringen des Komposits auf die metallische Kollektorschicht erlaubt. In einer weiteren bevorzugten Ausführung wird das Bindergemisch mit dem Aktivmaterial durch Kneten, vorzugsweise in einem Kneter oder Extruder, vermischt. Vorzugsweise ist der Kneter bzw. Extruder beheizbar. Insbesondere ist der Kneter bzw. Extruder während des Mischvorgangs beheizt. Vorzugsweise wird das Kompo- sit derart geknetet, dass verursachte Scherkräfte im Wesentlichen verschwinden oder zumindest klein bleiben, bevorzugt bei einem Schergradienten von unter 10 s 1 , besonders bevorzugt von unter 1 s \ insbesondere bei im Wesentlichen 0,1 s ~1 . Dadurch wird das Bindergemisch mit dem Aktivmaterial besonders schonend vermischt, so dass ein homogenes Komposit erhalten wird, bei welchem die darin enthaltenen Polymere bzw. Molekülketten durch das Vermischen nicht wesentlich be- einträchtigt werden.

Vorteilhaft kann das Bindergemisch oder zumindest zwei Komponenten des Bindergemisches auch vor dem Vermischen mit dem Aktivmaterial, insbesondere durch Kneten, vorzugsweise in einem Vorkneter oder Vorextruder, vorgemischt werden. Dadurch kann das Bindergemisch oder die zumindest zwei Komponenten des Bin- dergemisches besonders gut mit dem Aktivmaterial und gegebenenfalls mit zumindest einer weiteren Komponente des Bindergemisches vermischt werden, so dass das hergestellte Komposit besonders homogen ist.

Die Temperatur im Knetbereich des Kneters oder Extruders, gegebenenfalls auch des Vorkneters oder -extruders, ist vorzugsweise derart einstellbar, dass das zu vermischende Bindermaterial oder die zumindest zwei zu vermischenden Komponenten des Bindergemisches und/oder das Aktivmaterial auf eine Temperatur über der Glasübergangstemperatur erwärmt werden kann. Vorzugsweise ist der Kneter oder Extruder, gegebenenfalls auch der Vorkneter oder -extruder, doppelwandig ausgebildet, so dass die eingestellte Temperatur im Knetbereich auch beim Nachfüllen des Bindergemisches bzw. mindestens einer Komponente des Bindergemisches und/oder des Aktivmaterials im Wesentlichen konstant bleibt. Dadurch wird zuver- lässig sichergestellt, dass ein homogenes und weiches, insbesondere plastisch verformbares und prozessfähiges Komposit hergestellt wird.

In einer weiteren bevorzugten Ausführung erfolgt das Aufbringen des Komposits auf die metallische Kollektorschicht durch Laminieren bzw. Lamination. Bei diesem thermischen Fügeverfahren werden das Komposit und die Kollektorschicht, vor- zugsweise ohne Hilfsmaterialien, stoffschlüssig und grenzflächig miteinander verbunden. Dadurch haftet das Komposit, insbesondere das im Komposit enthaltene Bindergemisch aus CMC, SBR und PTFE, besonders zuverlässig und dauerhaft auf der metallischen Kollektorschicht.

Bevorzugt können durch das Laminieren auf die metallische Kollektorschicht Elekt- roden mit Kompositschichten von über 100 m Dicke hergestellt werden, wobei das Komposit dabei auch bei mechanischen Belastungen zuverlässig auf der metallischen Kollektorschicht haftet.

In einer weiteren bevorzugten Ausführung enthält das Aktivmaterial ein Lithium- interkalierendes Material, d.h. ein Material, das Lithium bzw. Lithium-Ionen einlagern kann. Das Lithium-interkalierende Material weist vorzugsweise Kohlenstoff, insbesondere Graphit, und/oder Silizium auf. Dadurch lassen sich besonders einfach poröse, insbesondere negative, Elektroden herstellen.

In einer weiteren bevorzugten Ausführung enthält das Aktivmaterial zusätzlich ein elektrisch leitfähiges Material, insbesondere Ruß, Graphit, Kohlenstoffnanoröhrchen (engl, carbon nanotubes CNTs) oder eine Mischung aus diesen Materialien. Alternativ oder zusätzlich kann das Aktivmaterial auch andere kohlenstoffbasierte Materialien enthalten. Dadurch wird die elektrische Leitfähigkeit des Komposits vorteilhaft erhöht, so dass bei einer Oxidation freigesetzte Elektronen besonders gut vom Reaktionsort an der Oberfläche der Elektrode zu der metallischen Kollektorfolie bzw. zu einer Reduktion benötigte Elektronen besonders gut von der metallischen Kollektorfolie zum Reaktionsort an der Oberfläche der Elektrode transportiert werden können. Durch die Verwendung von Kohlenstoffnanoröhrchen in der Kompositelektrode wird die elektrische Leitfähigkeit des Komposits bei gleichzeitig geringerem Volumenanteil bzw. Gewichtsanteil der Kohlenstoffnanoröhrchen im Vergleich zu Ruß und/oder Graphit erhöht. In einer weiteren bevorzugten Ausführung beträgt der Anteil des Bindergemisches am Komposit zwischen 1 und 12 Gewichts-%. Dadurch werden einerseits gute Hafteigenschaften, insbesondere auf der metallischen Kollektorfolie, beispielsweise einer Kupferschicht, und/oder gute mechanische Eigenschaften, insbesondere eine hohe Flexibilität, des Komposits (und damit der Elektrode) erreicht, und andererseits wird vermieden, dass durch einen zu hohen Anteil des Bindergemisches am Komposit die Leitfähigkeit der hergestellten Elektrode sinkt.

In einer weiteren bevorzugten Ausführung des Bindergemisches beträgt der Anteil von Carboxymethylcellulose (CMC) am Bindergemisch zwischen 1 und 30 Gewichts-% und/oder der Anteil von Styrol-Butadien-Kautschuk (SBR) am Binderge- misch zwischen 1 und 70 Gewichts-% und/oder der Anteil von Polytetrafluorethyl- en (PTFE) am Bindergemisch zwischen 1 und 40 Gewichts-%. Dadurch kann das Bindergemisch, insbesondere hinsichtlich seiner Haftungseigenschaften und/oder seiner mechanischen Eigenschaften, besonders gut auf die metallische Kollektorschicht, beispielsweise eine Kupferschicht, insbesondere auf deren Eigenschaften, abgestimmt werden. Vorzugsweise kann dadurch auch die Verarbeitung, insbesondere das Kneten, des Bindergemisches und/oder das Vermischen des Bindergemisches mit dem Aktivmaterial, vorteilhaft beeinflusst werden.

Bevorzugt kann durch diese Mischungsverhältnisse von CMC, SBR und PTFE ein Komposit hergestellt werden, in dem die Kombination von CMC und SBR eine star- ke Adhäsion zwischen dem Komposit und der metallischen Kollektorschicht bewirkt. Die vorteilhafte Interaktion des Bindergemisches aus CMC und SBR führt zu einer homogenen Verteilung des Komposit auf der Kollektorschicht. Gleichzeitig bleibt das Komposit durch den Anteil an PTFE mechanisch belastbar, ohne dass Versprödun- gen und/oder ein Abblättern des Komposits im weiteren Verarbeitungsprozess, ins- besondere bei einem Schneiden, Stanzen und/oder Wickeln, und/oder im Betrieb der Elektrode auftreten. Die duktilen Eigenschaften von PTFE bewirken insbesondere eine homogene, gleichmäßig ebene und glatte Oberfläche der hergestellten Elektrode, wodurch der Austrag von Mikro-, Submikro- oder Nanopartikeln aus der Elektrode, insbesondere während deren Herstellung, Weiterverarbeitung und/oder Betrieb, vermieden wird. Gleichzeitig führt eine homogene Oberfläche der hergestellten Elektrode zu einer gleichmäßigeren Druckverteilung in dem elektrochemi- sehen Energiespeicher und damit erhöhter Zuverlässigkeit und/oder Lebensdauer des Energiespeichers. Zudem beeinflusst PTFE die Benetzung der hergestellten Elektrode durch fluorierte organische Elektrolyte und Polymerelektrolyte vorteilhaft. Insgesamt wird dadurch einerseits das Herstellungsverfahren und/oder der Betrieb der Elektrode besonders zuverlässig und einfach und andererseits die Lebensdauer der hergestellten Elektroden vorteilhaft erhöht.

Insbesondere können durch die genannten Mischungsverhältnisse von CMC, SBR und PTFE etwaige Nachteile eines Einsatzes von Bindern oder Bindergemischen aus einzelnen dieser Komponenten, wie z.B. PTFE als Binder oder CMC/SBR als Bindergemisch, vermieden oder zumindest deutlich vermindert werden. Zudem kann auf die Verwendung von Acrylaten im Bindergemisch bzw. Komposit verzichtet werden.

In einer weiteren bevorzugten Ausführung wird die Kollektorschicht vor oder während des Aufbringens des Komposits auf eine Temperatur erwärmt, welche oberhalb der Glasübergangstemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches liegt. Insbesondere wird die Kollektorschicht auf eine Temperatur erwärmt, welche zwischen der Glasübergangstemperatur und der Schmelztemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches liegt. Dadurch wird zuverlässig vermieden, dass das Komposit beim Aufbringen auf die metallische Kollektorschicht durch Abgabe von Wärme an die metallische Kollektorschicht abkühlt, bevor das Komposit auf der metallischen Kollektorschicht, insbesondere durch Laminieren, zuverlässig haftet.

In einer weiteren bevorzugten Ausführung wird die Kollektorschicht erwärmt, indem diese über mindestens eine beheizte Rollen-Walze geführt wird, deren Temperatur oberhalb der Glasübergangstemperatur des Bindergemisches oder zumindest einer der Komponenten des Bindergemisches liegt. Dadurch wird die Kollektorschicht besonders zuverlässig erwärmt und eine Abkühlung des Komposits beim Aufbringen auf die Kollektorschicht vermieden. Durch die erwärmte Kollektorschicht haftet das Komposit zudem besonders gut. Bevorzugt ist die mindestens eine beheizte Walze auch dazu eingerichtet, die Kollektorschicht an das Komposit, insbesondere an eine Austrittsöffnung eines Kneters oder Extruders, aus der das vermischte Komposit austritt, beispielsweise einer Austrittsdüse, heranzuführen und vorzugsweise zur weiteren Verarbeitung, insbesondere zum Schneiden, Stanzen und/oder Wickeln, abzutransportieren. Dadurch wird der Herstellungsprozess besonders einfach gehalten.

In einer weiteren bevorzugten Ausführung wird das Komposit mittels einer Schablone, durch welche das Komposit in eine vorgegebene Form und/oder Schichtdicke gebracht wird, und/oder unter Ausübung eines Drucks, insbesondere eines Anpressdrucks durch Anpressen des Komposits an die Kollektorschicht, auf die metallische Kollektorschicht aufgebracht. Dadurch kann der herzustellenden Elektrode besonders einfach eine vorgegebene Form und/oder Dicke aufgeprägt werden. Zudem haftet das Komposit auf der metallischen Kollektorschicht unter Druck (optional zusätzlich durch Wärmeeintrag) besonders zuverlässig und langlebig.

In einer weiteren bevorzugten Ausführung wird die Kollektorfolie vor dem Aufbringen des Komposits geätzt und/oder mechanisch aufgeraut und/oder, insbesondere mit einem Haftvermittler, beschichtet. Durch das Ätzen wird die Oberfläche der Kollektorfolie aktiviert und/oder aufgeraut und dadurch die Adhäsionskräfte zwischen dem Komposit und der Kollektorfolie vorteilhaft erhöht. Ebenso erhöht eine Be- schichtung, insbesondere mit einem Haftvermittler, die Haftung zwischen dem Komposit und der Kollektorfolie besonders zuverlässig. Vorzugsweise beträgt die Schichtdicke, insbesondere des Haftvermittlers, dabei einen Bruchteil der Schichtdicke der Kollektorschicht, bevorzugt 50 %, besonders bevorzugt 25 %, insbesondere im Wesentlichen 10-20 % der Schichtdicke der Kollektorschicht.

Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung im Zusammenhang mit einer Figur. Es zeigt:

Fig. 1 ein Beispiel einer Vorrichtung zum Herstellen eines Komposits und Aufbrin- gen des Komposits auf eine Kollektorfolie in einer stark schematisierten Darstellung. Figur 1 zeigt ein Beispiel einer Vorrichtung 1 mit einem Mischer 2 zum Herstellen eines Komposits 8, einer ersten Walze 3 zum Transport einer metallischen Kollektorschicht 4 zum Mischer 2 und einer zweiten Walze 3' zum Aufbringen des im Mischer 8 erzeugten Komposits 8 auf die Kollektorschicht 4. Der Mischer 2 ist in mehrere Bereiche 5 bis 7 aufgeteilt. In einem Einzugsbereich 5 werden ein Bindergemisch 9 und ein Aktivmaterial 10 dosiert und in einem Mischbereich 6 zum Komposit 8 vermischt, welches schließlich in einem Austragsbereich 7 auf die metallische Kollektorschicht 4 aufgebracht wird.

Zu Beginn des Verfahrens liegen die Komponenten des Bindergemisches 9 und/oder das Aktivmaterial 10 vorzugsweise als Pulver vor. Dadurch wird eine einfache Dosierung, beispielsweise durch Abwiegen der einzelnen Komponenten, und Vermischung ermöglicht.

Bevor die Bestandteile des Komposits 8 im Mischbereich 6 des Mischers 2 vermischt werden, wird das Bindergemisch 9 zunächst in einem Vormischer 1 1 herge- stellt. Der Vormischer 1 1 ist beheizbar, so dass die in Pulverform in den Vormischer 1 1 dosiert eingeführten Komponenten des Bindergemisches 9 auf eine Temperatur oberhalb ihrer jeweiligen Glasübergangstemperatur erwärmt werden.

Dadurch gehen die Komponenten des Bindergemisches 9, bei welchen es sich um Carboxymethylcellulose 12 (CMC), Styrol-Butadien-Kautschuk 13 (SBR) und Poly- tetrafluorethylen 14 (PTFE) handelt, in eine zähflüssige Schmelze über.

Das Bindergemisch 9 wird anschließend dosiert in den Mischbereich 6 überführt, wo es mit dem Aktivmaterial 10 zu dem, vorzugsweise plastisch verformbaren, Komposit 8 vermischt, insbesondere verknetet, wird. Um das Bindergemisch 9 bzw. das Komposit 8 weiterhin gut verarbeiten zu können, ist auch der Mischbereich 6 vor- zugsweise beheizt, so dass im Mischbereich 6 eine Temperatur herrscht, die oberhalb der Glasübergangstemperatur des Bindergemisches 9 liegt.

Das hergestellte Komposit 8 wird im Austragsbereich 7 auf die metallische Kollektorschicht 4 aufgebracht. Der Austragsbereich 7 weist dazu eine Austrittsdüse 15 auf, über welche das Komposit 8 den Mischer 2 verlässt. Das austretende Kompo- sit 8 wird durch die zweite Walze 3', vorzugsweise unter einem vorgegebenen Druck, auf die Kollektorschicht 4 laminiert. Der Austragsbereich 7, insbesondere die zweite Walze 3' und/oder die Austrittsdüse 15, ist vorzugsweise ebenfalls beheizbar, so dass das Komposit 8 auch beim Durchlaufen des Austragsbereichs 7 bzw. der Austrittsdüse 15, insbesondere beim Aufbringen auf die Kollektorschicht 4 durch die zweite Walze 3', auf einer Temperatur gehalten wird, die oberhalb der Glasübergangstemperatur des Bindergemisches 9 liegt. Vorzugsweise ist diese Temperatur auch ausreichend hoch, um das Komposit 8 durch die Austrittsdüse 15 und/oder die zweite Walze 3' auf die Kollektorschicht 4 zu laminieren.

Um eine gleichmäßige Auftragung des Komposits 8 auf die Kollektorschicht 4 zu gewährleisten, wird die Kollektorschicht 4 durch die erste Walze 3 an die Austrittsdüse 15 heran- bzw. an dieser vorbeigeführt. Dabei ist die Rotationsgeschwindigkeit der ersten Walze 3 und damit die Transportgeschwindigkeit der Kollektorschicht 4 an die Dosierung des Komposits 8 durch die Austrittsdüse 15 angepasst, so dass eine gewünschte Menge des Komposits 8 auf der Kollektorschicht 4 aufgebracht wird. Dadurch und/oder durch Einstellen des Abstands der zweiten Walze 3' kann die Schichtdicke des Komposits 8 eingestellt werden.

In einer anderen Ausführungsform ist die zweite Walze 3' nicht Teil des Austragsbereichs 7. Insbesondere kann die zweite Walze 3' zusammen mit der ersten Walze 3 Teil eines Transportsystems für die Kollektorschicht 4 sein. Die erste Walze 3 ist vorzugsweise ebenfalls beheizbar, so dass die über die Walze 3 laufende Kollektorschicht 4 auf eine Temperatur erwärmt wird, die oberhalb der Glasübergangstemperatur des Bindergemisches 9 liegt. Dadurch werden am Ort der Austrittsdüse 15 die Temperaturbedingungen für das Laminieren des Komposits 8 auf die Kollektorschicht 4 erfüllt. Insbesondere wird dadurch zuverlässig verhindert, dass sich das Komposit 8 beim Auftreffen auf die Kollektorschicht 4 zu sehr abkühlt und nicht mehr auf die Kollektorschicht 4 laminiert werden kann.

Vorzugsweise kann die metallische Kollektorschicht 4 vor dem Aufbringen des Komposits 8 vorbehandelt werden. Im gezeigten Beispiel wird mit Hilfe einer Vorbehandlungsdüse 16 eine Schicht aus einem Haftvermittler 17, beispielsweise ein thermoplastischer Film aus einem Co-Polyolefin, Co-Polyamid, Co-Polyester, Polyurethan, PVdF, PVdF-HFP oder ein Acrylat-Polymer auf die Kollektorschicht 4 aufgetragen. Dabei ist die Dosierung des Vermittlers 17 durch die Vorbehandlungsdüse 16 auf die Rotationsgeschwindigkeit der ersten Walze 3 abgestimmt, so dass die Schichtdicke des Vermittlers 17 einen Bruchteil der nachfolgend durch die Austrittsdüse 15 und/oder zweite Walze 3' bestimmte Schichtdicke des Komposits 8 beträgt, beispielsweise 50 %, 25 % oder 20 % der Schichtdicke des Komposits 8. Dadurch wird die Haftung des Komposits 8 auf der Kollektorschicht 4 vorteilhaft erhöht.

Alternativ oder zusätzlich zum Aufbringen des Haftvermittlers 17 kann die Vorbehandlungsdüse 16 auch dazu ausgebildet sein, die metallische Kollektorschicht 4 zu ätzen. Durch die damit bewirkte Aufrauhung und/oder Aktivierung der Oberfläche der Kollektorschicht 4 wird die Haftung des Komposits 8 auf der Kollektorschicht 4 ebenfalls vorteilhaft erhöht.

Durch die in Figur 1 gezeigte Vorrichtung ist es insbesondere möglich, vollständig auf Lösungsmittel zum Herstellen des Komposits 8 bzw. der Elektrode zu verzich- ten, wodurch dieses Verfahren sicher, umweltfreundlich und zuverlässig ausgeführt werden kann.

Eine negative Elektrode mit sehr guten mechanischen Eigenschaften bei der weiteren Verarbeitung, beispielsweise durch Stanzen, Schneiden und Wickeln, sowie im Betrieb wird beispielsweise erhalten, indem ein Komposit 8 aus 3 Gewichts-% Bin- dergemisch 8 und 97 Gewichts-% Aktivmaterial 10 (davon 96 Gewichts-% Lithium- interkalierendes Material und 1 Gewichts-% elektrisch leitfähiges Material) bei einer Temperatur oberhalb der Glasübergangstemperatur des Bindergemisches 8 oder zumindest einer der Komponenten des Bindergemisches 8 gemischt und die dabei erhaltene plastisch verformbare Masse auf eine 12 pm dicke Kupferfolie, die mit einem 2 pm dicken Haftvermittler beschichtet ist, laminiert wird.

Bezogen auf das Gesamtgewicht des Komposits 8 enthält dieses vorzugsweise 1 Gewichts-% Carboxymethylcellulose 12 (CMC), 1 Gewichts-% Styrol-Butadien- Kautschuk 13 (SBR), 1 Gewichts-% Polytetrafluorethylen 14 (PTFE), 96 Gewichts-% künstliches poröses Graphit (z.B. Hitachi MAG D20) und 1 Gewichts-% Leitruß. Bezugszeichenliste

Vorrichtung

Mischer

Walzen

metallische Kollektorschicht

Einzugsbereich

Mischbereich

Austragsbereich

Komposit

Bindergemisch

Aktivmaterial

Vormischer

Carboxymethylcellulose (CMC)

Styrol-Butadien-Kautschuk (SBR)

Polytetrafluorethylen (PTFE)

Austrittsdüse

Vorbehandlungsdüse

Haftvermittler