Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING INHERENTLY MICROBICIDAL POLYMER SURFACES
Document Type and Number:
WIPO Patent Application WO/2000/069935
Kind Code:
A1
Abstract:
The invention relates to a method for producing antimicrobial polymers by polymerizing aliphatically unsaturated monomers that are at least mono-functionalized with a tertiary amino group. The antimicrobial polymers produced according to the invention can be used as a microbicidal coating on e.g. hygiene products or in the area of medicine, or in paints or protective coats.

Inventors:
OTTERSBACH PETER (DE)
SOSNA FRIEDRICH (DE)
Application Number:
PCT/EP2000/002782
Publication Date:
November 23, 2000
Filing Date:
March 30, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CREAVIS TECH & INNOVATION GMBH (DE)
OTTERSBACH PETER (DE)
SOSNA FRIEDRICH (DE)
International Classes:
C08J7/16; A01N25/34; A01N33/04; A01N33/12; A01N37/12; A01N37/44; A01N61/00; A61L15/46; A61L27/54; C08F20/34; C08F220/34; C08F255/00; C08F257/02; C08F259/00; C08F283/00; C08F287/00; C08F291/00; C09D151/00; C09D151/08; C09D151/10; (IPC1-7): C08F220/34; A01N33/12
Domestic Patent References:
WO1991012282A11991-08-22
Foreign References:
EP0204312A11986-12-10
DE19646965A11998-06-04
EP0862859A11998-09-09
Attorney, Agent or Firm:
Creavis, Gesellschaft Für Technologie Und Innovation Mbh (Patente - Marken Bau 1042 - PB 15 Marl, DE)
Creavis, Gesellschaft Für Technologie Und Innovation Mbh (Patente - Marken Bau 1042 - PB 15 Marl, DE)
Download PDF:
Claims:
Patentansprüche :
1. Verfahren zur Herstellung von antimikrobiellen Polymeren, dadurch gekennzeichnet, daß aliphatisch ungesättigte Monomere, die mindestens einfach durch eine tertiäre Aminogruppe funktionalisiert sind, polymerisiert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch eine tertiäre Aminogruppe funktionalisierte aliphatische ungesättigte Monomere der allgemeinen Formel R, N R2 R3 mit Rl : Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 50 CAtomen, die durch O, Noder SAtome substituiert sein können und R2, R3 : Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 25 CAtomen, die durch O, Noder SAtome substituiert sein können, wobei R2 und R3 gleich oder verschieden sind, eingesetzt werden.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Polymerisation mit weiteren, aliphatisch ungesättigten Monomeren durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Polymerisation auf einem Substrat durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Polymerisation als Pfropfpolymerisation eines Substrats durchgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Substrat vor der Pfropfpolymerisation durch UVStrahlung, Plasmabehandlung, Koronabehandlung, Beflammung, Ozonisierung, elektrische Entladung oder yStrahlung aktiviert wird.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Substrat vor der Pfropfpolymerisation durch UVStrahlung mit einem Photosensibilisator aktiviert wird.
8. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Erzeugnissen mit einer antimikrobiellen Beschichtung aus dem Polymer.
9. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von medizintechnischen Artikeln mit einer antimikrobiellen Beschichtung aus dem Polymer.
10. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Hygieneartikeln mit einer antimikrobiellen Beschichtung aus dem Polymer.
11. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Lacken, Schutzanstrichen oder Beschichtungen.
Description:
Verfahren zur Herstellung inhärent mikrobizider Polvmeroberflächen Die Erfindung betrifR ein Verfahren zur Herstellung antimikrobieller Polymere durch Polymerisation von aminofunktionalisierten Monomeren und die Verwendung der so hergestellten antimikrobiellen Polymere.

Desweiteren betrifft die Erfindung ein Verfahren zur Herstellung antimikrobieller Polymere durch Pfropfpolymerisation von aminofunktionalisierten Monomeren auf einem Substrat und die Verwendung der so hergestellten antimikrobiellen Substrate.

Besiedlungen und Ausbreitungen von Bakterien auf Oberflächen von Rohrleitungen, Behältern oder Verpackungen sind im hohen Maße unerwünscht. Es bilden sich häufig Schleimschichten, die Mikrobenpopulationen extrem ansteigen lassen, die Wasser-, Getränke-und Lebensmittelqualitäten nachhaltig beeinträchtigen und sogar zum Verderben der Ware sowie zur gesundheitlichen Schädigung der Verbraucher ftihren können.

Aus allen Lebensbereichen, in denen Hygiene von Bedeutung ist, sind Bakterien fernzuhalten. Davon betroffen sind Textilien für den direkten Körperkontakt, insbesondere für den Intimbereich und für die Kranken-und Altenpflege. Aul3erdem sind Bakterien fernzuhalten von Möbel-und Geräteoberflächen in Pflegestationen, insbesondere im Bereich der Intensivpflege und der Kleinstkinder-Pflege, in Krankenhäusern, insbesondere in Räumen fur medizinische Eingriffe und in Isolierstationen für kritische Infektionsfälle sowie in Toiletten.

Gegenwärtig werden Geräte, Oberflächen von Möbeln und Textilien gegen Bakterien im Bedarfsfall oder auch vorsorglich mit Chemikalien oder deren Lösungen sowie Mischungen behandelt, die als Desinfektionsmittel mehr oder weniger breit und massiv antimikrobiell wirken. Solche chemischen Mittel wirken unspezifisch, sind häufig selbst toxisch oder reizend oder bilden gesundheitlich bedenkliche Abbauprodukte. Häufig zeigen sich auch Unverträglichkeiten bei entsprechend sensibilisierten Personen.

Eine weitere Vorgehensweise gegen oberflächige Bakterienausbreitungen stellt die Einarbeitung antimikrobiell wirkender Substanzen in eine Matrix dar.

Tert.-Butylaminoethylmethacrylat ist ein handelsübliches Monomer der Methacrylatchemie und wird insbesondere als hydrophiler Bestandteil in Copolymerisationen eingesetzt. So wird in EP- PS 0 290 676 der Einsatz verschiedener Polyacrylate und Polymethacrylate als Matrix für die Immobilisierung von bakteriziden quaternären Ammoniumverbindungen beschrieben.

Aus einem anderen technischen Bereich offenbart US-PS 4 532 269 ein Terpolymer aus Butylmethacrylat, Tributylzinnmethacrylat und tert.-Butylaminoethylmethacrylat. Dieses Polymer wird als antimikrobieller Schiffsanstrich verwendet, wobei das hydrophile tert.- Butylaminoethylmethacrylat die langsame Erosion des Polymers fördert und so das hochtoxische Tributylzinnmethacrylat als antimikrobiellen Wirkstoff freisetzt.

In diesen Anwendungen ist das mit Aminomethacrylaten hergestellte Copolymer nur Matrix oder Trägersubstanz für zugesetzte mikrobizide Wirkstoffe, die aus dem Trägerstoff diffundieren oder migrieren können. Polymere dieser Art verlieren mehr oder weniger schnell ihre Wirkung, wenn an der Oberfläche die notwendige"minimale inhibitorische Konzentration" (MIK) nicht mehr erreicht wird.

Aus den europäischen Patentanmeldungen 0 862 858 und 0 862 859 ist bekannt, daß Homo- und Copolymere von tert.-Butylaminoethylmethacrylat, einem Methacrylsäureester mit sekundärer Aminofunktion, inhärent mikrobizide Eigenschaften besitzen. Um unerwünschten Anpassungsvorgängen der mikrobiellen Lebensformen, gerade auch in Anbetracht der aus der Antibiotikaforschung bekannten Resistenzentwicklungen von Keimen, wirksam entgegenzutreten, müssen auch zukünftig Systeme auf Basis neuartiger Zusammensetzungen und verbesserter Wirksamkeit entwickelt werden.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, neuartige, antimikrobiell wirksame Polymere zu entwickeln. Diese sollen ggf. als Beschichtung die Ansiedelung und Verbreitung von Bakterien auf Oberflächen verhindern.

Es wurde nun überraschend gefunden, daß durch Polymerisation von aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine tertiäre Aminogruppe funktionalisiert sind, Polymere mit einer Oberfläche erhalten werden, die dauerhaft mikrobizid ist, durch Lösemittel

und physikalische Beanspruchung nicht angegriffen wird und keine Migration zeigen. Dabei ist es nicht nötig, weitere biozide Wirkstoffe einzusetzen.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von antimikrobiellen Polymeren, dadurch gekennzeichnet, daß aliphatisch ungesättigte Monomere, die mindestens einfach durch eine tertiäre Aminogruppe funktionalisiert sind, polymerisiert werden.

Die im erfindungsgemäßen Verfahren eingesetzten, mindestens einfach durch eine tertiäre Aminogruppe funktionalisierten, aliphatisch ungesättigten Monomeren können einen Kohlenwasserstoffrest von bis zu 50, bevorzugt bis zu 30, besonders bevorzugt bis zu 22 Kohlenstoffatomen aufweisen. Die Substituenten der Aminogruppe können aliphatische oder vinylische Kohlenwasserstoffreste wie Methyl-, Ethyl-, Propyl-, Acrylreste oder cyclische Kohlenwasserstoffreste wie substituierte oder unsubstituierte Phenyl-oder Cyclohexylreste mit bis zu 25 Kohlenstoffatomen aufweisen. Weiterhin kann die Aminogruppe auch durch Keto- oder Aldehydgruppen wie Acryloyl-oder Oxogruppen substituiert sein.

Um eine ausreichende Polymerisationsgeschwindigkeit zu erreichen, sollten die erfindungsgemäß eingesetzten Monomere eine Molmasse von unter 900, bevorzugt unter 550 g/mol aufweisen.

In einer besonderen Ausführungsform der vorliegenden Erfindung können einfach durch eine tertiäre Aminogruppe funktionalisierte, aliphatische ungesättigte Monomere der allgemeinen Formel Rl N R2 R3 mit Ri : Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 50 C-Atomen, die durch O-, N-oder S-Atome substituiert sein können und R2, R3 : Verzweigter, unverzweigter, oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 25 C-Atomen, die durch O-, N-oder S-Atome substituiert sein können, wobei R2 und R3 gleich oder verschieden sind,

eingesetzt werden.

Als Monomerbausteine eignen sich alle aliphatisch ungesättigten Monomere, die zumindest eine tertiäre Aminofunktion besitzen, wie z. B. Methacrylsäure-2-diethylaminoethylester, Methacrylsäure-2-dimethylaminoethylester, Methacryl-säure-3-dimethylaminopropylamid, Acrylsäure-2-diethylaminoethylester, Acrylsäure-2-dimethylaminoethylester, Acrylsäure-3- dimethylaminopropylester, oder Acrylsäure-3-dimethylamino-2,2-dimethylpropylester.

Das erfindungsgemäße Verfahren kann auch durch Polymerisation der mindestens einfach durch eine tertiäre Aminogruppe funktionalisierten Monomere auf einem Substrat durchgeführt werden. Es wird eine physisorbierte Beschichtung aus dem antimikrobiellen Polymer auf dem Substrat erhalten.

Als Substratmaterialien eigenen sich vor allem alle polymeren Kunststoffe, wie z. B.

Polyurethane, Polyamide, Polyester und-ether, Polyetherblockamide, Polystyrol, Poly- vinylchlorid, Polycarbonate, Polyorganosiloxane, Polyolefine, Polysulfone, Polyisopren, Poly- Chloropren, Polytetrafluorethylen (PTFE), entsprechende Copolymere und Blends sowie natürliche und synthetische Kautschuke, mit oder ohne strahlungssensitive Gruppen. Das erfindungsgemäße Verfahren läßt sich auch auf Oberflächen von lackierten oder anderweitig mit Kunststoff beschichteten Metall-, Glas-oder Holzkörpern anwenden.

In einer weiteren Ausführungsform der vorliegenden Erfindung können die antimikrobiellen Polymere durch Pfropfpolymerisation eines Substrats mit einem mindestens einfach durch eine tertiäre Aminogruppe funktionalisierten, aliphatisch ungesättigten Monomeren erhalten werden. Die Pfropfung des Substrats ermöglicht eine kovalente Anbindung des antimikrobiellen Polymers an das Substrat. Als Substrate können alle polymeren Materialien, wie die bereits genannten Kunststoffe eingesetzt werden.

Die Oberflächen der Substrate können vor der Pfropfpolymerisation nach einer Reihe von Methoden aktiviert werden. Hier können alle Standardmethoden zur Aktivierung von polymeren Oberflächen zum Einsatz kommen ; Beispielsweise ist die Aktivierung des Substrats vor der Pfropfpolymerisation durch UV-Strahlung, Plasmabehandlung, Coronabehandlung,

Beflammung, Ozonisierung, elektrische Entladung der y-Strahlung, eingesetzte Methoden.

Zweckmäßig werden die Oberflächen zuvor in bekannter Weise mittels eines Lösemittels von Ölen, Fetten oder anderen Verunreinigungen befreit.

Die Aktivierung der Substrate kann durch UV-Strahlung im Wellenlängenbereich 170-400 nm, bevorzugt 170-250 nm erfolgen. Eine geeignete Strahlenquelle ist z. B ein UV-Excimer-Gerät HERAEUS Noblelight, Hanau, Deutschland. Aber auch Quecksilberdampflampen eignen sich zur Substrataktivierung, sofern sie erhebliche Strahlungsanteile in den genannten Bereichen emittieren. Die Expositionszeit beträgt im allgemeinen 0.1 Sekunden bis 20 Minuten, vorzugsweise 1 Sekunde bis 10 Minuten.

Die Aktivierung der Standardpolymeren mit UV-Strahlung kann weiterhin mit einem zusätzlichen Photosensibilisator erfolgen. Hierzu wird der Photosensibilisator, wie z. B.

Benzophenon auf die Substratoberfläche aufgebracht und bestrahlt. Dies kann ebenfalls mit einer Quecksilberdampflampe mit Expositionszeiten von 0.1 Sekunden bis 20 Minuten, vorzugsweise 1 Sekunde bis 10 Minuten, erfolgen.

Die Aktivierung kann erfindungsgemäß auch durch Plasmabehandlung mittels eines RF-oder Mikrowellenplasma (Hexagon, Fa. Technics Plasma, 85551 Kirchheim, Deutschland) in Luft, Stickstoff-oder Argon-Atmosphäre erreicht werden. Die Expositionszeiten betragen im allgemeinen 2 Sekunden bis 30 Minuten, vorzugsweise 5 Sekunden bis 10 Minuten. Der Energieeintrag liegt bei Laborgeräten zwischen 100 und 500 W, vorzugsweise zwischen 200 und 300 W.

Weiterhin lassen sich auch Corona-Geräte (Fa. SOFTAL, Hamburg, Deutschland) zur Aktivierung verwenden. Die Expositionszeiten betragen in diesem Falle in der Regel 1 bis 10 Minuten, vorzugsweise 1 bis 60 Sekunden.

Die Aktivierung durch elektrische Entladung, Elektronen-oder y-Strahlen (z. B. aus einer Kobalt-60-Quelle) sowie die Ozonisierung ermöglicht kurze Expositionszeiten, die im allgemeinen 0.1 bis 60 Sekunden betragen.

Eine Beflammung von Substrat-Oberflächen führt ebenfalls zu deren Aktivierung. Geeignete Geräte, insbesondere solche mit einer Barriere-Flammfront, lassen sich auf einfache Weise bauen oder beispielsweise beziehen von der Fa. ARCOTEC, 71297 Mönsheim, Deutschland.

Sie können mit Kohlenwasserstoffen oder Wasserstoff als Brenngas betrieben werden. In jedem Fall muß eine schädliche Überhitzung des Substrats vermieden werden, was durch innigen Kontakt mit einer gekühlten Metallfläche auf der von der Beflammungsseite abgewandten Substratoberfläche leicht erreicht wird. Die Aktivierung durch Beflammung ist dementsprechend auf verhältnismäßig dünne, flachige Substrate beschränkt. Die Expositionszeiten belaufen sich im allgemeinen auf 0.1 Sekunde bis 1 Minute, vorzugsweise 0.5 bis 2 Sekunden, wobei es sich ausnahmslos um nicht leuchtende Flammen behandelt und die Abstände der Substratoberflächen zur äußeren Flammenfront 0.2 bis 5 cm, vorzugsweise 0.5 bis 2 cm betragen.

Die so aktivierten Substratoberflächen werden nach bekannten Methoden, wie Tauchen, Sprühen oder Streichen, mit aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine tertiäre Aminogruppe funktionalisiert sind, gegebenenfalls in Lösung, beschichtet.

Als Lösemittel haben sich Wasser und Wasser-Ethanol-Gemische bewåhrt, doch sind auch andere Lösemittel verwendbar, sofern sie ein ausreichendes Lösevermögen fur die Monomeren aufweisen und die Substratoberflächen gut benetzen. Weitere Lösungsmittel sind beispielsweise Ethanol, Methanol, Methylethylketon, Diethylether, Dioxan, Hexan, Heptan, Benzol, Toluol, Chloroform, Dichlormethan, Tetrahydrofuran und Acetonitril. Lösungen mit Monomerengehalten von 1 bis 10 Gew.-%, beispielsweise mit etwa 5 Gew.-% haben sich in der Praxis bewährt und ergeben im allgemeinen in einem Durchgang zusammenhängende, die Substratoberfläche bedeckende Beschichtungen mit Schichtdicken, die mehr als 0.1 um betragen können.

Die Propfpolymerisation der auf die aktivierten Oberflächen aufgebrachten Monomeren kann zweckmäßig durch Strahlen im kurzwelligen Segment des sichtbaren Bereiches oder im lang- welligen Segment des UV-Bereiches der elektromagnetischen Strahlung initiiert werden. Gut geeignet ist z. B. die Strahlung eines UV-Excimers der Wellenlängen 250 bis 500 nm, vorzugsweise von 290 bis 320 nm. Auch hier sind Quecksilberdampflampen geeignet, sofern

sie erhebliche Strahlungsanteile in den genannten Bereichen emittieren. Die Expositionszeiten betragen im allgemeinen 10 Sekunden bis 30 Minuten, vorzugsweise 2 bis 15 Minuten.

Weiterhin läßt sich eine Pfropfpolymerisation auch durch ein Verfahren erreichen, das in der europäischen Patentanmeldung 0 872 512 beschrieben ist, und auf einer Pfropfpolymerisation von eingequollenen Monomer-und Initiatormolekülen beruht.

Im erfindungsgemäßen Verfahren können weitere aliphatisch ungesättigte Monomere, neben den durch eine tertiäre Aminogruppe funktionalisierten Monomeren, verwendet werden. So kann als Monomerenmischung ein mindestens einfach durch eine tertiäre Aminogruppe funktionalisiertes aliphatisch ungesättigtes Monomer mit Acrylaten oder Methacrylaten, z. B.

Acrylsäure, tert.-Butylmethacrylat oder Methylmethacrylat, Styrol, Vinylchlorid, Vinylether, Acrylamide, Acrylnitrile, Olefine (Ethylen, Propylen, Butylen, Isobutylen), Allylverbindungen, Vinylketonen, Vinylessigsäure, Vinylacetaten oder Vinylestern eingesetzt werden.

Die nach den erfindungsgemäßen Verfahren hergestellten antimikrobiellen Polymere aus aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine tertiäre Aminogruppe funktionalisiert sind, zeigen auch ohne Pfropfung auf eine Substratoberfläche ein mikrobizides oder antimikrobielles Verhalten.

Wird das erfindungsgemäße Verfahren ohne Pfropfung direkt auf der Substratoberfläche angewendet, so können übliche Radikalinitiatoren zugesetzt werden. Als Initiatoren lassen sich u. a. Azonitrile, Alkylperoxide, Hydroperoxide, Acylperoxide, Peroxoketone, Perester, Peroxocarbonate, Peroxodisulfat, Persulfat und alle üblichen Photoinitiatoren wie z. B.

Acetophenone, a-Hydroxyketone, Dimethylketale und und Benzophenon verwenden. Die Polymerisationsinitiierung kann weiterhin auch thermisch oder wie bereits ausgeführt, durch elektromagnetische Strahlung, wie z. B. UV-Licht oder y-Strahlung erfolgen.

Verwendung der modifizierten Polymersubstrate Weitere Gegenstände der vorliegenden Erfindung sind die Verwendung der erfindungsgemäß hergestellten antimikrobiellen Polymere zur Herstellung von antimikrobiell wirksamen

Erzeugnissen und die so hergestellten Erzeugnisse als solche. Die Erzeugnisse können erfindungsgemäß modifizierte Polymersubstrate enthalten oder aus diesen bestehen. Solche Erzeugnisse basieren vorzugsweise auf Polyamiden, Polyurethanen, Polyetherblockamiden, Polyesteramiden oder-imiden, PVC, Polyolefinen, Silikonen, Polysiloxanen, Polymethacrylat oder Polyterephthalaten, die mit erfindungsgemäß hergestellten Polymeren modifizierte Oberflächen aufweisen.

Antimikrobiell wirksame Erzeugnisse dieser Art sind beispielsweise und insbesondere Maschinenteile für die Lebensmittelverarbeitung, Bauteile von Klimaanlagen, Bedachungen, Badezimmer-und Toilettenartikel, Küchenartikel, Komponenten von Sanitäreinrichtungen, Komponenten von Tierkäfigen und-behausungen, Spielwaren, Komponenten in Wassersystemen, Lebensmittelverpackungen, Bedienelemente (Touch Panel) von Geräten und Kontaktlinsen.

Die erfindungsgemäß hergestellten Polymere oder Pfropfcopolymere können überall verwendet werden, wo es auf möglichst bakterienfreie d. h. mikrobizide Oberflächen oder Oberflächen mit Antihafteigenschaften ankommt. Verwendungsbeispiele für die erfindungsgemäß hergestellten Polymere oder Pfropfpolymere sind insbesondere Lacke, Schutzanstriche oder Beschichtungen in den folgenden Bereichen : -Marine : Schiffsrümpfe, Hafenanlagen, Bojen, Bohrplattformen, Ballastwassertanks -Haus : Bedachungen, Keller, Wände, Fassaden, Gewächshäuser, Sonnenschutz, Gartenzäune, Holzschutz -Sanitar : Öffentliche Toiletten, Badezimmer, Duschvorhänge, Toilettenartikel, Schwimmbad, Sauna, Fugen, Dichtmassen -Lebensmittel : Maschinen, Küche, Küchenartikel, Schwämme, Spielwaren, Lebensmittelverpackungen, Milchverarbeitung, Trinkwassersysteme, Kosmetik -Maschinenteile : Klimaanlagen, Ionentauscher, Brauchwasser, Solaranlagen, Wärmetauscher, Bioreaktoren, Membranen -Medizintechnik : Kontaktlinsen, Windeln, Membranen, Implantate

-Gebrauchsgegenstände : Autositze, Kleidung (Strümpfe, Sportbekleidung), Krankenhauseinrichtungen, Türgriffe, Telefonhörer, Öffentliche Verkehrsmittel, Tierkäfige, Registrierkassen, Teppichboden, Tapeten Außerdem sind Gegenstände der vorliegenden Erfindung die Verwendung der mit erfindungsgemäß hergestellten antimikrobiellen Polymeren an der Oberfläche modifizierten Polymersubstrate zur Herstellung von Hygieneerzeugnissen oder medizintechnischen Artikeln. Die obigen Ausführungen über bevorzugte Materialien gelten entsprechend. Solche Hygieneerzeugnisse sind beispielsweise Zahnbürsten, Toilettensitze, Kämme und Verpackungsmaterialien. Unter die Bezeichnung Hygieneartikel fallen auch andere Gegenstände, die u. U. mit vielen Menschen in Berührung kommen, wie Telefonhörer, Handläufe von Treppen, Tür-und Fenstergriffe sowie Haltegurte und-griffe in öffentlichen Verkehrsmitteln. Medizintechnische Artikeln sind z. B. Katheter, Schläuche, Abdeckfolien oder auch chirurgische Bestecke.

Zur weiteren Beschreibung der vorliegenden Erfindung werden die folgenden Beispiele gegeben, die die Erfindung weiter erläutern, nicht aber ihren Umfang begrenzen sollen, wie er in den Patentansprüchen dargelegt ist.

Beispiel 1 : Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa. Heraeus ausgesetzt. Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert. Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g Methacrylsäure-2- diethylaminoethylester (Fa. Aldrich) und 97 g Methanol überschichtet. Die Bestrahlungs- kammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa. Heraeus gestellt, die eine Emission der Wellenlänge 308 nm aufweist. Die Bestrahlung wird gestartet, die Belichtungsdauer beträgt 15 Minuten. Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespült. Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet. Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet.

Im Anschluß wird die Rückseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhält.

Beispiel la : Eine beschichtetes Folienstück aus Beispiel 1 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt. Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar.

Beispiel lb : Eine beschichtetes Folienstück aus Beispiel 1 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt. Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 104 abgefallen.

Beispiel 2 : Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa. Heraeus ausgesetzt. Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert. Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g Methacrylsäure-3- dimethylaminopropylamid (Fa. Aldrich) und 97 g Methanol überschichtet. Die Bestrahlungs- kammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa. Heraeus gestellt, die eine Emission der Wellenlänge 308 nm aufweist. Die Bestrahlung wird gestartet, die Belichtungsdauer beträgt 15 Minuten. Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespült. Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet. Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet.

Im Anschluß wird die Rückseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhält.

Beispiel 2a : Eine beschichtetes Folienstück aus Beispiel 2 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt. Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar.

Beispiel 2b : Eine beschichtetes Folienstück aus Beispiel 2 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt. Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 104 abgefallen.

Beispiel 3 : Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa. Heraeus ausgesetzt. Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert. Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g Acrylsäure-3- dimethylaminopropylester (Fa. Aldrich) und 97 g Methanol überschichtet. Die Bestrahlungs- kammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa. Heraeus gestellt, die eine Emission der Wellenlänge 308 nm aufweist. Die Bestrahlung wird gestartet, die Belichtungsdauer beträgt 15 Minuten. Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespült. Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet. Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet.

Im Anschluß wird die Rückseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhält.

Beispiel 3 a : Eine beschichtetes Folienstück aus Beispiel 3 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt. Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar.

Beispiel 3b : Eine beschichtetes Folienstück aus Beispiel 3 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt. Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen.

Beispiel 4 : Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa. Heraeus ausgesetzt. Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert. Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g Methacrylsäure-2-diethylaminoethyl- ester (Fa. Aldrich), 2 g Methylmethacrylat (Fa. Aldrich) und 95 g Methanol überschichtet. Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa. Heraeus gestellt, die eine Emission der Wellenlänge 308 nm aufweist. Die Bestrahlung wird gestartet, die Belichtungsdauer beträgt 15 Minuten. Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespült. Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet. Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet.

Im Anschluß wird die Rückseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhält.

Beispiel 4a : Eine beschichtetes Folienstück aus Beispiel 4 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt. Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar.

Beispiel 4b : Eine beschichtetes Folienstück aus Beispiel 4 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt. Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen.

Beispiel 5 : Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa. Heraeus ausgesetzt. Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert. Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g Methacrylsäure-3-dimethylamino- propylamid (Fa. Aldrich), 2 g Methylmethacrylat (Fa. Aldrich) und 95 g Methanol überschichtet. Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa. Heraeus gestellt, die eine Emission der Wellenlänge 308 nm aufweist. Die Bestrahlung wird gestartet, die Belichtungsdauer beträgt 15 Minuten.

Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespült. Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet. Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet.

Im Anschluß wird die Rückseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhält.

Beispiel 5a : Eine beschichtetes Folienstück aus Beispiel 5 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt. Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar.

Beispiel 5b : Eine beschichtetes Folienstück aus Beispiel 5 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt. Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt. Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen.

Zusätzlich zur oben beschriebenen mikrobiziden Wirksamkeit gegenüber Zellen von Pseudomonas aeruginosa und Staphylococcus aureus zeigten alle Proben ebenfalls eine mikrobizide Wirkung gegenüber Zellen von Klebsiella pneumoniae, Escherichia coli, Rhizopus oryzae, Candida tropicalis und Tetrahymena pyriformis.