Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS OF CONTROLLING GRAIN SIZE
Document Type and Number:
WIPO Patent Application WO/2022/136658
Kind Code:
A1
Abstract:
The invention relates to methods of increasing plant yield, and in particular grain or seed number by introducing at least one mutation into at least one UPL2 gene. Also described are genetically altered plants characterised by the above phenotype.

Inventors:
LI YUNHAI (CN)
YAO SHANGUO (CN)
HUANG LUOJIANG (CN)
WANG RUCI (CN)
XU RAN (CN)
HUA KAI (CN)
Application Number:
PCT/EP2021/087532
Publication Date:
June 30, 2022
Filing Date:
December 23, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INST GENETICS & DEVELOPMENTAL BIOLOGY CAS (CN)
MARKS & CLERK LLP (GB)
International Classes:
A01H1/00; A01H5/10; A01H6/46; C12N15/82
Foreign References:
US20170238498A12017-08-24
CN111328699A2020-06-26
US8697359B12014-04-15
US4873192A1989-10-10
Other References:
DATABASE NCBI [online] 7 August 2018 (2018-08-07), ANONYMOUS: "E3 ubiquitin-protein ligase UPL2 [Oryza sativa Japonica Group]", XP055912148, retrieved from https://www.ncbi.nlm.nih.gov/protein/XP_015619405 Database accession no. XP_015619405
MENG TIAN-YAO ET AL: "Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage", JOURNAL OF INTEGRATIVE AGRICULTURE, vol. 15, no. 8, 2016, pages 1751 - 1762, XP029677173, ISSN: 2095-3119, DOI: 10.1016/S2095-3119(15)61215-1
LAZA MA. REBECCA C. ET AL: "Effect of Panicle Size on Grain Yield of IRRI-Released Indica Rice Cultivars in the Wet Season", PLANT PRODUCTION SCIENCE, vol. 7, no. 3, 1 January 2004 (2004-01-01), JP, pages 271 - 276, XP055912155, ISSN: 1343-943X, DOI: 10.1626/pps.7.271
ADRIANI DEWI ERIKA ET AL: "Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent", RICE, SPRINGER US, BOSTON, vol. 9, no. 1, 2 June 2016 (2016-06-02), pages 1 - 15, XP035864395, ISSN: 1939-8425, [retrieved on 20160602], DOI: 10.1186/S12284-016-0101-X
FURNISSID JAMES J ET AL: "Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity , Heather Grey 1?", 20 November 2018 (2018-11-20), XP055912167, Retrieved from the Internet [retrieved on 20220412]
SAMBROOK ET AL.: "Molecular Cloning: A Library Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
KUNKEL, PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 492
KUNKEL ET AL., METHODS IN ENZYMOL., vol. 154, 1987, pages 367 - 382
"Techniques in Molecular Biology", 1983, MACMILLAN PUBLISHING COMPANY
CERMAK, T ET AL.: "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting", NUCLEIC ACID RES., vol. 39, 2011, XP055130093, DOI: 10.1093/nar/gkr218
KUNKEL TA.: "Rapid and efficient dite-specifc mutagenesis without phenotypic selection", PNAS, vol. 82, no. 2, 1985, pages 488 - 92
KUNKEL TAROBERTS JDZAKOUR RA: "Rapid and efficient dite-specifc mutagenesis without phenotypic selection", METHODS ENZMOL., vol. 154, 1987, pages 367 - 82
HENIKOFF STILL BJCOMAI L.: "TILLING. Traditional mutagenesis meets functional genomics", PLANT PHYSIOL., vol. 135, no. 2, 2004, pages 630 - 6
COMAI LYOUNG KTILL BJREYNOLDS SHGREENE EACODOMA CAENNS LCJOHNSON JEBURTNER CODDEN AR: "Efficient discovery of DNA polymorphisms in natural populations by Ecotilling", PLANT J., vol. 37, no. 5, 2004, pages 778 - 86, XP002317102, DOI: 10.1111/j.0960-7412.2003.01999.x
CLOUGH SJBENT AF.: "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana", PLANT J, vol. 16, no. 6, 1998, pages 735 - 43, XP002132452, DOI: 10.1046/j.1365-313x.1998.00343.x
MA XZHANG QZHU QLIU WCHEN YQIU RWANG BYANG ZLI HLIN Y: "A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing", MONOCOT AND DICOT PLANTS, vol. 8, no. 8, 2015, pages 1274 - 84, XP055822799, DOI: 10.1016/j.molp.2015.04.007
ABE, A.KOSUGI, S.YOSHIDA, KNATSUME, S.TAKAGI, H.KANZAKI, H.MATSUMURA, H.YOSHIDA, K.MITSUOKA, C.TAMIRU, M.: "Genome sequencing reveals agronomically important loci in rice using MutMap", NAT BIOTECHNOL, vol. 30, 2012, pages 174 - 178
ASHIKARI, M.SAKAKIBARA, HLIN, SYAMAMOTO, T.TAKASHI, T.NISHIMURA, A.ANGELES, E.R.QIAN, QKITANO, H.MATSUOKA, M.: "Cytokinin oxidase regulates rice grain production", SCIENCE, vol. 309, 2005, pages 741 - 745
BATES, P.W.VIERSTRA, R.D.: "UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family", PLANT J, vol. 20, 1999, pages 183 - 195
DUAN, P.RAO, Y.ZENG, D.YANG, Y.XU, RZHANG, BDONG, G.QIAN, QLI, Y.: "SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice", PLANT J, vol. 77, 2014, pages e0174 - 557
CHAE, E.TAN, Q.K.HILL, T.AIRISH, V.F.: "An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development", DEVELOPMENT, vol. 135, 2008, pages 1235 - 1245
CUI, X.JIN, P.CUI, X.GU, LLU, Z.XUE, Y.WEI, L.QI, J.SONG, X.LUO, M.: "Control of transposon activity by a histone H3K4 demethylase in rice", PROC NATL ACAD SCI U SA, vol. 110, 2013, pages 1953 - 1958
DOWNES, B.PSTUPAR, R.MGINGERICH, D.JVIERSTRA, R.D.: "The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development", PLANT J, vol. 35, 2003, pages 729 - 742, XP002433599, DOI: 10.1046/j.1365-313X.2003.01844.x
FANG, N.XU, R.HUANG, L.ZHANG, B.DUAN, PLI, N.LUO, Y.LI, Y.: "SMALL GRAIN 11 Controls Grain Size, Grain Number and Grain Yield in Rice", RICE, vol. 9, 2016, pages 64
GUO, T., CHEN, K., DONG, N.Q., SHI, C.L., YE, W.W., GAO, J.P., SHAN, J.X., AND LIN, H.X.: "GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per panicle and Grain Size in Rice", PLANT CELL, vol. 30, 2018, pages 871 - 888
HERR, J.M., JR.: "An analysis of methods for permanently mounting ovules cleared in four-and-a-half type clearing fluids", STAIN TECHNOL, vol. 57, 1982, pages 161 - 169
HERSHKO, A.CIECHANOVER, A.: "THE UBIQUITIN SYSTEM", ANNU. REV. BIOCHEM., vol. 67, 1998, pages 425 - 479, XP008013250, DOI: 10.1146/annurev.biochem.67.1.425
HUANG, KWANG, D.DUAN, P.ZHANG, B.XU, R.LI, N.LI, Y.: "WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice", PLANT J, vol. 91, 2017, pages 849 - 860, XP055490401, DOI: 10.1111/tpj.13613
HUANG, XQIAN, Q.LIU, Z.SUN, HHE, S.LUO, D.XIA, G.CHU, C.LI, JFU, X.: "Natural variation at the DEP1 locus enhances grain yield in rice", NAT GENET, vol. 41, 2009, pages 494 - 497
HUO, X.WU, SZHU, ZLIU, FFU, Y.CAI, H.SUN, X.GU, PXIE, D.TAN, L.: "NOG1 increases grain production in rice", NAT COMMUN, vol. 8, 2017, pages 1497
IKEDA-KAWAKATSU, K.MAEKAWA, M.IZAWA, TITOH, J.NAGATO, Y.: "ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from panicle meristem to floral meristem through interaction with AP01", PLANT J, vol. 69, 2012, pages 168 - 180
IKEDA-KAWAKATSU, KYASUNO, N.OIKAWA, T.LIDA, SNAGATO, Y.MAEKAWA, M.KYOZUKA, J.: "Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice panicle form through control of cell proliferation in the meristem", PLANT PHYSIOL, vol. 150, 2009, pages 736 - 747
IKEDA, K.NAGASAWA, N.NAGATO, Y: "ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice", DEV BIOL, vol. 282, 2005, pages 349 - 360, XP004929689, DOI: 10.1016/j.ydbio.2005.03.016
IKEDA, K.ITO, M.NAGASAWA, N.KYOZUKA, J.NAGATO, Y.: "Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate", PLANT J, vol. 51, 2007, pages 1030 - 1040
ITOH, J.NONOMURA, KIKEDA, K.YAMAKI, S.INUKAI, Y.YAMAGISHI, HKITANO, H.NAGATO, Y.: "Rice plant development: from zygote to spikelet", PLANT CELL PHYSIOL, vol. 46, 2005, pages 23 - 47
JIAO, Y.WANG, YXUE, D.WANG, J.YAN, M.LIU, G.DONG, G.ZENG, D.LU, Z.ZHU, X: "Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice", NAT GENET, vol. 42, 2010, pages 541 - 544
KOMATSU, K.MAEKAWA, M.UJIIE, S.SATAKE, Y.FURUTANI, IOKAMOTO, H.SHIMAMOTO, K.KYOZUKA, J.: "LAX and SPA: major regulators of shoot branching in rice", PROC NATL ACAD SCI U S A, vol. 100, 2003, pages 11765 - 11770
KURAKAWA, TUEDA, N.MAEKAWA, M.KOBAYASHI, K.KOJIMA, MNAGATO, Y.SAKAKIBARA, H.KYOZUKA, J.: "Direct control of shoot meristem activity by a cytokinin-activating enzyme", NATURE, vol. 445, 2007, pages 652 - 655, XP003021636, DOI: 10.1038/nature05504
KYOZUKA, J.KONISHI, S.NEMOTO, KIZAWA, T.SHIMAMOTO, K.: "Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation", PROC NATL ACAD SCI U S A, vol. 95, 1998, pages 1979 - 1982, XP002249192, DOI: 10.1073/pnas.95.5.1979
LEE, Z.HHIRAKAWA, T.YAMAGUCHI, N.ITO, T.: "The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity", INT J MOL SCI, vol. 20, 2019
LI, N.LI, Y.: "Signaling pathways of seed size control in plants", CURR OPIN PLANT BIOL, vol. 33, 2016, pages 23 - 32
LI, N.LIU, Z.WANG, Z.RU, LGONZALEZ, N.BAEKELANDT, A.PAUWELS, LGOOSSENS, A.XU, R.ZHU, Z.: "STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana", PLOS GENET, vol. 14, 2018, pages e1007218
LI, S.ZHAO, B.YUAN, D.DUAN, M.QIAN, Q.TANG, LWANG, B.LIU, X.ZHANG, J.WANG, J.: "Rice zinc finger protein DST enhances grain production through controlling Gn1 a/OsCKX2 expression", PROC NATL ACAD SCI U S A, vol. 110, 2013, pages 3167 - 3172
LIU, X.ZHOU, S.WANG, W.YE, Y.ZHAO, Y.XU, Q.ZHOU, C.TAN, F.CHENG, S.ZHOU, D.X: "Regulation of histone methylation and reprogramming of gene expression in the rice panicle meristem", PLANT CELL, vol. 27, 2015, pages 1428 - 1444
MIAO, Y., AND ZENTGRAF, U.: "Arabidopsis leaf senescence through degradation of the transcription factor WRKY53", PLANT J, vol. 63, 2010, pages 179 - 188, XP055463625, DOI: 10.1111/j.1365-313X.2010.04233.x
MILLER, C.WELLS, R.MCKENZIE, N.TRICK, M.BALL, J.FATIHI, A.DUBREUCQ, B.CHARDOT, T.LEPINIEC, LBEVAN, M.W.: "Variation in Expression of the HECT E3 Ligase UPL3 Modulates LEC2 Levels, Seed Size, and Crop Yields in Brassica napus", PLANT CELL, vol. 31, 2019, pages 2370 - 2385
MIURA, K.IKEDA, M.MATSUBARA, A.SONG, X.J.ITO, MASANO, K.MATSUOKA, M.KITANO, H.ASHIKARI, M: "OsSPL14 promotes panicle branching and higher grain productivity in rice", NAT GENET, vol. 42, 2010, pages 545 - 549
OOKAWA, T.HOBO, T.YANO, MMURATA, KANDO, T.MIURA, H.ASANO, K.OCHIAI, Y.IKEDA, MNISHITANI, R: "New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield", NAT COMMUN, vol. 1, 2010, pages 132
PATRA, BPATTANAIK, SYUAN, L.: "Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis", PLANT J, vol. 74, 2013, pages 435 - 447, XP055453408, DOI: 10.1111/tpj.12132
RAO, N.N.PRASAD, K.KUMAR, P.RVIJAYRAGHAVAN, U.: "Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture", PROC NATL ACAD SCI U S A, vol. 105, 2008, pages 3646 - 3651
SAKAMOTO, TMATSUOKA, M.: "Identifying and exploiting grain yield genes in rice", CURR OPIN PLANT BIOL, vol. 11, 2008, pages 209 - 214, XP022587383, DOI: 10.1016/j.pbi.2008.01.009
SMALLE, J.VIERSTRA, R.D.: "The ubiquitin 26S proteasome proteolytic pathway", ANNU REV PLANT BIOL, vol. 55, 2004, pages 555 - 590
SOUER, E.REBOCHO, A.BBLIEK, M.KUSTERS, E.DE BRUIN, R.A.KOES, R.: "Patterning of panicles and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia", PLANT CELL, vol. 20, 2008, pages 2033 - 2048
TSUDA, K.ITO, Y.SATO, Y.KURATA, N.: "Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice", PLANT CELL, vol. 23, 2011, pages 4368 - 4381
TSUDA, K.KURATA, N.OHYANAGI, H.HAKE, S.: "Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice", PLANT CELL, vol. 26, 2014, pages 3488 - 3500
VIERSTRA, R.D.: "The ubiquitin-26S proteasome system at the nexus of plant biology", NAT REV MOL CELL BIOL, vol. 10, 2009, pages 385 - 397, XP009146008, DOI: 10.1038/nrm2688
WANG, BSMITH, S.MLI, J.: "Genetic Regulation of Shoot Architecture", ANNU REV PLANT BIOL, vol. 69, 2018, pages 437 - 468
WANG, J.WANG, R.WANG, Y.ZHANG, L.ZHANG, L.XU, Y.YAO, S.: "Short and Solid Culm/RFUAP02 for culm development in rice", PLANT J, vol. 91, 2017, pages 85 - 96
WANG, XLU, G.LI, LYI, J.YAN, KWANG, Y.ZHU, B.KUANG, J.LIN, M.ZHANG, S.: "HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway", BIOCHEM BIOPHYS RES COMMUN, vol. 444, 2014, pages 290 - 295
WANG, Z.LI, N.JIANG, S.GONZALEZ, N.HUANG, X.WANG, Y.INZE, D.LI, Y.: "SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana", NAT COMMUN, vol. 7, 2016, pages 11192
WERNER, T.MOTYKA, V.STRNAD, MSCHMULLING, T.: "Regulation of plant growth by cytokinin", PROC NATL ACAD SCI U S A, vol. 98, 2001, pages 10487 - 10492
WU, Y.WANG, Y.MI, X.SHAN, J.LI, XXU, J.LIN, H.: "The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice panicle Meristems", PLOS GENET, vol. 12, 2016, pages e1006386
XIA, T.LI, N.DUMENIL, J.LI, J.KAMENSKI, A.BEVAN, M.W.GAO, F.LI, Y.: "The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis", PLANT CELL, vol. 25, 2013, pages 3347 - 3359, XP055146588, DOI: 10.1105/tpc.113.115063
XU, RYU, H.WANG, J.DUAN, P.ZHANG, B.LI, J.LI, YXU, J.LYU, J.LI, N.: "A mitogen-activated protein kinase phosphatase influences grain size and weight in rice", PLANT J., 2018
XU, R.DUAN, P.YU, H.ZHOU, Z.ZHANG, B.WANG, R.LI, J.ZHANG, GZHUANG, S.LYU, J.: "Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice", MOL PLANT, vol. 11, 2018, pages 860 - 873, XP055800733, DOI: 10.1016/j.molp.2018.04.004
YAU, R.RAPE, M.: "The increasing complexity of the ubiquitin code", NAT CELL BIOL, vol. 18, 2016, pages 579 - 586
YOSHIDA, A.SASAO, M.YASUNO, N.TAKAGI, K.DAIMON, Y.CHEN, R.YAMAZAKI, RTOKUNAGA, H.KITAGUCHI, Y.SATO, Y.: "TAWAWA1, a regulator of rice panicle architecture, functions through the suppression of meristem phase transition", PROC NATL ACAD SCI U S A, vol. 110, 2013, pages 767 - 772
ZHAO, L.TAN, L.ZHU, Z.XIAO, L.XIE, D.SUN, C.: "PAY1 improves plant architecture and enhances grain yield in rice", PLANT J, vol. 83, 2015, pages 528 - 536
ZHENG, N., AND SHABEK, N.: "Ubiquitin Ligases: Structure, Function, and Regulation", ANNU REV BIOCHEM, vol. 86, 2017, pages 129 - 157, XP055841978, DOI: 10.1146/annurev-biochem-
ZUO, J.LI, J.: "Molecular genetic dissection of quantitative trait loci regulating rice grain size", ANNU REV GENET, vol. 48, 2014, pages 99 - 118, XP055395207, DOI: 10.1146/annurev-genet-120213-092138
Attorney, Agent or Firm:
MARKS & CLERK LLP (GB)
Download PDF:
Claims:
CLAIMS: 1. A genetically altered plant, plant part or plant cell comprising at least one mutation in at least one UPL2 gene and/or UPL2 promoter. 2. The plant of claim 1, wherein the mutation is a loss of function or partial loss of function mutation. 3. The plant of claim 1 or 2, wherein the plant is heterozygous for the mutation. 4. The plant of any preceding claim, wherein the UPL2 gene encodes a E3 ubiquitin ligase comprising a HECT domain, and wherein the mutation results in a non- functional HECT domain, wherein preferably the mutation results in the deletion or partial deletion of the HECT domain. 5. The plant of any preceding claim, wherein the E3 ligase comprises a Glu/Asp- rich domain, and wherein the mutation is in the Glu/Asp-rich domain. 6. The plant of any preceding claim, wherein the UPL2 gene encodes a polypeptide as defined in SEQ ID NO: 2 or a functional variant or homologue thereof, and wherein the UPL2 promoter comprises or consists of SEQ ID NO: 3 or a functional variant or homologue thereof. 7. The plant of any preceding claim, wherein the plant is a crop plant. 8. The plant of claim 7, wherein the plant is selected from rice, wheat, maize, soybean, sorghum, oilseed rape and other vegetable brassicas, barley and millet. 9. A seed obtained or obtainable from the plant of any of claims 1 to 8. 10. A method of increasing yield in a plant, the method comprising reducing or abolishing the expression of a UPL2 nucleic acid and/or reducing the activity of a UPL2 polypeptide in said plant. 11. The method of claim 10, wherein the method comprises reducing the E3 ligase activity of the UPL2 polypeptide. 12. The method of any of claims 10 to 11, wherein the method comprises introducing at least one mutation into at least one UPL2 gene and/or UPL2 promoter. 13. A method of producing a plant with increased yield, the method comprising introducing at least one mutation into a least one nucleic acid sequence encoding a UPL2 gene and/or UPL2 promoter. 14. The method of claim 13, wherein the mutation is a loss of function or partial loss of function mutation. 15. The method of claim 13 or 14, wherein the UPL2 gene encodes a E3 ubiquitin ligase comprising a HECT domain, and wherein the mutation results in a non- functional HECT domain, wherein preferably the mutation results in the deletion or partial deletion of the HECT domain. 16. The method of any of claims 10 to 15, wherein the method increases at least one of inflorescence size, grain number per plant, grain width and thousand grain weight. 17. The method of claim 10, wherein the method comprises using RNAi interference to reduce or abolish the expression of a UPL2 nucleic acid. 18. The method of any of claims 10 to 17, wherein the UPL2 gene encodes a polypeptide as defined in SEQ ID NO: 2 or a functional variant or homologue thereof, and wherein the UPL2 promoter comprises or consists of SEQ ID NO: 3 or a functional variant or homologue thereof. 19. The method of any of claims 10 to 18, wherein the plant is a crop plant. 20. The method of claim 19, wherein the plant is selected from rice, wheat, maize, soybean, sorghum, oilseed rape and other vegetable brassicas, barley and millet. 21. A plant, plant part, part cell or seed obtained by the method of any of claims 10 to 20. 22. A method for identifying and/or selecting a plant that will have an increased yield phenotype, the method comprising detecting in the plant or plant germplasm at least one polymorphism, wherein the polymorphism is a mutation in the UPL2 gene or promoter and selecting said plant. 23. The method of claim 22, wherein the mutation is a loss or partial loss of function mutation. 24. A nucleic acid construct comprising a nucleic acid sequence encoding a sgRNA, wherein the sgRNA comprises a sequence selected from SEQ ID NO: 27, 28, 29, 30, 31, 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof. 25. A genetically altered plant expressing the nucleic acid construct of claim 24.
Description:
Methods of Controlling Grain Size FIELD OF THE INVENTION The invention relates to methods of increasing plant yield, and in particular grain or seed number by introducing at least one mutation into a UPL2 gene and/or promoter. Also described are genetically altered plants characterised by the above phenotype. BACKGROUND TO THE INVENTION Grain crops, which include cereals, legumes and oilseed crops, represent a crucial element of the world’s food supply. Grain number per plant is a primary determinant of crop yield, and is influenced in large part by the floral architecture of the inflorescences of the plant. Rice for example, is one of the most important cereal crops in the world, and nearly half the world’s population feed on rice (Zuo and Li, 2014). Rice grain number is basically determined by inflorescence (panicle) architecture, which refers to the number and length of primary branches and secondary branches, and the number of branches on secondary and higher order branches (Sakamoto and Matsuoka, 2008). Elucidating the genetic and molecular mechanisms of panicle architecture control, and analogous inflorescence structures in other species, is of great importance for high-yield breeding in grain crops. During past decades, several genes involved in the regulation of inflorescence size and grain number have been identified in rice, but the genetic and molecular mechanisms of inflorescence size and grain number control, and the interplay between them, are still not well understood. In view of the above, there is a need to be able to increase grain number and therefore overall yield, particularly in the important grain crops. The present invention addresses this need. SUMMARY OF THE INVENTION Here we report that LARGE2, which encodes a functional HECT-domain E3 ubiquitin ligase UPL2, regulates panicle (i.e. inflorescence) size and grain number. LARGE2 controls inflorescence size and grain number by influencing meristem activity. LARGE2 associates with APO1 and modulates its stability. Genetic analyses support that LARGE2 acts in a common pathway with APO1 and APO2 to regulate inflorescence size and grain number. These findings reveal a novel mechanism of regulating inflorescence size and grain number control involving the LARGE2-APO1/APO2 regulatory module. We further report that introducing a loss of function mutation into UPL2, increases 1000 grain weight and overall yield. Accordingly, in a first aspect of the invention, there is provided a genetically altered plant, plant part or plant cell comprising at least one mutation in at least one UPL2 gene and/or UPL2 promoter. In a further aspect of the invention, there is provided a seed obtained or obtainable from the plant of the invention. In a further aspect of the invention, there is provided a method of increasing yield in a plant, the method comprising reducing or abolishing the expression of a UPL2 nucleic acid and/or reducing the activity of a UPL2 polypeptide in said plant. In a further aspect of the invention, there is provided a method of producing a plant with increased yield, the method comprising introducing at least one mutation into a least one nucleic acid sequence encoding a UPL2 gene and/or UPL2 promoter. In one embodiment, the method may comprise introducing at least one mutation into a least one nucleic acid sequence but preferably all copies or homeoalles of a nucleic acid sequence encoding a UPL2 gene and/or UPL2 promoter in a first plant and crossing the first plant with a wild-type or contrpl second plant to produce a F1 hybrid plant that is heterozygous for the mutation. In a further aspect of the invention, there is provided a plant, plant part, part cell or seed obtained by the method of the invention. In another aspect of the invention, there is provided a method for identifying and/or selecting a plant that will have an increased yield phenotype, the method comprising detecting in the plant or plant germplasm at least one polymorphism, wherein the polymorphism is a mutation in the UPL2 gene or promoter and selecting said plant. In a further aspect of the invention, there is provided a nucleic acid construct comprising a nucleic acid sequence encoding a sgRNA, wherein the sgRNA comprises a sequence selected from SEQ ID NO: 27, 28, 29, 30, 31, 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof. In another aspect of the invention, there is provided a genetically altered plant expressing the nucleic acid construct of the invention. DESCRIPTION OF THE FIGURES The invention is further described in the following non-limiting figures: Figure 1. The large2 mutants form large panicles and wide leaves and grains. (A) Plants of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 at the mature stage.(B) panicles of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 at the mature stage.(C) Flag leaves of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3.(D) Mature grains of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3.(E) panicle length of KY131, large2- 1, KYJ, large2-2, ZHJ, and large2-3 (n ≥ 16).(F) Number of primary branches of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 panicles (n ≥ 16).(G) Number of secondary branches of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 panicles (n ≥ 16). (H) Grain number per panicle of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 (n ≥ 16). (I) Width of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 flag leaves (n = 20). (J) Width of KY131, large2-1, KYJ, large2-2, ZHJ, and large2-3 grains (n ≥ 100). Values (E-J) are given as mean ± SD. **P<0.01 compared with the corresponding wild- type values by Student’s t-test. Bars: (A) 10 cm; (B) 5 cm; (C) 1 cm; (D) 2 mm. Figure 2. LARGE2 encodes the HECT ubiquitin ligase OsUPL2. (A) The gene structure of LARGE2 (LOC_Os12g24080). Black boxes represent exons and lines represent introns. The start codon (ATG) and the stop codon (TAA) are indicated. The mutation sites of nine different alleles are indicated with arrows. (B) The mutation positons and nucleotide changes of the nine large2 mutant alleles. (C) Schematic diagrams of LARGE2 and the nine mutated proteins. The predicted LARGE2 protein contains a DUF908 domain, a DUF913 domain, a UBA domain, a DUF4414 domain, and a HECT domain. (D) Panicles of KY131, LARGE2-RNAi#1, LARGE2- RNAi#2 and LARGE2-RNAi#3. LARGE2-RNAi is KY131 transformed with the LARGE2- RNAi vector. (E-G) Number of primary branches (E), number of secondary branches (F), and grain number per panicle (G) of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2-RNAi#3 panicles (n ≥ 16). (H) Relative expression levels of LARGE2 in KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2-RNAi#3 panicles. Young panicles (1 mm) were used for qRT-PCR analyses with three biological replicates (n = 3). The rice Actin1 was used as the internal control. (I) panicles of KYJ, the large2 mutants in KYJ background, and F1 plants that produced by crossing different mutants. (J) LARGE2 is a functional E3 ubiquitin ligase. The HECT domain of LARGE2 was fused with MBP to test the ubiquitin ligase activity. Ubiquitinated proteins were detected using both anti-His and anti-MBP antibodies. The red arrows indicate ubiquitinated MBP-HECT proteins. Changing the conserved Cys to Ala or Ser abolished the ubiquitin ligase activity. Values (E-H) are given as mean ± SD. **P<0.01 compared with KY131 by Student’s t-test. Bars: (E) 5 cm; (K) 5 cm. Figure 3. LARGE2 regulates the sizes of shoot apical meristems and panicle meristems. (A-B) Cleared shoot apical meristems (SAMs) of KYJ and large2-2 on 1st day after germination (1 DAG). The length of red lines indicates the SAM length. (C) Average SAM length (SL) of KYJ and large2-2 and cell number (CN) along the SAM lines (1 DAG) (n = 12). (D-E) Scanning electron microscope (SEM) images that show the SAM of KYJ and large2-2 at the transition stage from the vegetative to the reproductive phase. The carmine shows the area of rachis meristem (RM). (F) Average rachis meristem (RM) area of KYJ and large2-2 (n = 12). (G-H) SEM images that show the primary branch meristems (PBMs) of KYJ and large2-2. The asterisks indicate PBMs. (I) Average PBM number of KYJ and large2-2 (n = 12).(J) Relative expression levels of KNOX genes in KYJ and large2-2 panicles. Young panicles (1 mm) were used for qRT-PCR analyses with three biological replicates (n = 3). (K) Relative expression levels of genes involved in panicle size regulation in KYJ and large2-2 panicles. Young panicles (1 mm) were used for qRT-PCR analyses with three biological replicates (n = 3).Values (C, F, I-K) are given as mean ± SD relative to KYJ value set at 100%. **P<0.01 compared with KYJ by Student’s t-test. The rice Actin1 was used as the internal control in (J) and (K). Bars: (A- B) 25 μm; (D-E) 100 μm; (G-H) 100 μm. Figure 4. Expression pattern of LARGE2. (A) The expression levels of LARGE2 in roots (R), stems (S), leaves (L), leaf sheaths (LS) and young panicles of 1 cm (YP1) to 20 cm (YP20) of KY131 plants. Samples were used for quantitative real-time RT-PCR analyses with three biological replicates (n = 3). Values are given as mean ± SD. Different lowercase letters above the columns indicate the significant difference among different groups, one-way ANOVA P-values: P < 0.05. The rice Actin1 was used as the internal control. (B) The LARGE2 expression in the SAM of proLARGE2:GUS seedlings. The GUS-stained SAMs were embedded in paraffin, sectioned and observed with a microscope. (C) The LARGE2 expression in the proLARGE2:GUS developing panicle at the primary branch initiation stage. The GUS- stained developing panicles were embedded in paraffin, sectioned and observed with a microscope. The black asterisks indicate primary branch meristems (PBMs). (D) The LARGE2 expression in the proLARGE2:GUS developing panicle at the secondary branch initiation stage. The GUS-stained developing panicles were embedded in paraffin, sectioned and observed with a microscope. The red asterisks indicate secondary branch meristems (SBMs) and the white box indicates a floral meristem. (E) A closer view of the LARGE2 expression in a floral meristem. (F-O) the LARGE2 expression in developing seedlings (F-I), roots (F-I), culm node and internode (J), leaves (G-I, K) and developing young seedlings (L-O) of proLARGE2:GUS plants. The GUS- stained samples were observed with a camera. proLARGE2:GUS is KY131 transformed with the proLARGE2:GUS vector.Bars: (B) 50 μm; (C-D) 200 μm; (E) 50 μm; (F-H) 5 mm; (I) 15 mm; (J-N) 5 mm; (O) 15 mm. Figure 5. LARGE2 physically associates with APO1 and APO2. (A) LARGE2 was divided into five fragments (F1-F5) to analyze its interactions with APO1 and APO2. (B-C) Split luciferase complementation assay showed that the fragment 3 (F3) of LARGE2 interacts with APO1 (B) and APO2 (C). Tobacco leaves expressing different combinations of LARGE2-F3-nLUC and cLUC-APO1/APO2 were tested for LUC activity. LUC activity was observed 48 h after infiltration. (D-E) Co- immunoprecipitation assay showed that the fragment 3 (F3) of LARGE2 associates with APO1 (D) and APO2 (E) in N. benthamiana leaves. The GFP beads were used to immunoprecipitate Myc-LARGE2-F3 proteins. Gel blots were probed with anti-Myc or anti-GFP antibody. IP, immunoprecipitation; IB, immunoblot. Figure 6. LARGE2 modulates the stabilities of APO1 and APO2. (A-B) The proteasome inhibitor MG132 stabilizes APO1. GFP-APO1 was expressed in N. benthamiana leaves for 48 h, and then treated with or without 50 mM MG132 for 24 h. Total protein was extracted and subjected to immunoblot using anti-GFP and anti- Actin antibodies. The GFP-APO1 protein level was quantified relative to the Actin protein level by ImageJ software. Band intensities of triplicate repeats (Figure 6A) were quantified by the ImageJ software (n = 3). Relative levels of GFP-APO1 proteins were shown (B). (C-D) LARGE2 modulates the protein stabilities of APO1 in rice.35S:GFP- APO1 transgenic lines were crossed with large2-3 to generate 35S:GFP-APO1 (1) and 35S:GFP-APO1;large2-3 (2). Total protein extracts from young panicles (1 cm) of (1) and (2) were subjected to immunoblot analysis using anti-GFP and anti-Actin antibodies. The GFP-APO1 protein level was quantified relative to the Actin protein level by ImageJ software. Band intensities of triplicate repeats (Figure 6C) were quantified by the ImageJ software (n = 3). Relative levels of GFP-APO1 proteins were shown (D). (E) The expression levels of GFP-APO1 in young panicles (1 cm) of 35S:GFP-APO1 (1) and 35S:GFP-APO1;large2-3 (2). Quantitative real-time RT-PCR analyses were performed with three biological replicates (n = 3). Values are given as mean + SD. The rice Actin1 was used as the internal control. (F-G) The proteasome inhibitor MG132 stabilizes APO2. GFP-APO2 was expressed in N. benthamiana leaves for 48 h, and then treated with or without 50 mM MG132 for 24 h. Total protein was extracted and subjected to immunoblot using anti-GFP and anti-Actin antibodies. The GFP-APO2 protein level was quantified relative to the Actin protein level by ImageJ software. Band intensities of triplicate repeats (Figure 6F) were quantified by the ImageJ software (n = 3). Relative levels of GFP-APO2 proteins were shown (G). (H-I) LARGE2 modulates the protein stabilities of APO2 in rice.35S:GFP-APO2 transgenic lines were crossed with large2-3 to generate 35S:GFP-APO2 (3) and 35S:GFP-APO2;large2-3 (4). Total protein extracts from young panicles (1 cm) of (3) and (4) were subjected to immunoblot analysis using anti-GFP and anti-Actin antibodies. The GFP-APO2 protein level was quantified relative to the Actin protein level by ImageJ software. Band intensities of triplicate repeats (Figure 6H) were quantified by the ImageJ software (n = 3). Relative levels of GFP-APO2 proteins were shown (I). (J) The expression levels of GFP-APO2 in young panicles (1 cm) of 35S:GFP-APO2 (3) and 35S:GFP-APO2;large2-3 (4). Quantitative real-time RT- PCR analyses were performed with three biological replicates (n = 3). Values are given as mean + SD. The rice Actin1 was used as the internal control. Figure 7. The large2 mutants produce large panicles with increased grain number and wide grains. (A) Panicles of KYJ, large2-4, large2-5, large2-6, large2-7, large2-8, and large2-9. (B) Grains of KYJ, large2-4, large2-5, large2-6, large2-7, large2-8, and large2-9. (C) Panicle length, number of primary branches, number of secondary branches, and grain number per panicle of KYJ, large2-4, large2-5, large2-6, large2-7, large2-8, and large2-9 panicles (n 16). (D) Grain length (n ≥ 80), grain width (n ≥ 80) and plant height (n ≥ 25) of KYJ, large2-4, large2-5, large2-6, large2-7, large2-8, and large2-9. Values (C- D) are given as the mean ± SD relative to the KYJ values set at 100%. **P < 0.01 compared with KYJ by Student’s t-test. Bars: (A) 10 cm; (B) 2 mm. Figure 8. Seven large2 mutants in KYJ background are allelic. Number of primary panicle branches (NPB), number of secondary panicle branches (NSB), grain number per main panicle (GN) of KYJ and the F1 plants generated by crossing different mutants (n ≥ 16). Values are given as mean ± SD relative to the KYJ value set at 100%. Figure 9. Silencing of LARGE2 by RNAi results in shortened plant height, wide grains and leaves. (A) Plants of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2-RNAi#3. (B) Mature flag leaves of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2- RNAi#3.(C) Mature grains of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2- RNAi#3. (D) Average plant height of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2- RNAi#3 (n = 20). (E) Average grain width of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2-RNAi#3 (n ≥ 80). (F) Average flag leaf width of KY131, LARGE2-RNAi#1, LARGE2-RNAi#2 and LARGE2-RNAi#3 (n = 20). Values (D-F) are given as mean + SD. **P<0.01 compared with their respective parental lines by Student’s t-test. Bars: (A) 10 cm; (B) 1 cm; (C) 1 mm. Figure 10. The phylogenetic tree of HECT ubiquitin protein ligases in Oryza sativa and Glycine max. The phylogenetic tree was constructed using the neighbor-joining method of MEGA5.0 program. The full length sequence of HECT ubiquitin protein ligases in Oryza sativa and Glycine max were used to construct the phylogenetic tree. Numbers at the nodes indicate percentage of 1000 bootstrap replicates. Figure 11. The phylogenetic tree of HECT ubiquitin protein ligases in Oryza sativa and Brassica napus. The phylogenetic tree was constructed using the neighbor-joining method of MEGA5.0 program. The full length sequence of HECT ubiquitin protein ligases in Oryza sativa and Brassica napus were used to construct the phylogenetic tree. Numbers at the nodes indicate percentage of 1000 bootstrap replicates. Figure 12. The phylogenetic tree of HECT ubiquitin protein ligases in Oryza sativa and Zea mays. The phylogenetic tree was constructed using the neighbor-joining method of MEGA5.0 program. The full length sequence of HECT ubiquitin protein ligases in Oryza sativa and Zea mays were used to construct the phylogenetic tree. Numbers at the nodes indicate percentage of 1000 bootstrap replicates. Figure 13. Identification of large2-9. (A) RT-PCR analysis of LARGE2 in large2-9 and KYJ. The large2-9 mutation causes two main transcripts. Red arrows show two mutated transcripts, which lead to the two different mutated proteins, LARGE2 large2-9#1 and LARGE2 large2-9#2 . (B) Alignment of amino acid sequences in the HECT domains of LARGE2, LARGE2 large2-9#1 and LARGE2 large2- 9#2 . Amino acid sequences are used for the alignment using ClustalW method in MEGA5.0 program. The yellow and green boxes indicate the mutated amino acid sequences of LARGE2 large2-9#1 and LARGE2 large2-9#2 , respectively. The red box indicates the conserved cysteine in the HECT domain. Figure 14. Introgression of the large2-9 mutation into the japonica variety Xiushui09 (XS09) increases grain yield. (A) Plants of XS09 and NIL-large2-9 at the mature stage. (B) Panicles of XS09 and NIL- large2-9. (C-D) Grains of XS09 and NIL-large2-9. (E-G) Number of primary branches (E), number of secondary branches (F), and grain number per panicle (G) of XS09 and NIL-large2-9 panicles. (H-I) Grain width (H) and grain length (I) of XS09 and NIL-large2- 9. (J) Tiller number of XS09 and NIL-large2-9. (K) 1000-grain weight of XS09 and NIL- large2-9. (L) Yield per plant of XS09 and NIL-large2-9. (M) Actual yield per plot of XS09 and NIL-large2-9. Values (E-M) are given as mean ± SD. **P<0.01 compared with XS09 by Student’s t-test. Bars: (A) 10 cm; (B) 5 cm; (C) 2 mm; (D) 5 mm. Figure 15. Grains of XS09 and NIL-large2-9. Grain performances of XS09 and NIL-large2-9. Bar: 2 cm Figure 16. Generation of CRISPR constructs of Example 9 Figure 17. Heterozygous large2 mutant can increase grain yield. (A) Plants of KY131 and KY131/large2-1 at the mature stage. (B) Panicles of KY131 and KY131/large2-1. (C) Grains of KY131 and KY131/large2-1. (D-I) Tiller number (D), panicle length (E), number of primary branches (F), number of secondary branches (G), grain number per panicle (H) and grain yield per plant (I) of KY131 and KY131/large2-1. (J-L) Grain length (J), grain width (K) and 1,000-grain weight (L) of KY131 and KY131/large2-1. KY131/large2-1 is the F1 plant produced by crossing KY131 with large2-1. Values (D-L) are given as mean ± SD. **P<0.01 compared with KY131 by Student’s t-test. Bars: (A) 10 cm; (B) 5 cm; (C) 2 mm. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be further described. In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, bioinformatics which are within the skill of the art. Such techniques are explained fully in the literature. As used herein, the words "nucleic acid", "nucleic acid sequence", "nucleotide", "nucleic acid molecule" or "polynucleotide" are intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), natural occurring, mutated, synthetic DNA or RNA molecules, and analogs of the DNA or RNA generated using nucleotide analogs. It can be single-stranded or double-stranded. Such nucleic acids or polynucleotides include, but are not limited to, coding sequences of structural genes, anti-sense sequences, and non-coding regulatory sequences that do not encode mRNAs or protein products. These terms also encompass a gene. The term "gene" or “gene sequence” is used broadly to refer to a DNA nucleic acid associated with a biological function. Thus, genes may include introns and exons as in the genomic sequence, or may comprise only a coding sequence as in cDNAs, and/or may include cDNAs in combination with regulatory sequences. The terms "polypeptide" and "protein" are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds. The aspects of the invention involve recombination DNA technology and exclude embodiments that are solely based on generating plants by traditional breeding methods. In a first aspect of the invention, there is provided a method of increasing yield in a plant, the method comprising reducing or abolishing the expression of at least one nucleic acid encoding a UPL2 polypeptide and/or reducing or abolishing the activity of a UPL2 polypeptide in said plant. All following embodiments apply to all aspects of the invention. In one embodiment, the method comprises reducing or abolishing the activity of the UPL2 polypeptide. UPL2 may be referred to as LARGE2 and such terms may be used interchangeably herein. LARGE2 encodes a E3 ubiquitin ligase (UPL2). In one embodiment, the method comprises reducing or abolishing the E3 ubiquitin ligase activity of UPL2. Ubiquitin ligase activity can be measured by any number of techniques in the art. In another embodiment, the method comprises reducing or abolishing the binding of UPL2 to target proteins, particularly APO (ABERRANT PANICLE ORGANIZATION) 1 and APO2 or homologues thereof. The term "yield" in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight. Alternatively, the actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square meters. In one embodiment, increased yield comprises an increase in at least one or more of the following yield-related parameters; seed number, seed width, inflorescence size, increased thousand kernel weight (TKW), increased biomass, increased fresh weight Preferably, in the present context, the term "yield" of a plant relates to propagule generation (such as seeds) of that plant. Thus, in a preferred embodiment, the method relates to an increase in seed number, seed yield or total seed yield. According to the invention, seed yield can be measured by assessing one or more of seed number, seed size or a combination of both seed size and seed number. An increase in the TKW can result from an increase in seed size and/or seed weight. Preferably, an increase in seed yield is an increase in at least one of seed number, seed width and TKW. In a further embodiment, seed length is unaffected. Yield is increased relative to a control or wild- type plant. The skilled person would be able to measure any of the above seed yield parameters using known techniques in the art. The terms “seed” and “grain” as used herein can be used interchangeably. For example, yield or any one of the above yield-related parameters is increased by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% or more compared to a wild-type or control plant. In one embodiment, yield, and in particular, grain number may be increased by between 20 and 95% compared to a wild-type or control plant. The term “reducing” means a decrease in the levels of UPL2 polypeptide expression and/or activity by up to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% when compared to the level in a wild-type or control plant. Preferably, reducing means a decrease in the level of expression or activity of UPL2 above or around 50%-95%. The term “abolish” expression means that no expression of UPL2 polypeptide is detectable or that no functional UPL2 polypeptide is produced. That is, the UPL2 polypeptide lacks all functional E3 ligase activity or is unable to bind to target proteins, such as APO1 and APO2. Methods for determining the level of endogenous UPL2 expression would be well known to the skilled person. For example, a reduction in the expression and/or content levels of endogenous UPL2 may comprise a measure of protein and/or nucleic acid levels by techniques such as gel electrophoresis or chromatography (e.g. HPLC). By “reducing the activity” means reducing the biological activity of UPL2, for example, reducing the functional E3 ligase activity or reducing the ability to bind to target proteins, such as APO1 and APO2. Inflorescence size and grain number in particular are important agronomic traits in crops. As shown in Figures 2, 7 and 14 we have identified that introducing loss of function mutations in LARGE2, which encodes an E3 ubiquitin ligase, leads to an increase in grain number and yield. In one embodiment, we use RNAi technology to knock-down the expression of LARGE2 or its homologs in crops to increase seed number and yield in these crops. In another embodiment, the method comprises introducing at least one mutation into the, preferably endogenous, gene encoding UPL2 and/or the UPL2 promoter. Preferably, said mutation is a loss of function or partial loss of function mutation in the UPL2 gene. Alternatively, said mutation in the UPL2 promoter reduces or abolishes UPL2 expression. By “at least one mutation” means that where the UPL2 gene is present as more than one copy or homeologue (with the same or slightly different sequence) there is at least one mutation in at least one gene. In one embodiment, all genes are mutated such that the plant is homozygous for the mutation. In an alternative embodiment, where the plant is a diploid or polyploid, one or two or half of the copies or homeoalles of the UPL2 gene or promoter are mutated such that the plant is heterozygous for the mutation. In another embodiment, the sequence of the UPL2 gene comprises or consists of a nucleic acid sequence that encodes a polypeptide as defined in SEQ ID NO: 2 or a functional variant or homologue thereof. In a further embodiment, the sequence of the UPL2 gene comprises or consists of SEQ ID NO: 1 (cDNA), 81 (genomic) or a functional variant or homologue thereof. By “UPL2 promoter” is meant a region extending for at least 2kbp upstream of the ATG codon of the UPL2 ORF (open reading frame). In one embodiment, the sequence of the UPL2 promoter comprises or consists of a nucleic acid sequence as defined in SEQ ID NO:3 or a functional variant or homologue thereof. Examples of UPL2 homologs are shown in SEQ ID NOs: 4 to 26 and in Table 1 below. Accordingly, in one embodiment, the homolog encodes a polypeptide selected from SEQ ID NOs: 5, 7, 9, 12, 15 and 18. In an alternative embodiment, the homolog comprises or consists of a nucleic acid sequence selected from one of SEQ ID NOs: 4, 6, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25 and 26. In a further or additional embodiment, the sequence of the homologue is selected from one of the sequences in Table 1. Table 1: Examples of homologue sequences: The term “functional variant” as used herein with reference to any of the sequences recited herein refers to a variant nucleic acid or amino acid sequence or part of that sequence which retains the biological function of the full non-variant sequence. For example, the variant also has E3 ligase activity. A functional variant also comprises a variant of the gene of interest, which has sequence alterations that do not affect function, for example in non- conserved residues. Also encompassed is a variant that is substantially identical, i.e. has only some sequence variations, for example in non- conserved residues, compared to the wild type sequences as shown herein and is biologically active. Alterations in a nucleic acid sequence which result in the production of a different amino acid at a given site that do not affect the functional properties of the encoded polypeptide are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N- terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. In one embodiment, a functional variant has at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to the non-variant nucleic acid or amino acid sequence. The term homolog, as used herein, also designates a UPL2 gene or promoter orthologue from other plant species. A homolog may have, in increasing order of preference, at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to the amino acid represented by SEQ ID NO: 2 or to the nucleic acid sequences as shown by SEQ ID NOs: 1 or 3. In one embodiment, overall sequence identity is at least 58%. Functional variants of UPL2 homologs as defined above are also within the scope of the invention. The E3 ubiquitin ligase UPL2 is characterised by a number of conserved domains: DUF908, DUF913, UBA, DUF4414 and HECT domains. In one embodiment, the sequence of these domains is as follows: DUF908 (SEQ ID NO: 58) AAAAATACCATCCTGCAGATTTTGAGAGTAATGCAGATTGTTTTGGAAAATTGCCA GAACAAAACATCGTTTGCTGGTCTTGAGCATTTTAGGCTTCTGCTGGCATCATCAG ATCCTGAGATAGTTGTGGCTGCTTTAGAGACACTTGCTGCATTGGTTAAAATAAAT CCTTCGAAGTTGCATATGAACGGAAAGCTCATAAATTGTGGAGCTATAAACAGTCA TCTTCTATCATTGGCACAAGGATGGGGTAGCAAGGAGGAAGGTTTGGGCTTATAT TCTTGTGTTGTGGCAAATGAAAGAAACCAGCAGGAGGGTTTGTGCTTATTCCCAG CAGACATGGAGAACAAATACGATGGCACGCAGCACCGTCTCGGTTCAACTCTTCA TTTTGAATATAATTTGGCACCTGCCCAAGATCCTGACCAATCCAGTGACAAGGCTA AGCCATCTAATCTGTGTGTGATACATATCCCAGACTTGCACCTTCAGAAGGAGGAT GACTTGAGCATATTGAAGCAATGTGTTGATAAGTTTAATGTGCCTTCAGAGCACAG ATTTTCCTTGTTTACAAGGATAAGATATGCCCATGCCTTTAATTCGCCACGGACAT GTAGGCTATATAGCCGCATAAGTCTTCTTGCTTTCATTGTTCTTGTGCAATCCAGC GATGCCCATGATGAACTCACATCTTTCTTTACAAATGAGCCAGAGTACATAAATGA GTTAATCAGACTTGTCCGATCAGAGGAATTTGTTCCTGGACCCATACGAGCGCTG GCTATGCTTGCACTGGGAGCACAGTTAGCAGCGTATGCATCATCTCATGAACGAG CTCGGATACTTAGTGGCTCAAGTATCATATCTGCTGGTGGAAACCGCATGGTCTT GCTCAGTGTTTTGCAAAAAGCTATATCA DUF913 (SEQ ID NO: 59) GCAGTGAAAACTCTTCAAAAGTTGATGGAGTACAGCAGCCCTGCTGTTTCTCTATT TAAAGATTTGGGTGGTGTAGAACTTTTGTCTCAGAGGTTGCACGTGGAGGTGCAG CGTGTTATTGGTGTTGACAGTCATAATTCAATGGTTACAAGTGATGCATTGAAATC AGAAGAGGATCATCTCTACTCTCAGAAGCGATTGATTAAGGCGCTGCTAAAGGCA TTGGGGTCTGCTACATATTCTCCTGCAAATCCTGCTCGTTCACAAAGCTCAAATGA TAATTCTTTGCCCATCTCGCTTTCCCTTATATTTCAGAATGTTGACAAGTTTGGTGG TGACATTTATTTCTCAGCAGTTACTGTTATGAGTGAGATAATTCACAAGGATCCAAC ATGCTTTCCTTCTTTGAAGGAACTTGGTCTTCCAGATGCTTTTCTATCGTCAGTGA GTGCTGGGGTAATACCATCTTGTAAAGCTCTCATCTGTGTGCCTAATGGTCTGGG TGCAATATGCCTTAATAACCAAGGACTTGAGGCTGTCAGGGAAACTTCAGCTCTG CGTTTTCTTGTTGACACATTCACCAGCAGGAAGTACTTGATACCAATGAATGAAGG TGTTGTCCTATTAGCTAATGCAGTGGAAGAGCTTCTACGTCACGTGCAGTCCCTAA GAAGCACTGGGGTTGACATCATTATTGAAATAATTAATAAACTTTCTTCACCTCGTG AAGATAAGAGCAATGAACCAGCGGCCAGTTCTGATGAAAGAACAGAAATGGAAAC TGACGCGGAAGGACGTGATTTGGTAAGTGCTATGGATTCCAGTGAGGATGGCACT AATGATGAACAGTTTTCTCATTTGAGCATTTTCCATGTGATGGTATTGGTTCATCGG ACAATGGAGAACTCCGAAACCTGCCGGTTATTTGTGGAGAAAGGAGG UBA (SEQ ID NO: 60) AATGCAATTTCTCTGATTGTAGAGATGGGCTTTTCTCGCGCCAGAGCTGAGGAAG CACTCAGGCAAGTTGGAACGAACAGTGTTGAAATTGCAACTGATTGGTTATTCTCA CAC DUF4414 (SEQ ID NO: 61) AACAGAGCTGCTGACACTGACTCAATTGATCCTACATTTTTGGAGGCTCTTCCAGA GGATTTACGGGCTGAAGTTCTTTCTTCACGTCAAAATCAAGTGACCCAG Or (SEQ ID NO: 62) GAACAACCTCAGAATGATGGGGATATTGATCCTGAATTCCTTGCTGCACTTCCTCC TGATATACGTGAAGAAGTT Glu/Asp-rich domain (SEQ ID NO: 63) ATCAGATTTGAAATTCCACGAAATAGAGAGGATGATATGGCTGATGATGACGAGG ACAGTGATGAGGACATGTCAGCCGATGATGGTGAGGAGGTTGATGAAGATGAAG ACGAGGATGAGGATGAAGAGAACAACAACCTGGAGGAGGATGATGCCCATCAAA TGTCTCATCCTGACACAGATCAGGAGGACCGTGAGATGGATGAAGAGGAGTTTGA CGAGGATCTGCTAGAAGAAGATGATGATGAGGATGAGGATGAG HECT: (SEQ ID NO: 64) RISVRRAYILEDSYNQLRMRSPQDLKGRLTVHFQGEEGIDAGGLTREWYQLLSRVIFD KGALLFTTVGNDLTFQPNPNSVYQTEHLSYFKFVGRVVGKALFDGQLLDVHFTRSFY KHILGVKVTYHDIEAIDPAYYKNLKWMLENDISDVLDLSFSMDADEEKRILYEKAEVTD YELIPGGRNIKVTEENKHEYVNRVAEHRLTTAIRPQITSFMEGFNELIPEELISIFNDKE L ELLISGLPDIDLDDLKANTEYSGYSIASPVIQWFWEIVQGFSKEDKARFLQFVTGTSKV PLEGFSALQGISGPQRFQIHKAYGSTNHLPSAHTCFNQLDLPEYTSKEQLQERLLLAIH EANEGFGFG Accordingly, in one embodiment, the UPL2 nucleic acid (coding) sequence encodes a UPL2 protein comprising at least one DUF908, DUF913, UBA, DUF4414 or HECT domain as defined in any of SEQ ID Nos 58 to 64, or a variant thereof, wherein the variant has at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to SEQ ID Nos 58 to 64 as defined herein. Two nucleic acid sequences or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. When percentage of sequence identity is used in reference to proteins or peptides, it is recognised that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Non-limiting examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms. Suitable homologues can be identified by sequence comparisons and identifications of conserved domains. There are predictors in the art that can be used to identify such sequences. The function of the homologue as an E3 ligase can be confirmed using routine methods in the art. Thus, the nucleotide sequences of the invention and described herein can also be used to isolate corresponding sequences from other organisms, particularly other plants, for example crop plants. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences described herein. Topology of the sequences and the characteristic domains structure, such as those described above, can also be considered when identifying and isolating homologs. Sequences may be isolated based on their sequence identity to the entire sequence or to fragments thereof. In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen plant. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labelled with a detectable group, or any other detectable marker. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook, et al., (1989) Molecular Cloning: A Library Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York). Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Duration of hybridization is generally less than about 24 hours, usually about 4 to 12. Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. In a further embodiment, a variant as used herein can comprise a nucleic acid sequence encoding a UPL2 gene or promoter as defined herein that is capable of hybridising under stringent conditions as defined herein to a nucleic acid sequence as defined in SEQ ID NO: 1, 2 or 3. In one embodiment, there is provided a method of increasing yield in a plant, as described herein, wherein the method comprises introducing at least one mutation into at least one UPL2 gene and/or promoter as described above, wherein the UPL2 gene comprises or consists of a. a nucleic acid sequence encoding a polypeptide as defined in one of SEQ ID NO: 2, 5, 7, 9, 12, 15 or 18; or b. a nucleic acid sequence as defined in one of SEQ ID NO: 1, 4, 6, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25 or 26; or c. a nucleic acid sequence encoding a polypeptide comprising at least one DUF908, DUF913, UBA, DUF4414 and HECT domain as defined in SEQ ID NO: 58, 59, 60, 61, 62, 63 or 64 or a functional variant thereof; d. a nucleic acid sequence with at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to either (a) or (b) or (c); or e. a nucleic acid sequence encoding a UPL2 polypeptide as defined herein that is capable of hybridising under stringent conditions as defined herein to the nucleic acid sequence of any of (a) to (d). and wherein the UPL2 promoter comprises or consists of f. a nucleic acid sequence as defined in one of SEQ ID NO: 3 g. a nucleic acid sequence with at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to (f); or h. a nucleic acid sequence capable of hybridising under stringent conditions as defined herein to the nucleic acid sequence of any of (f) to (h). In a preferred embodiment, the mutation that is introduced into the endogenous UPL2 gene or promoter thereof to completely or partially silence, reduce, or inhibit the biological activity and/or expression levels of the UPL2 gene or protein can be selected from the following mutation types 1. a "missense mutation", which is a change in the nucleic acid sequence that results in the substitution of an amino acid for another amino acid; 2. a "nonsense mutation" or "STOP codon mutation", which is a change in the nucleic acid sequence that results in the introduction of a premature STOP codon and, thus, the termination of translation (resulting in a truncated protein); plant genes contain the translation stop codons "TGA" (UGA in RNA), "TAA" (UAA in RNA) and "TAG" (UAG in RNA); thus any nucleotide substitution, insertion, deletion which results in one of these codons to be in the mature mRNA being translated (in the reading frame) will terminate translation. 3. an "insertion mutation" of one or more amino acids, due to one or more codons having been added in the coding sequence of the nucleic acid; 4. a "deletion mutation" of one or more amino acids, due to one or more codons having been deleted in the coding sequence of the nucleic acid; 5. a "frameshift mutation", resulting in the nucleic acid sequence being translated in a different frame downstream of the mutation. A frameshift mutation can have various causes, such as the insertion, deletion or duplication of one or more nucleotides. 6. a “splice site” mutation, which is a mutation that results in the insertion, deletion or substitution of a nucleotide at the site of splicing. In a preferred embodiment, the mutation in the UPL2 gene is a loss of function mutation or partial loss of function mutation. In one example of a loss of function mutation is any mutation that reduces or abolishes UPL2 E3 ligase activity. In another example, the mutation is any mutation that reduces or abolishes the binding of UPL2 to its target proteins. By target protein means any ubiquitin protein substrate. In one embodiment, the target protein is APO1 and/or APO2. Other examples of target proteins may include SPL14/IPA1 (Ideal Plant Architecture 1). In a further example of a loss of function mutation, the mutation is in the coding region of the UPL2 gene. In this manner, the activity of the UPL2 polypeptide can be considered to be reduced or abolished as described herein. A reduction is described above. In one embodiment, the mutation reduces or abolishes activity of the E3 ubiquitin ligase. As shown in Figure 2J, an intact HECT domain is required for functional ubiquitin ligase activity. Accordingly, in one embodiment, the mutation results in a non-functional HECT (Homologous to the E6-AP Carboxyl Terminus) domain. The mutation may be in the HECT domain or elsewhere in the UPL2 polypeptide and preferably results in the complete deletion or partial deletion of the HECT domain. In one embodiment, the mutation is a substitution or a deletion of cysteine at position 3612 of SEQ ID NO: 2 or a homologous position in a homologous sequence. More preferably, the mutation is a substitution, and more preferably is a substitution to a serine or alanine. This cysteine is required for ubiquitin-thiolester formation. Mutation of this conserved cysteine abolishes all ubiquitin ligase activity. In another embodiment, the mutation that reduces or abolishes the binding of UPL2 to its target proteins is a mutation in the Glu/Asp-rich domain, as described herein. Preferably, the mutation is a substitution of one or more amino acids in the Glu/Asp domain. Alternatively, the mutation is the deletion or partial deletion of the Glu/Asp-rich domain. As shown in Figure 5B deletion of the Glu/Asp-rich domain reduces, preferably abolishes the association of UPL2 with one of its target substrates, APO1. In another embodiment, the mutation is, as shown in Figure 2B, selected from one or more of the following: - a G to T substitution at position 7728 of the genomic sequence of OsUPL2 or position 11510 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-1; - a G to A substitution at position 13631 of the genomic sequence of OsUPL2 or position 17413 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-2; - a deletion of C at position 9785 of the genomic sequence of OsUPL2 or position 13567 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-3; - a deletion of AAAG at position 4424 of the genomic sequence of OsUPL2 or position 8205 of SEQ ID NO: 81or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-4 - a G to A substitution at position 8283 position of the genomic sequence of OsUPL2 or position 12065 of SEQ ID NO: 81 SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-5 - a deletion of G at position 9399 of the genomic sequence of OsUPL2 or position 13181 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-6 - a deletion of T at position 11710 of the genomic sequence of OsUPL2 or position 15492 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-7; - a deletion of AATGGATGCTTGA at position 12958 of the genomic sequence of OsUPL2 or position 16740 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-8; and - a substitution of A to G at position 13081 of the genomic sequence of OsUPL2 or position 16863 of SEQ ID NO: 81 or a homologous position in a homologous sequence. This mutation may be referred to herein as large2-9. As shown in Figure 2, the large2-5 mutation results in an amino acid change from Glutamic acid (E) to Lysine (K). Large2-1, 2-2, 2-3, 2-4, 2-6, 2-7 and 2-8 all lead to truncation of the large2 polypeptide and consequently partial or a complete deletion of the HECT domain. The large 2-9 mutation leads to an A to G substitution at the exon- intron boundary and results in two transcripts that, as shown in Figure 2C, are predicted to encode two different versions of the proteins with truncated HECT domains. As shown in Figures 1, 2 and Figures 14 and 15, these mutants produced large inflorescences with increased grain numbers and wide grains and increased grain yield. All large-2 mutants are loss of function mutants or partial loss of function mutations. Where the mutation is complete loss of function, the mutation may be introduced into only one or two (where the plant is a polypolid) copies of the UPL2 gene or promoter; or as described herein, the plant may be crossed with a second plant that is a wild-type or control plant to produce a F1 hybrid heterozygous for the complete loss of function mutation. Alterntaively, where the mutation is a partial loss of function mutation, the mutation may be introduced into all copies of the UPL2 gene and/or promoter. In a preferred embodimt, the mutation is a substitution of A to G at position 13081 of the genomic sequence of OsUPL2 or position 16863 of SEQ ID NO: 81 or a homologous position in a homologous sequence. In other words, in a preferred embodiment, the mutation is the large2-9 mutation. In a further embodiment, at least one mutation or structural alteration may be introduced into the UPL2 promoter such that the UPL2 gene is either not expressed (i.e. expression is abolished) or expression is reduced, as defined herein. In any case, the mutation may result in the expression of a UPL2 polypeptide with no, significantly reduced or altered biological activity in vivo. Alternatively, UPL2 may not be expressed at all. In one embodiment, the mutation is the deletion of one or more nucleotides in the UPL2 promoter. In a particular embodiment, the deletion may be the deletion of all or part of SEQ ID NO: 32 from the UPL2 promoter sequence. In general, the skilled person will understand that at least one mutation as defined above and which leads to the insertion, deletion or substitution of at least one nucleic acid or amino acid compared to the wild-type UPL2 promoter or UPL2 nucleic acid or protein sequence can affect the biological activity of the UPL2 protein. In one embodiment a mutation may be introduced into the UPL2 promoter and at least one mutation is introduced into the UPL2 gene. It has been particularly found that plants that are heterozygous for a mutation in UPL2, or equally where the expression or activity of UPL2 is reduced by up to or around 50%, the plants show both a significant increase in grain number, weight and size and also a significant increase in yield. This is shown in Figure 17. Accordingly, in one embodiment, the method comprises introducing at least one mutation into a plant such that the plant is heterozygous for a mutation. In one embodiment, the method may comprise introducing at least one mutation into at least one UPL2 gene and/or promoter, and preferably into all copies or homealleles of the UPL2 gene and/or promoter of a first plant, such that the first plant is homozygous for the mutation, and further crossing the first plant with a second plant (i.e. a wild-type or control plant that does not contain a mutation, such as a loss of function mutation in UPL2) to produce F1 hybrid plants that are heterozygous for the mutation. Also encompassed in the scope of the invention is F1 hybrid seed obtained or obtainable by the cross. This may be particularly useful for rice or maize. Accordingly, in one embodiment, the plant is rice or maize. In another embodiment, where the plant is a diploid or polyploid, the method comprises introducing a mutation, such as the mutations described above, into one or two homeoalleles in the genome. This may be particularly useful for wheat. Accordingly, in one embodiment, the plant is wheat. In another embodiment, where RNA silencing is used to reduce the levels of expression of UPL2 the method further comprises the step of selecting plants that show reduced expression of UPL2 by above or around 50%, 55%, 60%, 65% 70%, 75% 80%, 85%, 90% or 95%. In one embodiment, the mutation is introduced using mutagenesis or targeted genome editing. That is, in one embodiment, the invention relates to a method and plant that has been generated by genetic engineering methods as described above, and does not encompass naturally occurring varieties. Targeted genome modification or targeted genome editing is a genome engineering technique that uses targeted DNA double-strand breaks (DSBs) to stimulate genome editing through homologous recombination (HR)-mediated recombination events. To achieve effective genome editing via introduction of site-specific DNA DSBs, four major classes of customisable DNA binding proteins can be used: meganucleases derived from microbial mobile genetic elements, ZF nucleases based on eukaryotic transcription factors, transcription activator-like effectors (TALEs) from Xanthomonas bacteria, and the RNA-guided DNA endonuclease Cas9 from the type II bacterial adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats). In a preferred embodiment, the mutation is introduced using CRISPR. The use of this technology in genome editing is well described in the art, for example in US 8,697,359 and references cited herein. Three types (I-III) of CRISPR systems have been identified across a wide range of bacterial hosts. One key feature of each CRISPR locus is the presence of an array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers). The non-coding CRISPR array is transcribed and cleaved within direct repeats into short crRNAs containing individual spacer sequences, which direct Cas nucleases to the target site (protospacer). The Type II CRISPR is one of the most well characterized systems and carries out targeted DNA double-strand break in four sequential steps. First, two non-coding RNA, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus. Second, tracrRNA hybridizes to the repeat regions of the pre-crRNA and mediates the processing of pre- crRNA into mature crRNAs containing individual spacer sequences. Third, the mature crRNA:tracrRNA complex directs Cas9 to the target DNA via Watson-Crick base-pairing between the spacer on the crRNA and the protospacer on the target DNA next to the protospacer adjacent motif (PAM), an additional requirement for target recognition. Finally, Cas9 mediates cleavage of target DNA to create a double-stranded break within the protospacer. One major advantage of the CRISPR-Cas9 system, as compared to conventional gene targeting and other programmable endonucleases is the ease of multiplexing, where multiple genes can be mutated simultaneously simply by using multiple sgRNAs each targeting a different gene. In addition, where two sgRNAs are used flanking a genomic region, the intervening section can be deleted or inverted (Wiles et al., 2015). Cas9 is thus the hallmark protein of the type II CRISPR-Cas system, and is a large monomeric DNA nuclease guided to a DNA target sequence adjacent to the PAM (protospacer adjacent motif) sequence motif by a complex of two noncoding RNAs: CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The Cas9 protein contains two nuclease domains homologous to RuvC and HNH nucleases. The HNH nuclease domain cleaves the complementary DNA strand whereas the RuvC-like domain cleaves the non-complementary strand and, as a result, a blunt cut is introduced in the target DNA. Heterologous expression of Cas9 together with an sgRNA can introduce site-specific double strand breaks (DSBs) into genomic DNA of live cells from various organisms. For applications in eukaryotic organisms, codon optimized versions of Cas9, which is originally from the bacterium Streptococcus pyogenes, have been used. The single guide RNA (sgRNA) is the second component of the CRISPR/Cas system that forms a complex with the Cas9 nuclease. SgRNA is a synthetic RNA chimera created by fusing crRNA with tracrRNA. The sgRNA guide sequence located at its 5′ end confers DNA target specificity. Therefore, by modifying the guide sequence, it is possible to create sgRNAs with different target specificities. The canonical length of the guide sequence is 20 bp. In plants, sgRNAs have been expressed using plant RNA polymerase III promoters, such as U6 and U3. Accordingly, using techniques known in the art, such as such as http://chopchop.cbu.uib.no/ it is possible to design sgRNA molecules that target a UPL2 gene or promoter sequence as described herein. In one embodiment, the sgRNA molecules target a sequence selected from SEQ ID No: 27, 28, 29, 30, 31, 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof as defined herein. In a further embodiment, the sgRNA molecules comprises a protospacer sequence selected from SEQ ID NO: 27, 28, 29, 30, 31, 37, 38, 39, 40, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof, as defined herein. In a further embodiment, the sgRNA comprises SEQ ID NO: 69 or 75 or a variant thereof. Cas9 expression plasmids for use in the methods of the invention can be constructed as described in the art. In one embodiment, the method uses the sgRNA constructs defined in detail below to introduce a targeted mutation into a UPL2 gene and/or promoter. Alternatively, more conventional mutagenesis methods can be used to introduce at least one mutation into a UPL2 gene or UPL2 promoter sequence. These methods include both physical and chemical mutagenesis. A skilled person will know further approaches can be used to generate such mutants, and methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No.4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. In one embodiment, insertional mutagenesis is used, for example using T-DNA mutagenesis (which inserts pieces of the T-DNA from the Agrobacterium tumefaciens T-Plasmid into DNA causing either loss of gene function or gain of gene function mutations), site- directed nucleases (SDNs) or transposons as a mutagen. In another embodiment of the various aspects of the invention, the method comprises mutagenizing a plant population with a mutagen. The mutagen may be a fast neutron irradiation or a chemical mutagen, for example selected from the following non-limiting list: ethyl methanesulfonate (EMS), methylmethane sulfonate (MMS), N-ethyl-N- nitrosurea (ENU), triethylmelamine (1'EM), N-methyl-N-nitrosourea (MNU), procarbazine, chlorambucil, cyclophosphamide, diethyl sulfate, acrylamide monomer, melphalan, nitrogen mustard, vincristine, dimethylnitosamine, N-methyl-N'-nitro- Nitrosoguanidine (MNNG), nitrosoguanidine, 2-aminopurine, 7,12 dimethyl- benz(a)anthracene (DMBA), ethylene oxide, hexamethylphosphoramide, bisulfan, diepoxyalkanes (diepoxyoctane (DEO), diepoxybutane (BEB), and the like), 2-methoxy- 6-chloro-9 [3-(ethyl-2-chloroethyl)aminopropylamino]acridine dihydrochloride (ICR-170) or formaldehyde. Again, the targeted population can then be screened to identify a UPL2 gene or promoter mutant. In another embodiment, the method used to create and analyse mutations is targeting induced local lesions in genomes (TILLING), reviewed in Henikoff et al, 2004. In this method, seeds are mutagenised with a chemical mutagen, for example EMS. The resulting M1 plants are self-fertilised and the M2 generation of individuals is used to prepare DNA samples for mutational screening. DNA samples are pooled and arrayed on microtiter plates and subjected to gene specific PCR. The PCR amplification products may be screened for mutations in the UPL2 target gene using any method that identifies heteroduplexes between wild type and mutant genes. For example, but not limited to, denaturing high pressure liquid chromatography (dHPLC), constant denaturant capillary electrophoresis (CDCE), temperature gradient capillary electrophoresis (TGCE), or by fragmentation using chemical cleavage. Preferably the PCR amplification products are incubated with an endonuclease that preferentially cleaves mismatches in heteroduplexes between wild type and mutant sequences. Cleavage products are electrophoresed using an automated sequencing gel apparatus, and gel images are analyzed with the aid of a standard commercial image-processing program. Any primer specific to the UPL2 nucleic acid sequence may be utilized to amplify the UPL2 nucleic acid sequence within the pooled DNA sample. Preferably, the primer is designed to amplify the regions of the UPL2 gene where useful mutations are most likely to arise, specifically in the areas of the UPL2 gene that are highly conserved and/or confer activity as explained elsewhere. To facilitate detection of PCR products on a gel, the PCR primer may be labelled using any conventional labelling method. In an alternative embodiment, the method used to create and analyse mutations is EcoTILLING. EcoTILLING is molecular technique that is similar to TILLING, except that its objective is to uncover natural variation in a given population as opposed to induced mutations. The first publication of the EcoTILLING method was described in Comai et. al.2004. Rapid high-throughput screening procedures thus allow the analysis of amplification products for identifying a mutation conferring the reduction or inactivation of the f the UPL2 gene as compared to a corresponding non-mutagenised wild type plant. Once a mutation is identified in a gene of interest, the seeds of the M2 plant carrying that mutation are grown into adult M3 plants and screened for the phenotypic characteristics associated with the target gene UPL2. Loss of and reduced function mutants with increased grain number compared to a control can thus be identified. Plants obtained or obtainable by such method which carry a functional mutation in the endogenous UPL2 gene or promoter locus are also within the scope of the invention In an alternative embodiment, the expression of the UPL2 gene may be reduced at either the level of transcription or translation. For example, expression of a UPL2 nucleic acid, as defined herein, can be reduced or silenced using a number of gene silencing methods known to the skilled person, such as, but not limited to, the use of small interfering nucleic acids (siNA) against UPL2. As shown in Figure 2D-2H, RNAi against LARGE2 increased the number of primary and secondary branches and grain number. “Gene silencing" is a term generally used to refer to suppression of expression of a gene via sequence-specific interactions that are mediated by RNA molecules. The degree of reduction may be so as to totally abolish production of the encoded gene product, but more usually the abolition of expression is partial, with some degree of expression remaining. The term should not therefore be taken to require complete "silencing" of expression. In one embodiment, the siNA may include, short interfering RNA (siRNA), double- stranded RNA (dsRNA), micro-RNA (miRNA), antagomirs and short hairpin RNA (shRNA) capable of mediating RNA interference. The inhibition of expression and/or activity can be measured by determining the presence and/or amount of UPL2 transcript using techniques well known to the skilled person (such as Northern Blotting, RT-PCR and so on). Antisense nucleic acid sequences can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid sequence may be complementary to the entire UPL2 nucleic acid sequence as defined herein, but may also be an oligonucleotide that is antisense to only a part of the nucleic acid sequence (including the mRNA 5' and 3' UTR). The length of a suitable antisense oligonucleotide sequence is known in the art and may start from about 50, 45, 40, 35, 30, 25, 20, 15 or 10 nucleotides in length or less. An antisense nucleic acid sequence according to the invention may be constructed using chemical synthesis and enzymatic ligation reactions using methods known in the art. For example, an antisense nucleic acid sequence (e.g., an antisense oligonucleotide sequence) may be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acid sequences, e.g., phosphorothioate derivatives and acridine-substituted nucleotides may be used. Examples of modified nucleotides that may be used to generate the antisense nucleic acid sequences are well known in the art. The antisense nucleic acid sequence can be produced biologically using an expression vector into which a nucleic acid sequence has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest). Preferably, production of antisense nucleic acid sequences in plants occurs by means of a stably integrated nucleic acid construct comprising a promoter, an operably linked antisense oligonucleotide, and a terminator. In another aspect, the invention extends to a plant obtained or obtainable by a method as described herein. As shown in Figure 3, we have found that the large2 regulates the size of the shoot apical meristem and the inflorescence meristem. Accordingly, in a further aspect of the invention, there is provided a method of increasing meristem size and/or activity of a plant, preferably in the grain-width direction, the method comprising introducing at least one mutation, preferably a loss of function mutation into the UPL2 gene as described above. In a preferred embodiment, the method increases the size of apical meristems and inflorescent meristems. An increase in meristem activity may be measured by an increase in the level of expression of meristem activity marker genes, such as but not limited to, LOG, IPA1, SPL14 and KNOX genes, such as OSH1, OSH3, OSH15 and OSH43. Alternatively, an increase in meristem activity may be measured by a decrease in the level of expression of a meristem gene negatively associated with meristem activity such as Gn1a. In one embodiment, meristem size is increased by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% or more compared to a control plant. In another aspect of the invention there is provided a genetically altered plant, part thereof or plant cell characterised in that the plant does not express UPL2 has reduced levels of UPL2 expression, does not express a functional UPL2 protein or expresses a UPL2 with reduced function and/or activity. In a preferred embodiment, the plant expresses a UPL2 polypeptide with reduce or no E3 ligase activity. For example, the plant is a reduction (knock down) or loss or partial loss of function (knock out) mutant wherein the function of the UPL2 protein is reduced or lost compared to a wild type control plant. To this end, a mutation is introduced into either the UPL2 gene sequence or the corresponding promoter sequence, which disrupts the transcription of the gene. Therefore, preferably said plant comprises at least one mutation in at least one mucelci acid sequence encoding the promoter and/or gene for UPL2. In one embodiment the plant may comprise a mutation in both the promoter and gene for UPL2. As described in detail above, in a further embodiment, the mutation is any mutation that reduces or abolishes UPL2 E3 ligase activity. Preferably, such a mutation may be in the HECT domain or such mutation leads to a non-functional, truncated or deleted HECT domain. In another embodiment, the mutation is any mutation that reduces or abolishes the binding of UPL2 to its target proteins. Preferably such a mutation is in the Glu/Asp rich domain. By target protein means any ubiquitin protein substrate. In one embodiment, the target protein is APO1 and/or APO2. In a further embodiment, the mutation is in the coding region of the UPL2 gene. In this manner, the activity of the UPL2 polypeptide can be considered to be reduced or abolished as described herein. In a further aspect of the invention, there is provided a plant, part thereof or plant cell characterised by an increased yield compared to a wild-type or control pant, wherein preferably, the plant, part thereof or plant cell comprises at least one mutation in the UPL2 gene and/or its promoter. Preferably said increase in yield comprises an increase in at least one of seed yield, such as grain number and thousand grain weight. Preferably, the plant part is a seed. Also provided is progeny plant obtained from the seed as well as seed obtained from that progeny. The plant may be produced by introducing any one of the above-described mutations into the UPL2 gene and/or promoter sequence by any of the above described methods. Preferably said mutation is introduced into a least one plant cell and a plant regenerated from the at least one mutated plant cell. As also described above, the plant may be homozygous or heterozygous for the mutation. Where the plant is homozygous for the mutation, the plant may be crossed with a second wild-type or control plant, as described above, to produce a F1 hybrid plant that is heterozygous for the mutation. As shown in Figure 17, plants that are heterozygous for the mutation also show significant increases in grain size, weight and number as well as produce a significant increase in yield. Alternatively, the plant or plant cell may comprise a nucleic acid construct expressing an RNAi molecule targeting the UPL2 gene as described herein. In one embodiment, said construct is stably incorporated into the plant genome. These techniques also include gene targeting using vectors that target the gene of interest and which allow integration of a transgene at a specific site. The targeting construct is engineered to recombine with the target gene, which is accomplished by incorporating sequences from the gene itself into the construct. Recombination then occurs in the region of that sequence within the gene, resulting in the insertion of a foreign sequence to disrupt the gene. With its sequence interrupted, the altered gene will be translated into a nonfunctional protein, if it is translated at all. In another aspect of the invention there is provided a method for producing a genetically altered plant as described herein. In one embodiment, the method comprises introducing at least one mutation into the UPL2 gene and/or UPL2 promoter of preferably at least one plant cell using any mutagenesis technique described herein. Preferably said method further comprising regenerating a plant from the mutated plant cell. In one embodiment, the method may comprise introducing at least one mutation (such as a complete loss of function mutation) into a least one nucleic acid sequence but preferably all copies or homeoalles of a nucleic acid sequence encoding a UPL2 gene and/or UPL2 promoter in a first plant and crossing the first plant with a wild-type or control second plant to produce a F1 hybrid plant that is heterozygous for the mutation. The method may further comprise selecting one or more mutated plants, preferably for further propagation. Preferably, said selected plants comprise at least one mutation in the UPL2 gene and/or promoter sequence. Preferably said plants are characterised by abolished or a reduced level of UPL2 expression. More preferably, the plants are characterised by a non-functional UPL2 polypeptide. By non-functional is meant, as described above, that the UPL2 polypeptide has reduced or abolished E3 ligase activity and/or is unable to bind its target proteins such as APO1 and APO2. The selected plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion). In a further aspect of the invention there is provided a plant obtained or obtainable by the above-described methods. For the purposes of the invention, a “genetically altered plant” or “mutant plant” is a plant that has been genetically altered compared to the naturally occurring wild type (WT) plant. In one embodiment, a mutant plant is a plant that has been altered compared to the naturally occurring wild type (WT) plant using a mutagenesis method, such as any of the mutagenesis methods described herein. In one embodiment, the mutagenesis method is targeted genome modification or genome editing. In one embodiment, the plant genome has been altered compared to wild type sequences using a mutagenesis method. Such plants have an altered phenotype as described herein, such as an increased yield. Therefore, in this example, increased yield is conferred by the presence of an altered plant genome, for example, a mutated endogenous UPL2 gene or UPL2 promoter sequence. In one embodiment, the endogenous promoter or gene sequence is specifically targeted using targeted genome modification and the presence of a mutated gene or promoter sequence is not conferred by the presence of transgenes expressed in the plant. In other words, the genetically altered plant can be described as transgene-free. A plant according to the various aspects of the invention, methods and uses described herein may be a monocot or a dicot plant. Preferably, the plant is a crop plant. By crop plant is meant any plant which is grown on a commercial scale for human or animal consumption or use. In a preferred embodiment, the plant is a grain crop. In another embodiment the plant is Arabidopsis. In a most preferred embodiment, the grain crop is a cereal crop (for example, but not limited to rice, wheat, maize, barley, oat, rye, triticale and millet), an oil-seed crop (for example, but not limited to soybean, canola, sunflower, peanut and flax) or a pulse (for example, but not limited to beans, lentils and peas). In one embodiment, the plant may be selected from rice, wheat, maize, soybean, sorghum, oilseed rape and other vegetable brassicas, barley and millet. In one embodiment the plant is rice, preferably the japonica or indica varieties. We have found that the effect of introducing a loss of function mutation into LARGE2 on yield and grain number is particularly potentiated (i.e. complemented) when combined with a particular plant background. Examples of such backgrounds include those, that when compared with other plant backgrounds, have a higher fertility, better grain filing ability and an increased number of tillers. In one example, where the plant is rice, an example of a particularly useful background is Xiushui09. Other examples would be apparent to the skilled person. In one particular embodiment, the plant is rice and in particular Xiushui09 and the mutation introduced into the plant is the large2-9 mutation as described above. The term "plant" as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, fruit, shoots, stems, leaves, roots (including tubers), flowers, tissues and organs, wherein each of the aforementioned comprise the nucleic acid construct as described herein. The term "plant" also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the nucleic acid construct as described herein. The invention also extends to harvestable parts of a plant of the invention as described herein, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers and bulbs. The aspects of the invention also extend to products derived, preferably directly derived, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins. Another product that may derived from the harvestable parts of the plant of the invention is biodiesel. The invention also relates to food products and food supplements comprising the plant of the invention or parts thereof. In one embodiment, the food products may be animal feed. In another aspect of the invention, there is provided a product derived from a plant as described herein or from a part thereof. In a most preferred embodiment, the plant part or harvestable product is a seed or grain. Therefore, in a further aspect of the invention, there is provided a seed produced from a genetically altered plant as described herein. In an alternative embodiment, the plant part is pollen, a propagule or progeny of the genetically altered plant described herein. Accordingly, in a further aspect of the invention there is provided pollen, a propagule or progeny of the genetically altered plant as described herein. A control plant as used herein according to all of the aspects of the invention is a plant which has not been modified according to the methods of the invention. Accordingly, in one embodiment, the control plant does not have reduced expression of a UPL2 nucleic acid and/or reduced activity of a UPL2 polypeptide. In an alternative embodiment, the plant does not contain one or more loss of function mutations in a UPL2 gene or one or more mutations in the UPL2 promoter, as described above. In one embodiment, the control plant is a wild type plant. The control plant is typically of the same plant species, preferably having the same genetic background as the modified plant. Genome editing constructs for use with the methods for targeted genome modification described herein By “crRNA” or CRISPR RNA is meant the sequence of RNA that contains the protospacer element and additional nucleotides that are complementary to the tracrRNA. By “tracrRNA” (transactivating RNA) is meant the sequence of RNA that hybridises to the crRNA and binds a CRISPR enzyme, such as Cas9 thereby activating the nuclease complex to introduce double-stranded breaks at specific sites within the genomic sequence of at least one UPL2 nucleic acid or promoter sequence. By “protospacer element” is meant the portion of crRNA (or sgRNA) that is complementary to the genomic DNA target sequence, usually around 20 nucleotides in length. This may also be known as a spacer or targeting sequence. By “sgRNA” (single-guide RNA) is meant the combination of tracrRNA and crRNA in a single RNA molecule, preferably also including a linker loop (that links the tracrRNA and crRNA into a single molecule). “sgRNA” may also be referred to as “gRNA" and in the present context, the terms are interchangeable. The sgRNA or gRNA provide both targeting specificity and scaffolding/binding ability for a Cas nuclease. A gRNA may refer to a dual RNA molecule comprising a crRNA molecule and a tracrRNA molecule. By “TAL effector” (transcription activator-like (TAL) effector) or TALE is meant a protein sequence that can bind the genomic DNA target sequence (a sequence within the UPL2 gene or promoter sequence) and that can be fused to the cleavage domain of an endonuclease such as FokI to create TAL effector nucleases or TALENS or meganucleases to create megaTALs. A TALE protein is composed of a central domain that is responsible for DNA binding, a nuclear-localisation signal and a domain that activates target gene transcription. The DNA-binding domain consists of monomers and each monomer can bind one nucleotide in the target nucleotide sequence. Monomers are tandem repeats of 33-35 amino acids, of which the two amino acids located at positions 12 and 13 are highly variable (repeat variable diresidue, RVD). It is the RVDs that are responsible for the recognition of a single specific nucleotide. HD targets cytosine; NI targets adenine, NG targets thymine and NN targets guanine (although NN can also bind to adenine with lower specificity). In another aspect of the invention there is provided a nucleic acid construct wherein the nucleic acid construct encodes at least one DNA-binding domain, wherein the DNA- binding domain can bind to a sequence in the UPL2 gene, wherein said sequence is selected from SEQ ID NOs: 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53 or 54, or at least one target sequence in the UPL2 promoter sequence, wherein the sequence is selected from SEQ ID NOs: 27, 28, 29, 30, 31, 65, 66, 67, 68, 70, 71, 72, 73 and 74 or a variant thereof. In one embodiment, said construct further comprises a nucleic acid encoding a SSN, such as FokI or a Cas protein. In one embodiment, the nucleic acid construct encodes at least one protospacer element wherein the sequence of the protospacer element is selected from SEQ ID NOs: 27, 28, 29, 30, 31, 37, 38, 39, 40, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof. In a further embodiment, the nucleic acid construct comprises a crRNA–encoding sequence. As defined above, a crRNA sequence may comprise the protospacer elements as defined above and preferably additional nucleotides that are complementary to the tracrRNA. An appropriate sequence for the additional nucleotides will be known to the skilled person as these are defined by the choice of Cas protein. In another embodiment, the nucleic acid construct further comprises a tracrRNA sequence. Again, an appropriate tracrRNA sequence would be known to the skilled person as this sequence is defined by the choice of Cas protein. In a further embodiment, the nucleic acid construct comprises at least one nucleic acid sequence that encodes a sgRNA (or gRNA). Again, as already discussed, sgRNA typically comprises a crRNA sequence, a tracrRNA sequence and preferably a sequence for a linker loop. In a preferred embodiment, the nucleic acid construct comprises at least one nucleic acid sequence that encodes a sgRNA sequence as defined herein in SEQ ID NO: 69 or 75 or variant thereof. In a further embodiment, the nucleic acid construct may further comprise at least one nucleic acid sequence encoding an endoribonuclease cleavage site. Preferably the endoribonuclease is Csy4 (also known as Cas6f). Where the nucleic acid construct comprises multiple sgRNA nucleic acid sequences the construct may comprise the same number of endoribonuclease cleavage sites. In another embodiment, the cleavage site is 5’ of the sgRNA nucleic acid sequence. Accordingly, each sgRNA nucleic acid sequence is flanked by an endoribonuclease cleavage site. For example, in one embodiment, at least two sgRNAs are combined as below to introduce a deletion of the below length into the UPL2 promoter sequence. Table 1: Combinations of sgRNAs to introduce a targeted deletion into the UPL2 promoter sequence Other combinations of target sequences that may be used together in a single construct to introduce a deletion into the UPL2 promoter include: SEQ ID NO: 65 and 67 (referred to herein as MT1T3), SEQ ID: 65 and 68 (referred to herein as MT1T4) and SEQ ID NO: 66 and 67 (referred to herein as MT2T3). In another embodiment, a nucleic acid construct designed to introduce other mutations into a UPL2 promoter (i.e. other than the above deletion), may comprise the following combinations of sequences in a single construct: SEQ ID NO: 70 and 71 (referred to herein as MT1T3), SEQ ID NO:70 and 72 (referred to herein as MT1T3), SEQ ID NO: 70 and 73 (referred to herein as MT1T4), SEQ ID NO: 70 and 74 (referred to herein as MT1T5) and SEQ ID NO: 72 and 73 (referred to herein as MT3T5). The term ‘variant’ refers to a nucleotide sequence where the nucleotides are substantially identical to one of the above sequences. The variant may be achieved by modifications such as an insertion, substitution or deletion of one or more nucleotides. In a preferred embodiment, the variant has at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% identity to any one of the above sequences. In one embodiment, sequence identity is at least 90%. In another embodiment, sequence identity is 100%. Sequence identity can be determined by any one known sequence alignment program in the art. The invention also relates to a nucleic acid construct comprising a nucleic acid sequence operably linked to a suitable plant promoter. A suitable plant promoter may be a constitutive or strong promoter or may be a tissue-specific promoter. In one embodiment, suitable plant promoters are selected from, but not limited to U3 and U6. The nucleic acid construct of the present invention may also further comprise a nucleic acid sequence that encodes a CRISPR enzyme. By “CRISPR enzyme” is meant an RNA- guided DNA endonuclease that can associate with the CRISPR system. Specifically, such an enzyme binds to the tracrRNA sequence. In one embodiment, the CRIPSR enzyme is a Cas protein (“CRISPR associated protein), preferably Cas 9 or Cpf1, more preferably Cas9. In a specific embodiment Cas9 is a codon-optimised Cas9 (specific for the plant in question). In another embodiment, the CRISPR enzyme is a protein from the family of Class 2 candidate x proteins, such as C2c1, C2C2 and/or C2c3. In one embodiment, the Cas protein is from Streptococcus pyogenes. In an alternative embodiment, the Cas protein may be from any one of Staphylococcus aureus, Neisseria meningitides, Streptococcus thermophiles or Treponema denticola. The term “functional variant” as used herein with reference to Cas9 refers to a variant Cas9 gene sequence or part of the gene sequence which retains the biological function of the full non-variant sequence, for example, acts as a DNA endonuclease, or recognition or/and binding to DNA. A functional variant also comprises a variant of the gene of interest which has sequence alterations that do not affect function, for example non-conserved residues. Also encompassed is a variant that is substantially identical, i.e. has only some sequence variations, for example in non-conserved residues, compared to the wild type sequences as shown herein and is biologically active. In a further embodiment, the Cas9 protein has been modified to improve activity. Suitable homologs or orthologs can be identified by sequence comparisons and identifications of conserved domains. The function of the homolog or ortholog can be identified as described herein and a skilled person would thus be able to confirm the function when expressed in a plant. In an alternative aspect of the invention, the nucleic acid construct comprises at least one nucleic acid sequence that encodes a TAL effector, wherein said effector targets a UPL2 sequence selected from SEQ ID NOs: 27, 28, 29, 30, 31, 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof. Methods for designing a TAL effector would be well known to the skilled person, given the target sequence. Examples of suitable methods are given in Sanjana et al., and Cermak T et al, both incorporated herein by reference. Preferably, said nucleic acid construct comprises two nucleic acid sequences encoding a TAL effector, to produce a TALEN pair. In a further embodiment, the nucleic acid construct further comprises a sequence-specific nuclease (SSN). Preferably such SSN is a endonuclease such as FokI. In a further embodiment, the TALENs are assembled by the Golden Gate cloning method in a single plasmid or nucleic acid construct. In another aspect of the invention, there is provided a sgRNA molecule, wherein the sgRNA molecule comprises a crRNA sequence and a tracrRNA sequence and wherein the crRNA sequence can bind to at least one sequence selected from SEQ ID NOs: 27, 28, 29, 30, 31, 33, 34, 35, 36, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 65, 66, 67, 68, 70, 71, 72, 73 or 74 or a variant thereof. A “variant” is as defined herein. In one embodiment, the sgRNA molecule may comprise at least one chemical modification, for example that enhances its stability and/or binding affinity to the target sequence or the crRNA sequence to the tracrRNA sequence. Such modifications would be well known to the skilled person, and include for example, but not limited to, the modifications described in Rahdar et al., 2015, incorporated herein by reference. In this example the crRNA may comprise a phosphorothioate backbone modification, such as 2’-fluoro (2’-F), 2’-O-methyl (2’-O-Me) and S-constrained ethyl (cET) substitutions. In another aspect of the invention, there is provided a plant or part thereof or at least one isolated plant cell transfected with at least one nucleic acid construct as described herein. Cas9 and sgRNA may be combined or in separate expression vectors (or nucleic acid constructs, such terms are used interchangeably). In other words, in one embodiment, an isolated plant cell is transfected with a single nucleic acid construct comprising both sgRNA and Cas9 as described in detail above. In an alternative embodiment, an isolated plant cell is transfected with two nucleic acid constructs, a first nucleic acid construct comprising at least one sgRNA as defined above and a second nucleic acid construct comprising Cas9 or a functional variant or homolog thereof. The second nucleic acid construct may be transfected below, after or concurrently with the first nucleic acid construct. The advantage of a separate, second construct comprising a cas protein is that the nucleic acid construct encoding at least one sgRNA can be paired with any type of cas protein, as described herein, and therefore is not limited to a single cas function (as would be the case when both cas and sgRNA are encoded on the same nucleic acid construct). In one embodiment, the nucleic acid construct comprising a cas protein is transfected first and is stably incorporated into the genome, before the second transfection with a nucleic acid construct comprising at least one sgRNA nucleic acid. In an alternative embodiment, a plant or part thereof or at least one isolated plant cell is transfected with mRNA encoding a cas protein and co-transfected with at least one nucleic acid construct as defined herein. Cas9 expression vectors for use in the present invention can be constructed as described in the art. In one example, the expression vector comprises a nucleic acid sequence as defined herein or a functional variant or homolog thereof, wherein said nucleic acid sequence is operably linked to a suitable promoter. Examples of suitable promoters include, but are not limited to Cas9, 35S and Actin. In an alternative aspect of the present invention, there is provided an isolated plant cell transfected with at least one sgRNA molecule as described herein. In a further aspect of the invention, there is provided a genetically modified or edited plant comprising the transfected cell described herein. In one embodiment, the nucleic acid construct or constructs may be integrated in a stable form. In an alternative embodiment, the nucleic acid construct or constructs are not integrated (i.e. are transiently expressed). Accordingly, in a preferred embodiment, the genetically modified plant is free of any sgRNA and/or Cas protein nucleic acid. In other words, the plant is transgene free. The term "introduction", “transfection” or "transformation" as referred to anywhere herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art. The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plants is now a routine technique in many species. Any of several transformation methods known to the skilled person may be used to introduce the nucleic acid construct or sgRNA molecule of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant (microinjection), gene guns (or biolistic particle delivery systems (bioloistics)) as described in the examples, lipofection, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts, ultrasound-mediated gene transfection, optical or laser transfection, transfection using silicon carbide fibers, electroporation of protoplasts, microinjection into plant material, DNA or RNA-coated particle bombardment, infection with (non-integrative) viruses and the like. Transgenic plants, can also be produced via Agrobacterium tumefaciens mediated transformation, including but not limited to using the floral dip/ Agrobacterium vacuum infiltration method as described in Clough & Bent (1998) and incorporated herein by reference. Accordingly, in one embodiment, at least one nucleic acid construct or sgRNA molecule as described herein can be introduced to at least one plant cell using any of the above described methods. In an alternative embodiment, any of the nucleic acid constructs described herein may be first transcribed to form a preassembled Cas9-sgRNA ribonucleoprotein and then delivered to at least one plant cell using any of the above described methods, such as lipofection, electroporation or microinjection. Optionally, to select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above- described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility is growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. As described in the examples, a suitable marker can be bar-phosphinothricin or PPT. Alternatively, the transformed plants are screened for the presence of a selectable marker, such as, but not limited to, GFP, GUS (β- glucuronidase). Other examples would be readily known to the skilled person. Alternatively, no selection is performed, and the seeds obtained in the above-described manner are planted and grown and UPL2 E3 ligase activity measured at an appropriate time using standard techniques in the art. This alternative, which avoids the introduction of transgenes, is preferable to produce transgene-free plants. Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using PCR to detect the presence of the desired mutation (for example, in the HECT domain or the Glu-Asp-rich domain). The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. In a further related aspect of the invention, there is also provided, a method of obtaining a genetically modified plant as described herein, the method comprising a. selecting a part of the plant; b. transfecting at least one cell of the part of the plant of paragraph (a) with at least one nucleic acid construct as described herein or at least one sgRNA molecule as described herein, using the transfection or transformation techniques described above; c. regenerating at least one plant derived from the transfected cell or cells; d. selecting one or more plants obtained according to paragraph (c) that show a reduction in UPL2 E3 ligase activity or an increase in inflorescence size or grain number. In a further embodiment, the method also comprises the step of screening the genetically modified plant for SSN (preferably CRISPR)-induced mutations in the UPL2 gene or promoter sequence. In one embodiment, the method comprises obtaining a DNA sample from a transformed plant and carrying out DNA amplification to detect a mutation in at least one UPL2 gene or promoter sequence. In a further embodiment, the methods comprise generating stable T2 plants preferably homozygous for the mutation (that is a mutation in at least one UPL2 gene or promoter sequence). Plants that have a mutation in at least one UPL2 gene and/or promoter sequence can also be crossed with another plant also containing at least one mutation in at least one UPL2 gene and/or promoter sequence to obtain plants with additional mutations in the UPL2 gene or promoter sequence. The combinations will be apparent to the skilled person. Accordingly, this method can be used to generate a T2 plants with mutations on all or an increased number of homoeologs, when compared to the number of homoeolog mutations in a single T1 plant transformed as described above. A plant obtained or obtainable by the methods described above is also within the scope of the invention. A genetically altered plant of the present invention may also be obtained by transference of any of the sequences of the invention by crossing, e.g., using pollen of the genetically altered plant described herein to pollinate a wild-type or control plant, or pollinating the gynoecia of plants described herein with other pollen that does not contain a mutation in at least one of the UPL2 gene or promoter sequence. The methods for obtaining the plant of the invention are not exclusively limited to those described in this paragraph; for example, genetic transformation of germ cells from the ear of wheat could be carried out as mentioned, but without having to regenerate a plant afterward. Method of screening plants for naturally occurring low levels of UPL2 expression In a further aspect of the invention, there is provided a method for screening a population of plants and identifying and/or selecting a plant that will have reduced UPL2 expression or decreased UPL2 E3 ligase activity and/or an increased yield phenotype, preferably an increased seed number or TKW, the method comprising detecting in the plant or plant germplasm at least one polymorphism in the UPL2 gene or promoter. Preferably, said screening comprises determining the presence of at least one polymorphism, wherein said polymorphism is at least one insertion and/or at least one deletion and/or substitution. Preferably said polymorphism leads to a reduced level of UPL2 E3 ligase activity or prevents binding of UPL2 to its target proteins, such as APO1 and/or APO2, compared to a control or wild-type plant. As a result, the above-described plants will display an increased yield phenotype as described above. Suitable tests for assessing the presence of a polymorphism would be well known to the skilled person, and include but are not limited to, Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length polymorphisms (AFLPs), Simple Sequence Repeats (SSRs-which are also referred to as Microsatellites), and Single Nucleotide Polymorphisms (SNPs). In one embodiment, Kompetitive Allele Specific PCR (KASP) genotyping is used. In one embodiment, the method comprises a) obtaining a nucleic acid sample from a plant and b) carrying out nucleic acid amplification of one or more UPL2 gene or promoter alleles using one or more primer pairs. In a further embodiment, the method may further comprise introgressing the chromosomal region comprising at least one of said UPL2 polymorphisms or the chromosomal region containing the repeat sequence deletion as described above into a second plant or plant germplasm to produce an introgressed plant or plant germplasm. Preferably the expression or activity of UPL2 in said second plant will be reduced or abolished, and more preferably said second plant will display an increase in yield or one of the yield-related parameters as described above. While the foregoing disclosure provides a general description of the subject matter encompassed within the scope of the present invention, including methods, as well as the best mode thereof, of making and using this invention, the following examples are provided to further enable those skilled in the art to practice this invention and to provide a complete written description thereof. However, those skilled in the art will appreciate that the specifics of these examples should not be read as limiting on the invention, the scope of which should be apprehended from the claims and equivalents thereof appended to this disclosure. Various further aspects and embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure. "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B and (iii) A and B, just as if each is set out individually herein. Unless context dictates otherwise, the descriptions and definitions of the features set out above are not limited to any particular aspect or embodiment of the invention and apply equally to all aspects and embodiments which are described. The foregoing application, and all documents and sequence accession numbers cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced in the appln cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference. The invention is now described in the following non-limiting examples. EXAMPLE 1: large2 mutants produce large panicles with increased grain number To identify new genes for rice panicle size and elucidate the molecular mechanisms underlying panicle size determination, we isolated panicle size mutants by mutagenesis using sodium azide (NaN3), methanesulfonate (EMS), and cobalt 60, respectively. Nine mutants exhibited similar large-panicle phenotypes, and we named these mutants large2-1 to large2-9 because they had causal mutations in the same gene (see below) (Figure 1; Figure 7). The large2-1 mutant was isolated from the NaN 3 -treated japonica variety Kongyu131 (KY131). The large2-2 and large2-5 were isolated from the EMS- treated japonica variety Kuanyejing (KYJ). The large2-4, large2-6, large2-7, large2-8, and large2-9 were isolated from the cobalt 60-irradiated KYJ. The large2-3 mutant was isolated from the cobalt 60-irradiated japonica variety Zhonghuajing (ZHJ). All of these nine mutants formed large panicles (Figure 1B; Figure 7A). Panicles of these mutants were obviously longer than their respective wild types (Figure 1E; Figure 7C). The number of primary panicle branches and the number of secondary panicle branches in large2 mutants were significantly increased, resulting in increased grain number per panicle (Figure 1F to 1H; Figure 7C). The grain number of nine large2 mutants (large2- 1 to large2-9) was increased by 25.3%, 90.4%, 55.6%, 64.2%, 77.6%, 42.2%, 59.6%, 64.3% and 30.2% compared with that of their respective wild types (Figure 1H; Figure 7C). In addition, large2 mutants formed wide leaves and grains (Figure 1; Figure 7). Compared with their respective wild types, large2 mutant plants were slightly short, but had thick culms (Figure 7D). Taken together, these analyses indicate that LARGE2 is involved in the regulation of panicle size, grain number, and grain and organ width in rice. EXAMPLE 2: Cloning of the LARGE2 gene The large2-2 and large2-3 mutations were identified using the MutMap approach (Abe et al., 2012; Fang et al., 2016; Huang et al., 2017). We firstly generated F2 populations by crossing large2-2 with KYJ and large2-3 with ZHJ, respectively. For each F2 population, the individuals that showed large- panicle and wide-grain phenotypes were pooled and used for whole-genome resequencing. Meanwhile, the KYJ and ZHJ genomic DNAs were sequenced as controls. We performed sequence analyses and identified candidate causal mutations according to a previous report (Fang et al., 2016). All four SNPs (SNP1-SNP4) were linked to the large- panicle phenotype of large2-2, and three candidate mutations (Indel1, SNP1, and SNP2) were associated with the large- panicle phenotype of large2-3. Interestingly, the SNP2 in large2-2 and the InDel1 in large2-3 happened in the fourteenth exon and fifth exon of the LOC_Os12g24080 gene, respectively (Figure 2A). Considering that large2-2 and large2-3 showed similar phenotypes, LOC_Os12g24080 could be the causal gene of large2-2 and large2-3. We also crossed seven mutants (large2-2, large2-4, large2-5, large2-6, large2-7, large2- 8 and large2-9) in KYJ background to generate F1 plants with different pairs of these mutations. All the F1 plants produced large panicles with increased primary panicle branches, secondary panicle branches, and grain number per panicle (Figure 2I; Figure 8), like those observed in large2 mutants. Thus, these results reveal that large2- 2, large2-4, large2-5, large2-6, large2-7, large2-8 and large2-9 are allelic, indicating these mutants should have mutations in the same gene (LOC_Os12g24080). To test this sequenced the LOC_Os12g24080 gene in large2-4, large2-5, large2-6, large2-7, large2- 8 and large2-9 mutants. As expected, we found that large2-4 contained a 4-bp deletion (AAAG/-) in the fourth exon, large2-5 had a G to A transition in the fourth exon, large2-6 possessed a 1-bp deletion (G/-) in the fifth exon, large2-7 had a 1-bp deletion (T/-) in the tenth exon, large2-8 contained a 13-bp deletion (AATGGATGCTTGA/-) in the eleventh exon, and large2-9 had an A to G change in the exon-intron boundary of intron 11 (Figure 2A and 2B). We also sequenced the LOC_Os12g24080 gene in large2-1, which is in the KY131 background, and detected a G to A change in the fourth exon of the LOC_Os12g24080 gene (Figure 2A and 2B). Thus, these allelic tests and mutation identifications indicate that LOC_Os12g24080 is the LARGE2 gene. The genomic sequence of the LOC_Os12g24080 gene is 14.707 kb, and the predicted full-length coding sequence of the LOC_Os12g24080 gene is as long as 10.938 kb. Thus, LOC_Os12g24080 is a very large size gene in rice genome. To further confirm that LOC_Os12g24080 is the LARGE2 gene, we generated LARGE2-RNAi transgenic plants in KY131 background. LARGE2-RNAi transgenic plants showed large panicles with increased primary panicle branch number, secondary panicle branch number, and grain number per panicle compared with KY131 plants (Figure 2D to 2H). Like large2 mutants, LARGE2-RNAi transgenic plants also produced wide leaves and grains and had the reduced plant height. Taken together, these results reveal that LOC_Os12g24080 is the LARGE2 gene. EXAMPLE 3: LARGE2 encodes the functional HECT-domain E3 ubiquitin ligase OsUPL2 LARGE2 encodes the 405-kD E3 ubiquitin ligase OsUPL2, containing the DUF908, DUF913, UBA, DUF4414 and HECT domains (Figure 2C). Phylogenetic analyses showed that the homologs of LARGE2 are found in plant species and animals (Figure 11 and 12), such as Arabidopsis thaliana, Glycine max, Brassica napus, Solanum lycopersicum, Zea mays and Homo sapiens, suggesting that LARGE2 may be an evolutionally conserved protein. In rice, the LARGE2/OsUPL2 family contains seven members (OsUPL1 to OsUPL7). OsUPL1 and LARGE2/OsUPL2 contain more amino acids than other OsUPLs (OsUPL3 to OsUPL7). Rice OsUPL1, OsUPL2/LARGE2 and Arabidopsis AtUPL1/2 are classified into a subgroup, suggesting that they may have conserved functions. However, the role of AtUPL1/2 in panicle development is still unknown so far. The large2-5 mutation results in an amino acid change from glutamic acid (E) to lysine (K) (Figure 2C). The other eight large2 mutations lead to different truncated proteins of OsUPL2, which lack partial or whole HECT domain (Figure 2C). The large2-9 mutation occurs in the exon-intron boundary of intron 11 (Figure 2A), and results in two main transcripts that are predicted to encode two different versions of proteins lacking the half of the HECT domain (Figure 2C, Figure 13). These results indicate that these large2 mutants are loss-of-function alleles. The HECT domain is required for the activity of HECT-domain E3 ubiquitin ligases in plants and animals (Bates and Vierstra, 1999; Smalle and Vierstra, 2004). As LARGE2/OsUPL2 possesses a HECT domain, we asked if LARGE2 is a functional E3 ubiquitin ligase. To test this, we performed the ubiquitination assay in vitro. The MBP- tagged HECT domain of LARGE2 (MBP-HECT) was expressed in Escherichia coli and then purified for the ubiquitination test. As shown in Figure 2J, the HECT domain of LARGE2 could be ubiquitinated in the presence of ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin. For HECT-domain E3 ubiquitin ligases, a conserved cysteine (C) in the HECT domain is required for forming a thioester-linked intermediate with ubiquitin before the modifier is ligated to the substrate (Hershko and Ciechanover, 1998; Callis, 2014). When the conserved cysteine in the HECT domain of LARGE2 was changed to alanine (A) or serine (S), the ubiquitin ligase activity was abolished (Figure 2J), indicating that an intact HECT domain is required for E3 ubiquitin ligase activity of LARGE2. Thus, these findings indicate that LARGE2 is a functional HECT-domain E3 ubiquitin ligase. EXAMPLE 4: LARGE2 regulates the sizes of shoot apical meristems and panicle meristems In the early stage of rice panicle development, the shoot apical meristem (SAM) is converted to the panicle meristem (IM), which turns into two types of meristems, rachis meristem (RM) and branch meristem (BM), according to the developmental stages in rice (Itoh et al., 2005). The sizes of shoot apical meristems and panicle meristems are related to the panicle size in rice (Kurakawa et al., 2007; Huang et al., 2009; Ikeda- Kawakatsu et al., 2012a). Considering large2 alleles had similar panicle and grain number phenotypes, we used large2-2 to investigate the sizes of shoot apical meristems and panicle meristems. We firstly observed SAMs in KYJ and large2-2. As shown in Figure 3A and 3B, the SAMs of large2-2 were obviously larger than those of KYJ. We then measured the length of SAMs and counted the number of cells along the SAM length. As shown in Figure 3C, the SAM length in large2-2 was increased by 10.0% compared to that in KYJ, and cell number was increased by 10.6%, suggesting that LARGE2 regulates meristem size by influencing cell number in the SAMs. After transition to reproductive stage, the RMs of large2-2 were also obviously bigger than those of KYJ (Figure 3D to 3F). In addition, more primary panicle branch meristems (PBMs) were observed in large2-2 (Figure 3G to 3I). In Arabidopsis and rice, several genes involved in the regulation of meristem activity can affect shoot meristem size. Therefore, we asked whether the large sizes of SAMs and RMs and increased number of PBMs in large2-2 could result from the enhanced meristem activity that influences cell number in shoot meristems. To test this, we analyzed the expression of meristem activity marker genes. In rice, knotted1-like homeobox (KNOX) genes, which are recognized as meristem markers, are crucial for establishment and maintenance of the SAM (Tsuda et al., 2011; Tsuda et al., 2014). Mutations in the KNOX gene (OSH1) results in small SAM and reduced grain number (Tsuda et al., 2011). As shown in Figure 3J, the expression levels of four KNOX genes (OSH1, OSH3, OSH15 and OSH43) were significantly increased in large2-2 compared with those in KYJ. The biosynthesis and signaling of cytokinin are known to regulate the size and activity of reproductive meristems (Werner et al., 2001; Lee et al., 2019). The LONELY GUY (LOG) gene, which encodes a cytokinin-activating enzyme, directly controls meristem activity, and its loss-of-function mutant causes premature termination of shoot meristems and small panicles (Kurakawa et al., 2007). Gn1a, which encodes a cytokinin oxidase/dehydrogenase (OsCKX2), negatively regulates panicle size and grain number in rice (Ashikari et al., 2005). As shown in Figure 3K, expression of LOG was significantly increased in large2-2 compared with that in KYJ, while expression of OsCKX2 was lower in large2-2 than that in KYJ. Additionally, Ideal Plant Architecture 1 (IPA1)/OsSPL14, Dought and Salt Tolerance (DST) and JMJ703 have been reported to be involved in the regulation of panicle size and grain number (Jiao et al., 2010; Miura et al., 2010; Cui et al., 2013; Li et al., 2013; Liu et al., 2015). The expression level of IPA1/OsSPL14 in large2-2 was significantly increased compared with that in KYJ, while the expression levels of DST and JMJ703 in large2-2 were similar to those in KYJ (Figure 3K). These results indicate that LARGE2 influences meristem activity, at least in part, by affecting the expression of meristem activity marker genes. Besides large panicles, the large2 mutants formed wide grains and leaves. The wide grains and leaves could result from increased cell number and/or large cells (Li and Li, 2016). We therefore examined cell size and cell number in the grains and leaves of KYJ and large2-2. Cell width in the transverse direction of the outer surface of large2-2 lemmas was comparable with that of KYJ lemmas. By contrast, cell number in the grain- width direction in large2-2 lemmas was significantly increased compared with that in KYJ lemmas. Similarly, cell number in the transverse direction of large2-2 flag leaves was higher than that of KYJ flag leaves. Thus, these results reveal that LARGE2 controls the width of grains and leaves by restricting cell proliferation. EXAMPLE 5: Expression pattern of LARGE2 Quantitative real-time reverse-transcriptase PCR (qRT-PCR) analysis was performed to detect the expression pattern of LARGE2. The LARGE2 transcripts were detected in roots, stems, leaves, leaf sheaths and developing panicles (Figure 4A). The expression of LARGE2 in young panicles was relatively higher than that in old ones (Figure 4A). In addition, transgenic plants containing the LARGE2 promoter:GUS fusion (proLARGE2:GUS) were generated to analyze the expression pattern of LARGE2. Histological section pictures showed that GUS activity was detected in SAMs (Figure 4B). In developing panicles, PBMs and floral meristems displayed stronger GUS activity (Figure 4C to 4E). GUS activity was detected in different tissues, including roots, culms,leaves and developing panicles (Figure 4F to 4O). Similarly, GUS activity in younger panicles was obviously stronger than that in older panicles (Figure 4L to 4O). Thus, expression pattern of LARGE2 is consistent with its role in the regulation of meristem activity and cell proliferation. EXAMPLE 6: LARGE2 associates with APO1 and APO2 APO1 has been reported to regulate panicle development, thereby influencing panicle size and grain number in rice (Ikeda et al., 2007; Ikeda-Kawakatsu et al., 2009). Interestingly, STRONG CULM2 (SCM2), a gain-of-function mutant of APO1, showed large panicles with increased grain number and thick culms (Ookawa et al., 2010), which resembled those observed in large2 mutants. By contrast, loss-of-function mutants apo1 and large2 showed opposite phenotypes in panicle size, grain number, culm thickness and leaf width (Figure 1; Figure 7) (Ikeda et al., 2005; Ikeda et al., 2007). Considering that LARGE2 is a functional E3 ubiquitin ligase, we asked whether LARGE2 could physically associate with APO1 to modulate its stability. Split luciferase complementation assay was firstly employed to test the interaction between LARGE2 and APO1. Since LARGE2 is a 405-kD large protein, we divided LARGE2 into five fragments (LARGE2- F1 to LARGE2-F5) to test their interactions with APO1 (Figure 5A). We co-expressed LARGE2-F1-nLUC, LARGE2-F2-nLUC, LARGE2-F3-nLUC, LARGE2-F4-nLUC, and LARGE2-F5-nLUC (nLUC, N-terminal luciferase) with cLUC-APO1 (cLUC, C-terminal luciferase) in leaves of Nicotiana benthamiana, respectively. As shown in Figure 5B, co- expression of cLUC-APO1 with LARGE2-F3-nLUC showed luciferase activity, while co- expression of cLUC-APO1 with LARGE2-F1-nLUC, LARGE2-F2-nLUC, LARGE2-F4- nLUC, or LARGE2-F5-nLUC had no luciferase activity, indicating that LARGE2-F3 associates with APO1 in planta. Similarly, a recent study showed that the corresponding region of the human HECT-domain ubiquitin ligase HUWE1, a homolog of LARGE2, contributes to its interaction with another protein (Wang et al., 2014). This corresponding region of human HUWE1 contains a nuclear localization signal (NLS) and a Glu/Asp rich domain (Wang et al., 2014). As both LARGE2-F3 and HUWE1-F3 contain a Glu/Asp rich domain (Wang et al., 2014), we asked whether the Glu/Asp rich domain in LARGE2 is required for the association of LARGE2 with APO1. The split luciferase complementation assay showed that the deletion of the Glu/Asp rich domain abolished the association of LARGE2-F3 with APO1. Thus, these findings indicate that the Glu/Asp rich domain of LARGE2 is required for the association of LARGE2 with APO1. Previous study has shown that APO2 physically and genetically interacts with APO1 to regulate rice panicle development (Ikeda-Kawakatsu et al., 2012). We sought to investigate if LARGE2 could associate with APO2. As shown in Figure 5C, co-expression of cLUC-APO2 with LARGE2-F3-nLUC showed luciferase activity, indicating that LARGE2-F3 also associates with APO2 in planta. Meanwhile, the deletion of the Glu/Asp rich domain abolished the association of LARGE2-F3 with APO2, indicating that the Glu/Asp rich domain of LARGE2 is also indispensable for the association of LARGE2 with APO2. To further verify the association of LARGE2 with APO1 and APO2, we performed co- immunoprecipitation assay. We transiently expressed 35S:Myc-LARGE2-F3 with 35S:GFP-APO1 or 35S:GFP-APO2 in leaves of Nicotiana benthamiana. Total proteins were isolated and incubated with GFP beads. The anti-GFP and anti-Myc antibodies were used to detect immunoprecipitated proteins. As shown in Figure 5D and 5E, Myc- LARGE2-F3 was co-immunoprecipitated with GFP-APO1 or GFP-APO2, but not with the negative control (GFP). Taken together, these results indicate that LARGE2 associates with APO1 and APO2 in planta. EXAMPLE 7: LARGE2 modulates the stability of APO1 and APO2 in rice As LARGE2 is a functional E3 ubiquitin ligase and associates with APO1 and APO2, we sought to test if LARGE2 could modulate the stabilities of APO1 and APO2. GFP-APO1 and GFP-APO2 were expressed in Nicotiana benthamiana leaves respectively, and then treated with proteasome inhibitor MG132. After treatment with MG132, the levels of GFP- APO1 and GFP-APO2 fusion proteins were obviously increased (Figure 6A and 6B) and 25F), suggesting that the ubiquitin proteasome affects the stabilities of APO1 and APO2. We used the rice cell-free system to test whether LARGE2 could influence the degradation of APO1 and APO2. APO1-His and APO2-His fusion proteins were expressed in Escherichia coli and purified with His-MA (magnet) beads. The purified APO1-His and APO2-His fusion proteins were incubated in cell-free extracts from ZHJ and large2-3 seedlings, respectively. The extracts from ZHJ seedlings caused a more rapid degradation of APO1-His and APO2-His than those from large2-3 seedlings. To further test if LARGE2 influences the stabilities of APO1 and APO2 in rice, we generated 35S:GFP-APO1 and 35S:GFP-APO2 transgenic lines, and crossed them with large2-3 to obtain 35S:GFP-APO1;large2-3 and 35S:GFP-APO2;large2-3 plants respectively. Western blot analyses showed GFP-APO1 proteins in 35S:GFP- APO1;large2-3 young panicles accumulated at a higher level than those in 35S:GFP- APO1 (Figure 6C and 6D). By contrast, the transcription levels of GFP-APO1 in 35S:GFP-APO1 and 35S:GFP-APO1;large2-3 were comparable (Figure 6E). Similarly, GFP-APO2 proteins in 35S:GFP-APO2;large2-3 young panicles accumulated at a higher level than those in 35S:GFP-APO2 (Figure 6H and 6I). The transcription levels of GFP-APO2 in 35S:GFP-APO2 and 35S:GFP-APO2;large2-3 were similar (Figure 6J). Thus, these results reveal that LARGE2 modulates the stabilities of APO1 and APO2 in rice. DISCUSSION Panicle /infloresence size and grain number are important agronomic traits (Wang et al., 2018). However, how plants determine their panicle size and grain number remains largely unknown. In this study, we identify the HECT-domain E3 ubiquitin ligase LARGE2/OsUPL2 as a negative regulator of panicle size and grain number in rice. LARGE2 associates with APO1 and APO2, and modulates their stabilities. LARGE2 functions genetically with APO1 and APO2 to regulate panicle size and grain number. Our findings reveal a novel molecular and genetic mechanism of the LARGE2- APO1/APO2 module in controlling panicle size and grain number. We identified nine large2 alleles in KY131, KYJ and ZHJ varieties, respectively. Although KY131, KYJ and ZHJ varieties showed obvious differences in panicle size and grain number, large2 alleles exhibited dramatic increases in panicle size and grain number compared with their respective wild types, indicating that LARGE2 is a negative regulator of panicle size and grain number. Cellular observations reveal that large2 mutants had large apical meristems (SAMs) and rachis meristems (RMs) and increased primary branch meristems (PBMs). Additionally, the large SAMs in large2 mutants resulted from increased cell number in SAMs. Consistent with this idea, we observed that expressions of several marker genes, which control panicle /panicle development by regulating meristem activity (Kurakawa et al., 2007; Tsuda et al., 2011; Tsuda et al., 2014), were significantly altered in large2-2. For example, mutations in the LOG gene decrease meristem activity and cause small shoot meristems and panicles with reduced grain number (Kurakawa et al., 2007), while mutations in OSH1, a meristem marker crucial for establishment and maintenance of the SAM, result in aberrant SAMs and small panicles (Tsuda et al., 2011). Expressions of LOG and OSH1 were increased in large2 compared with those in the wild type. Thus, it is possible that high meristem activity in large2 mutants causes the increased cell number and large shoot meristems that determine panicle size and grain number. The large2 mutants also showed wide grains and leaves and thick culms, implying that LARGE2 is a regulator of other organ growth. The large2 mutants showed increased cell number in both grain-width and leaf-width directions, indicating that LARGE2 limits cell proliferation. Supporting the roles of LARGE2 in meristematic activity and cell proliferation, higher expression of LARGE2 was detected in younger panicles than that in older ones. Several studies suggested the trade-off between grain number and grain size in rice. For example, loss-of-function mutations in OsMKP1 caused large grains and reduced grain number per panicle, while overexpression of OsMKP1 resulted in small grains and increased grain number per panicle (Guo et al., 2018; Xu et al., 2018a). Interestingly, large2 mutants produced large panicles with increased grain number and wide grains, suggesting the potential utilization of LARGE2 in increasing both grain number and grain size in rice. LARGE2 encodes a predicted HECT-domain E3 ubiquitin ligase OsUPL2. Our ubiquitination assays demonstrated that the HECT domain is required for the activity of LARGE2 E3 ubiquitin ligase. Homologs of LARGE2/OsUPL2 are found in plant species as well as animals. In Arabidopsis, the AtUPL3 and AtUPL5 have been shown to regulate trichome development and leaf senescence, respectively (Downes et al., 2003; Miao and Zentgraf, 2010; Patra et al., 2013). A recent study has shown that AtUPL3 promotes proteasomal processes and controls plant immunity (Furniss et al., 2018). The oilseed rape HECT-domain E3 ubiquitin ligase BnaUPL3.C03 is associated with seed size and field yields (Miller et al., 2019). In rice, the LARGE2/OsUPL2 family contains seven members (OsUPL1 to OsUPL7), but their functions have not been described previously. In this study, we identified LARGE2 as a negative regulator of panicle size and grain number in rice. Rice OsUPL1 and OsUPL2/LARGE2 share relatively high similarity with Arabidopsis AtUPL1 and AtUPL2, suggesting that they may have conserved functions. Previous studies showed that APO1 and APO2 influences panicle size and grain number (Ikeda et al., 2007; Ikeda-Kawakatsu et al., 2009). APO1 is an ortholog of Arabidopsis F-box protein UFO (Ikeda-Kawakatsu et al., 2012). In Arabidopsis, UFO interacts with the transcription factor LFY, and functions as a transcriptional cofactor of LFY in the control of floral development (Chae et al., 2008). Interactions between orthologs of LFY and UFO are also observed in several plant species. In petunia, the UFO ortholog DOT interacts with and activates the LFY ortholog ALF by a posttranscriptional mechanism in the control of floral meristem identity establishment (Souer et al., 2008). Likewise, APO1 physically associates with APO2, an ortholog of LFY, and genetically interacts with APO2 to control panicle development in rice (Ikeda-Kawakatsu et al., 2012). Interestingly, apo1 and apo2 mutants had opposite phenotypes to large2 mutants with respect to panicle size, grain number and culm thickness (Ikeda et al., 2005; Ikeda et al., 2007; Ikeda-Kawakatsu et al., 2012). Biochemical analyses revealed that LARGE2 associates with APO1 and APO2 in planta. We also observed that mutations in LARGE2 caused the accumulation of APO1 and APO2 proteins in rice. LARGE2 also influences stabilities of APO1 and APO2 in rice cell-free system. Considering that LARGE2 is a functional E3 ubiquitin ligase, it is plausible that LARGE2 might ubiquitinate APO1 and APO2 and influences their stabilities. Unfortunately, we failed to express and purify the full-length LARGE2 to test if LARGE2 could directly ubiquitinate APO1 in vitro because LARGE2 protein (405-kD) is too large. Consistent with biochemical analyses, our genetic data suggest that LARGE2 acts with APO1 and APO2, at least in part, in a common pathway to control panicle size and grain number. Supporting this, LARGE2, APO1 and APO2 share overlapped expression patterns in apical meristems, rachis meristems, primary branch meristems and floral meristems (Ikeda et al., 2007; Ikeda-Kawakatsu et al., 2012). Therefore, our findings reveal a novel molecular and genetic mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice. Example 8: METHODS Plant materials and growth conditions The large2-1 mutant was isolated from Kongyu131 (KY131) by sodium azide (NaN 3 ) treatment. The large2-2 and large2-5 mutants were isolated from Kuanyejing (KYJ) by methanesulfonate (EMS) treatment. The large2-3 mutant was isolated from Zhonghuajing (ZHJ) by cobalt 60 irradiation. The large2-4, large2-6, large2-7, large2-8, and large2-9 mutants were isolated from Kuanyejing (KYJ) by cobalt 60 irradiation. Plants were grown in Beijing, Hangzhou (Zhejiang province) and Lingshui (Hainan province) under natural conditions. Morphological and cellular analyses Plants were grown in the rice fields. Plants at the mature stage were dug out and put into pots, and then photographed with a Nikon D7000 camera. The main panicles, grains, flag leaves and the third internodes from the mature plants were used for analyses of panicle size, grain width, leaf width and culm thickness, respectively. We used a Scan Marker i560 (Microtek) to scan grains, and measured the grain width with the Rice Test System (WSeen). Scanning microscopic analyses of rachis meristems, primary branch meristems, grain lemmas and flag leaves were performed according to a previous research (Duan et al., 2014). After fixation in FAA solution (formalin: glacial acetic acid: 50% ethanol; 1:1:18) at 4°C overnight and dehydration in a graded ethanol series, the samples were dried with the critical-point drier (Hitachi HCP-2), and dissected under a microscope (Leica S8APO). We sputter-coated the samples with platinum and observed them with a scanning electron microscope (Hitachi S-3000N). Image J software was used to measure cell size. Clearing of shoot apical meristems (SAMs) was performed according to a previous research (Ikeda et al., 2005). After fixation in FAA solution (formalin: glacial acetic acid: 50% ethanol; 1:1:18) at 4 °C overnight and dehydration in a graded ethanol series, samples were transferred into BB4-1/2 clearing fluid (Herr, 1982). We observed the cleared samples using the Leica DM2500 microscope with differential interference contrast optics, and photographed the samples using the Spot Flex cooled digital imaging system. Paraffin sectioning of the third internodes and GUS staining samples was performed according to a previous study (Ikeda et al., 2005). After fixation in FAA solution (formalin: glacial acetic acid: 50% ethanol; 1:1:18) at 4°C overnight and dehydration in a graded ethanol series, samples were transferred to a graded xylene series, embedded in Paraplast Plus (Sigma-Aldrich) and sectioned at 8 μm in thickness with a rotary microtome (Leica). We stained the sections of the third internodes with 0.05% toluidine blue and observed the samples using the Leica DM2500 microscope. Identification of the LARGE2 gene The large2-2 and large2-3 mutants were crossed with ZHJ and KYJ to generate F2 populations, respectively. The F2 populations were used for cloning the LARGE2 gene. The whole genomes of wild-type and a mixed pool of 50 individual plants with large panicle phenotypes were resequenced using NextSeq 500 (Illumina). MutMap and SNP/INDEL-index analyses were performed according to a previous research (Fang et al., 2016). After whole genome resequencing, the short reads were aligned to the reference genome sequence (Nipponbare), and a certain number of SNPs and INDELs specific for the bulked F2 were obtained. For each SNP/INDEL, we calculated the SNP/INDEL-index, which referred to the ratio between the number of reads for a mutant SNP/INDEL and total number of reads. The SNPs and INDELs with SNP/INDEL-index = 1 were selected for further sequence analyses. Constructs and plant transformation The primers LARGE2-RNAi-F and LARGE2-RNAi-R were used to amplify the 417-bp sequence of LARGE2 3’UTR, which was cloned into pZH2Bi vector in forward and reverse directions to generate the LARGE2-RNAi vector. The LARGE2-RNAi vector was transformed into the japonica variety KY131 using Agrobacterium GV3101. The 195-bp fragment of APO1 was amplified using the primers APO1-RNAi-F and APO1- RNAi-R, and then was cloned into pZH2Bi in forward and reverse directions to generate the APO1-RNAi transformation vector. The APO1-RNAi vector was transformed into large2-1 using Agrobacterium GV3101. The primers GFP-APO1-F and GFP-APO1-R were used to amplify the APO1 CDS, which was then inserted into the pMDC43 to generate the transformation vector 35S:GFP-APO1. The 35S:GFP-APO1 vector was transformed into the japonica variety ZHJ using Agrobacterium GV3101. The 3,312-bp promoter of LARGE2 was amplified with the primers proLARGE2-GUS-F and proLARGE2-GUS-R, and then was cloned into the pZHEX vector to construct the transformation vector proLARGE2:GUS. The proLARGE2:GUS vector was transformed into the japonica variety KY131 using Agrobacterium GV3101. Ubiquitin ligase activity assay The coding sequence of the HECT domain of LARGE2/OsUPL2 was cloned into the pMAL-2c vector to construct the MBP-HECT vector by using the primers HECT-F/R. The conserved Cysteine was mutated to Alanine and Serine by using the primers HECT(Ala)- F/R and HECT(Ser)-F/R, respectively. Protein expression and purification was performed according to a previous research (Xia et al., 2013). The MBP-HECT, MBP-HECT(Ala) and MBP-HECT(Ser) vectors were transformed into Escherichia coli BL21 to express MBP-HECT, MBP-HECT(Ala) and MBP-HECT(Ser), respectively. Bacteria lysates for expressing different fusion proteins were induced with 0.8 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) for 1.5 h. We lysed the bacteria with resuspension buffer (150 mM NaCl, 50 mM HEPES pH 7.4, 1% Triton X-100, 10% glycerol and protease inhibitor cocktail) and sonicated the bacteria. The lysates were centrifuged at 12,000 rpm for 10 min. The supernatant was incubated with amylose resin (New England Biolabs) at 4°C with rotation for 1 h. Beads were washed with wash buffer (150 mM NaCl, 50 mM HEPES pH 7.4 and 10% glycerol) for five times, and then added with elution buffer (200 mM NaCl, 20 mM Tris-HCl pH 7.4, 10 mM maltose, 1 mM DTT and 1 mM EDTA) at 4°C with rotation for 30 min. After centrifugation, the eluted supernatant was the purified MBP fusion protein. Ubiquitin ligase activity assay was performed according to a previous research (Xia et al., 2013). We incubated 110 ng E1 (Boston Biochem), 170 ng E2 (Boston Biochem), 1 mg His-ubiquitin (Sigma-Aldrich), and 2 mg MBP-HECT or mutated MBP-HECT fusion protein in 20 μL reaction buffer (50 mM Tris-HCl pH 7.4, 20 mM DTT, 5 mM MgCl2 and 2 mM ATP) at 30°C for 2 h. SDS-loading buffer (Cwbiotech) was added to stop the reaction, and we put the samples in 98°C dry bath for 10 min and subjected the samples to the SDS-PAGE analysis. Anti-MBP (Abmart) and anti-His (Abmart) antibodies were used to detect the polyubiquitinated proteins, respectively. The eECL Western Blot Kit (Cwbiotech) was used to detect signals, and Tanon-4500 gel-imaging system was used to analyze the signals according to instructions from the manufacturer. Phylogenetic Analysis The full-length protein sequences of LARGE2/OsUPL2 homologs in different species were used to construct the phylogenetic tree. A neighbor-joining method in MEGA5.0 program was used to construct the phylogenetic tree. The parameters were as follows: complete deletion and bootstrap (1000 replicates). GUS staining The developing panicles, seedlings and other tissues of proLARGE2:GUS transgenic plants were collected and kept in a GUS staining buffer (750 μg/ml X-gluc, 10 mM EDTA, 3mM K 3 Fe(CN) 6 , 100mM NaPO 4 pH 7 and 0.1% Nonidet-P40) at 37°C incubator for 6 hours. Then the samples were transferred to 70% ethanol to remove chlorophyll. RNA extraction and quantitative real-time RT-PCR The plant RNA isolation kit (Tiangen) was used to extract total RNA from different organs. The SuperScript III transcriptase kit (Invitrogen) was used for synthesizing complementary DNA from the RNA sample (5 mg). Taq Master Mix (Cwbiotech) was used for RT–PCR. Quantitative real-time RT–PCR analyses were performed with the Bio-Rad CFX96 real-time PCR detection system using the RealStar Green Fast Mixture (GenStar). The rice Actin1 was used as internal control. The Cycle threshold (Ct) method was used to calculate relative amounts of mRNA. Split luciferase complementation assay The coding sequences of APO1 and LARGE2 fragments were cloned into pCAMBIA- split_cLUC and pCAMBIA-split_nLUC to generate cLUC-APO1 and OsUPL2-Fs-nLUC vectors, respectively. Agrobacterium GV3101 cells containing different combinations of cLUC-APO1 and OsUPL2-Fs-nLUC vector pairs were transformed into N. benthamiana leaves as described previously (Li et al., 2018). We sprayed N. benthamiana leaves with 0.5 mM luciferin and incubated them in NightOWL II LB983 imaging apparatus for 5 min before luminescence detection. Co-immunoprecipitation assay The coding sequences of APO1 and LARGE2-F3 were cloned into pMDC43 and pCambia1300-221-Myc to generate GFP-APO1 and Myc-OsUPL2-F3, respectively. Agrobacterium GV3101 cells harboring different combinations of GFP and Myc vector pairs were transformed into N. benthamiana leaves. Co-immunoprecipitation assay was performed as described before (Wang et al., 2016). Total proteins were extracted with the extraction buffer (150mM NaCl, 50mM Tris-HCl pH 7.4, 1mM EDTA, 2% Triton X- 100, 20% glycerol, protease inhibitor cocktail and 1mM PMSF) and incubated with GFP beads (Chromotek) at 4°C with rotation for 1 h. Beads were washed three times with the wash buffer (150mM NaCl, 50mM Tris-HCl pH 7.4, 1mM EDTA, 20% glycerol, 0.1% Triton X-100 and protease inhibitor cocktail). After adding SDS-loading buffer (Cwbiotech), we put the samples in 98°C dry bath for 10 min and subjected the samples to the SDS-PAGE analysis. Anti-Myc (Abmart) and anti-GFP (Abmart) antibodies were used to detect the immunoprecipitates, respectively. The eECL Western Blot Kit (Cwbiotech) was used to detect signals, and Tanon-4500 gel-imaging system was used to analyze the signals according to instructions from the manufacturer. Protein stability analyses For protein stability assay in rice, total proteins were extracted from young panicles (1 cm) of transgenic plants. For protein stability assay in N. benthamiana leaves, the 35S:GFP-APO1 was transformed into N. benthamiana leaves using Agrobacterium GV3101. After two days, the transformed N. benthamiana leaves were treated with MG132 or DMSO for 24 hours, and then total proteins were extracted. Total protein extraction was performed according to previous studies (Xia et al., 2013; Wang et al., 2016). Total proteins were subjected to SDS–PAGE analysis. We detected the proteins by immunoblot analyses with anti-GFP (Abmart) and anti-Actin (Abmart) antibodies, respectively. The eECL Western Blot Kit (Cwbiotech) was used to detect signals, and Tanon-4500 gel-imaging system was used to analyze the signals according to instructions from the manufacturer. The GFP-APO1 protein level was quantified relative to the Actin protein level by ImageJ software. EXAMPLE 9 In one embodiment, it has been found that compared to Nipponbare (a japonica rice variety that has been sequenced), almost all indica rice varieties have a 2.6-kb deletion in the OsUPL2 promoter region, and almost all japonica varieties have the complete sequence. As indica varieties have larger panicles than japonica varieties, the 2.6-kb sequence in the promoter of OsUPL2 may correlate to panicle size. Without being bound by theory, it is possible that during evolution, the natural variation in the OsUPL2 promoter (i.e. deletion of 2.6kp sequence) might lead to changes in panicle size between indica and japonica varieties through changing UPL2 expression levels. To test this, we have used CRISPR to obtain different deletions, and in particular to delete the 2.6kbp sequence in the UPL2 promoter. An example of suitable CRISPR constructs to target the 2.6-kb in the OsUPL2/LARGE2 promoter are described below. In one example, the target sequence is selected from one of the following: Target 1 (T1): TAGAATATATCTGAGGGAA (SEQ ID NO: 65) Target 2 (T2): GTGAAAGGACTGTCGAGGC (SEQ ID NO: 66) Target 3 (T3): ATATTCTCAAAATCGAATC (SEQ ID NO: 67) Target 4 (T4): AATCGAATCTGGACTGTTT (SEQ ID NO: 68) In one example, one construct contains to two target sites, one upstream of the 2.6-kb site for deletion and the other downstream. In this example, we constructed three constructs, called MT1T3, MT1T4 and MT2T3. In one example, the full sgRNA sequence is as follows: (SEQ ID NO: 69) GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAA AAGTGGCACCGAGTCGGTGCTTTTTTTTTTCGTTTTGCATTGAGTTTTCT Part II CRISPR constructs to obtain different deletions in the OsUPL2/LARGE2 promoter. Examples of CRISPR constructs that may be used to obtain different mutations in the UPL2 promoter are as follows. In one example, the target sequence may be selected from one of the below target sequences: Target 1 (T1): GCAGTCTTCGTTCTCGTGT (SEQ ID NO: 70) Target 2 (T2): GCAGGTCCCGCCTCTAATC (SEQ ID NO: 71) Target 3 (T3): TGCCGGGCCGGTTAACAAT (SEQ ID NO: 72) Target 4 (T4): GCGCGGCGGGTTACCTCTA (SEQ ID NO: 73) Target 5 (T5): GAGGGCCCCCGATCGCGGC (SEQ ID NO: 74) One construct contains to two target sites. In one example, we constructed five constructs, MT1T2, MT1T3, MT1T4, MT2T3, MT2T4 and MT3T5. In one example, the full sgRNA sequence is as follows (SEQ ID NO: 75) GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAA AAGTGGCACCGAGTCGGTGCTTTTTTTTTTCGTTTTGCATTGAGTTTTCT Method of CRIPSR constructions (for constructions in both Part I and Part II) An example of a method to produce CRISPR constructs for introducing one or more of mutations into the UPL2 promoter is shown below and in Figure 16. 1. Input the sequence in http://crispor.tefor.net/ and pick up the target sequences from outputs. 2. Design primers for the CRISPR constructions. Replace the 19-nt N with 19-nt target sequence in F/F0. Replace the 19-nt N with 19-nt target sequence (reverse complement) in R/R0. 3. PCR amplification with the four primers in step 2. Template: pCBC-MT1T2 Primer: MT1T2-F/R 10 μM, MT1T2-F0/R00.5 μM 4. Purify the PCR products, and put the following ingredients in the restriction-ligation system. Destination vector: pHUE-411 (Kan). As shown in Figure 16. 5. Transfer 5 μL of the restriction-ligation system into DH5α. Primers OsU3-FD3 and TaU3-RD are used to identify the bacteria grown in media with kanamycin, and the right PCR products are 831-bp. Primers OsU3-FD3 and TaU3-FD2 are used for sequencing the vectors. OsU3-FD3: GACAGGCGTCTTCTACTGGTGCTAC (SEQ ID NO: 76) TaU3-RD: CTCACAAATTATCAGCACGCTAGTC (SEQ ID NO: 77) [rc: GACTAGCGTGCTGATAATTTGTGAG] (SEQ ID NO: 78) TaU3-FD: TTAGTCCCACCTCGCCAGTTTACAG (SEQ ID NO: 79) TaU3-FD2: TTGACTAGCGTGCTGATAATTTGTG (SEQ ID NO: 80) EXAMPLE 10 As shown in Figure17, we crossed large2-1 with its wild-type KY131 to get KY131/large2- 1. Compared to KY131, although KY131/large2-1 has slightly less tillers, KY131/large2- 1 has more primary branches, secondary branches and grain number as well as wider grains, like the phenotypes of large2-1. Additionally, KY131/large2-1 has higher 1,000- grain weight. As a result, KY131/large2-1 has higher grain yield than KY131. SEQUENCE LISTING SEQ ID NO: 1: OsUPL2 CDS sequence DUF908; DUF913; UBA; Glu-asp rich motif DUF4414 domain. ATGGCGGCGGCGGCGGCCATGGCGGCGCACCGGGCCAGCTTCCCGCTCCGGCT GCAGCAGATCCTGTCCGGGAGCCGCGCCGTGTCGCCGTCGATCAAGGTGGAGT CCGAGCCGCCAGCAAAAGTTAAAGCATTTATTGATCGTGTAATCAGTATTCCACTA CATGACATTGCTATACCATTGTCAGGCTTCCGTTGGGAGTTCAATAAGGGAAATTT CCACCATTGGAAGCCTCTTTTTATGCATTTTGATACATATTTCAAGACACAAATTTC TTCGAGGAAGGATCTTCTTTTATCTGATGATATGGCTGAGGGTGATCCTTTGCCTA AAAATACCATCCTGCAGATTTTGAGAGTAATGCAGATTGTTTTGGAAAATTGCCAG AACAAAACATCGTTTGCTGGTCTTGAGCATTTTAGGCTTCTGCTGGCATCATCAGA TCCTGAGATAGTTGTGGCTGCTTTAGAGACACTTGCTGCATTGGTTAAAATAAATC CTTCGAAGTTGCATATGAACGGAAAGCTCATAAATTGTGGAGCTATAAACAGTCAT CTTCTATCATTGGCACAAGGATGGGGTAGCAAGGAGGAAGGTTTGGGCTTATATT CTTGTGTTGTGGCAAATGAAAGAAACCAGCAGGAGGGTTTGTGCTTATTCCCAGC AGACATGGAGAACAAATACGATGGCACGCAGCACCGTCTCGGTTCAACTCTTCAT TTTGAATATAATTTGGCACCTGCCCAAGATCCTGACCAATCCAGTGACAAGGCTAA GCCATCTAATCTGTGTGTGATACATATCCCAGACTTGCACCTTCAGAAGGAGGAT GACTTGAGCATATTGAAGCAATGTGTTGATAAGTTTAATGTGCCTTCAGAGCACAG ATTTTCCTTGTTTACAAGGATAAGATATGCCCATGCCTTTAATTCGCCACGGACAT GTAGGCTATATAGCCGCATAAGTCTTCTTGCTTTCATTGTTCTTGTGCAATCCAGC GATGCCCATGATGAACTCACATCTTTCTTTACAAATGAGCCAGAGTACATAAATGA GTTAATCAGACTTGTCCGATCAGAGGAATTTGTTCCTGGACCCATACGAGCGCTG GCTATGCTTGCACTGGGAGCACAGTTAGCAGCGTATGCATCATCTCATGAACGAG CTCGGATACTTAGTGGCTCAAGTATCATATCTGCTGGTGGAAACCGCATGGTCTT GCTCAGTGTTTTGCAAAAAGCTATATCATCACTCAGTAGCCCTAATGATACATCAT CTCCATTAATTGTTGATGCCCTTCTGCAGTTTTTTCTGCTCCATGTGCTATCTTCTT CGAGTTCTGGGACCACTGTTAGAGGTTCAGGGATGGTTCCCCCGCTCTTGCCCCT TTTGCAAGATAATGATCCTTCACACATGCATCTTGTCTGTCTGGCAGTGAAAACTC TTCAAAAGTTGATGGAGTACAGCAGCCCTGCTGTTTCTCTATTTAAAGATTTGGGT GGTGTAGAACTTTTGTCTCAGAGGTTGCACGTGGAGGTGCAGCGTGTTATTGGTG TTGACAGTCATAATTCAATGGTTACAAGTGATGCATTGAAATCAGAAGAGGATCAT CTCTACTCTCAGAAGCGATTGATTAAGGCGCTGCTAAAGGCATTGGGGTCTGCTA CATATTCTCCTGCAAATCCTGCTCGTTCACAAAGCTCAAATGATAATTCTTTGCCCA TCTCGCTTTCCCTTATATTTCAGAATGTTGACAAGTTTGGTGGTGACATTTATTTCT CAGCAGTTACTGTTATGAGTGAGATAATTCACAAGGATCCAACATGCTTTCCTTCT TTGAAGGAACTTGGTCTTCCAGATGCTTTTCTATCGTCAGTGAGTGCTGGGGTAAT ACCATCTTGTAAAGCTCTCATCTGTGTGCCTAATGGTCTGGGTGCAATATGCCTTA ATAACCAAGGACTTGAGGCTGTCAGGGAAACTTCAGCTCTGCGTTTTCTTGTTGAC ACATTCACCAGCAGGAAGTACTTGATACCAATGAATGAAGGTGTTGTCCTATTAGC TAATGCAGTGGAAGAGCTTCTACGTCACGTGCAGTCCCTAAGAAGCACTGGGGTT GACATCATTATTGAAATAATTAATAAACTTTCTTCACCTCGTGAAGATAAGAGCAAT GAACCAGCGGCCAGTTCTGATGAAAGAACAGAAATGGAAACTGACGCGGAAGGA CGTGATTTGGTAAGTGCTATGGATTCCAGTGAGGATGGCACTAATGATGAACAGT TTTCTCATTTGAGCATTTTCCATGTGATGGTATTGGTTCATCGGACAATGGAGAAC TCCGAAACCTGCCGGTTATTTGTGGAGAAAGGAGGCCTGCAAGCACTTTTGACAC TCCTGTTGCGACCTAGCATTACCCAATCATCTGGAGGAATGCCGATTGCTTTGCAT AGCACCATGGTATTCAAGGGCTTTACTCAGCATCACTCTACTCCACTTGCACGTGC ATTTTGCTCTTCCTTAAAGGAGCATTTAAAGAATGCCTTGCAGGAACTTGATACAG TTGCAAGCTCTGGTGAAGTGGCAAAGTTAGAAAAAGGAGCAATTCCATCTCTTTTT GTTGTTGAGTTCTTACTCTTCCTTGCGGCATCCAAAGATAATCGCTGGATGAATGC TCTACTCTCAGAATTTGGAGATAGCAGTAGGGATGTCCTGGAAGATATTGGACGA GTACACCGAGAAGTGCTTTGGCAAATTTCACTTTTTGAAGAAAAGAAAGTTGAGCC TGAAACAAGTTCTCCTTTAGCAAATGACTCCCAGCAAGACGCAGCTGTGGGGGAT GTTGATGATAGCAGATACACATCCTTTAGGCAATATCTTGATCCTCTTTTGAGGCG AAGGGGCTCTGGGTGGAATATTGAATCACAGGTGTCTGACCTCATTAATATCTACC GTGATATTGGCCGTGCAGCTGGTGACTCTCAGAGGTATCCTAGTGCAGGGTTGCC CTCAAGTTCTTCTCAAGACCAGCCTCCCAGTTCATCTGATGCAAGTGCTAGCACAA AATCAGAAGAGGACAAGAAAAGATCTGAGCATTCTTCCTGCTGTGACATGATGAG GTCACTGTCTTACCATATCAATCATCTTTTCATGGAGCTTGGGAAAGCAATGCTTC TTACATCTCGTCGGGAGAACAGCCCTGTGAATTTATCTGCATCTATTGTATCTGTT GCTAGCAATATTGCTTCTATTGTGTTGGAGCACCTCAATTTTGAGGGGCACACAAT CAGTTCTGAAAGAGAGACTACTGTTTCCACAAAATGCCGATACCTTGGGAAGGTG GTTGAGTTCATTGATGGTATATTGTTGGACAGGCCGGAATCGTGCAACCCAATCAT GCTGAATTCATTTTATTGCCGTGGTGTTATTCAGGCTATTTTAACCACATTTGAAGC TACCAGTGAGTTGCTCTTTTCTATGAACAGGCTTCCGTCATCGCCTATGGAGACAG ACAGTAAAAGTGTTAAGGAAGACAGGGAGACAGATTCGTCATGGATATATGGTCC ACTCTCCAGCTATGGTGCAATTCTGGACCATCTAGTAACATCATCGTTTATTCTTTC TTCCTCAACAAGACAATTACTTGAGCAGCCTATTTTTAGTGGAAATATCAGGTTTCC CCAAGATGCAGAGAAGTTCATGAAGCTGCTTCAGTCAAGAGTTCTGAAGACTGTT CTTCCCATCTGGACCCATCCTCAGTTTCCAGAATGTAATGTTGAGTTAATTAGTTC AGTCACATCTATCATGAGGCATGTTTACTCTGGGGTTGAAGTGAAAAACACTGCTA TCAACACTGGTGCTCGTTTGGCTGGTCCACCCCCTGATGAGAATGCAATTTCTCT GATTGTAGAGATGGGCTTTTCTCGCGCCAGAGCTGAGGAAGCACTCAGGCAAGTT GGAACGAACAGTGTTGAAATTGCAACTGATTGGTTATTCTCACACCCAGAGGAAC CACAAGAGGATGACGAACTTGCTCGAGCTCTTGCAATGTCTTTAGGCAATTCTGAT ACGTCTGCACAAGAGGAAGATGGCAAATCGAATGATCTTGAACTTGAAGAAGAAA CTGTTCAGCTGCCTCCCATAGATGAAGTATTGTCTTCATGTCTTAGGTTGCTTCAG ACAAAGGAATCATTAGCTTTCCCTGTTCGGGACATGCTTTTGACTATGAGCTCACA GAATGATGGTCAAAACCGAGTAAAGGTTCTTACGTATTTGATTGATCACCTGAAAA ATTGTCTGATGTCATCTGATCCTTTAAAGAGCACTGCATTATCAGCTCTTTTTCATG TCCTTGCTTTGATTCTCCATGGAGATACTGCTGCTCGGGAAGTTGCTTCAAAGGCT GGTCTTGTCAAGGTTGCTTTGAACCTGCTGTGCAGCTGGGAGTTGGAGCCGAGG CAAGGCGAGATAAGTGATGTTCCAAATTGGGTTCCTTCATGCTTTCTTTCTATTGA TAGGATGCTCCAGTTGGACCCAAAGTTGCCAGATGTTACTGAACTCGATGTCCTTA AAAAGGATAATTCAAATACACAAACATCAGTGGTGATTGATGATAGCAAGAAAAAG GACTCAGAAGCTTCATCGAGCACAGGGTTATTGGACTTGGAGGACCAGAAGCAAC TTTTGAAGATTTGCTGTAAATGCATTCAGAAGCAGTTGCCTTCTGCTACCATGCAT GCTATTCTTCAGTTATGTGCCACGTTGACTAAACTTCATGCTGCTGCTATTTGTTTT CTTGAGTCTGGTGGTCTGCATGCATTGCTAAGTTTGCCCACAAGTAGCTTGTTTTC TGGATTCAACAGTGTGGCTTCTACAATCATTCGTCATATTTTGGAAGATCCCCACA CTCTTCAGCAAGCAATGGAATTAGAGATACGCCACAGTCTTGTCACCGCTGCAAA TCGTCATGCAAATCCAAGGGTTACACCGCGCAATTTTGTCCAGAACTTGGCGTTT GTTGTATATAGAGACCCAGTGATATTTATGAAAGCTGCCCAAGCTGTGTGCCAGAT TGAGATGGTTGGTGATAGACCATATGTTGTTCTGTTGAAGGATCGTGAAAAAGAAA AGAACAAGGAAAAAGAGAAGGACAAGCCTGCTGATAAGGATAAAACATCAGGTGC AGCCACAAAGATGACATCAGGGGACATGGCTTTAGGATCTCCTGTAAGTTCTCAA GGGAAGCAGACTGATCTGAATACAAAGAATGTGAAATCTAATCGCAAACCACCAC AAAGCTTTGTCACTGTTATTGAGTATCTGCTAGATCTGGTTATGTCCTTCATTCCAC CTCCTAGAGCAGAAGATCGACCTGATGGTGAATCTAGTACTGCATCATCTACAGA CATGGATATTGACAGCTCAGCAAAAGGCAAAGGTAAAGCTGTTGCTGTCACACCT GAAGAGTCCAAGCATGCAATTCAAGAGGCTACTGCATCTCTCGCTAAAAGTGCAT TTGTTCTGAAGCTGCTAACAGATGTTCTTCTGACTTATGCATCATCTATTCAAGTTG TTCTTCGACATGATGCTGATTTGAGCAATGCACGTGGTCCTAACCGGATTGGTATT AGCAGTGGTGGGGTTTTCAGTCATATACTGCAGCATTTCCTTCCGCATTCTACAAA GCAAAAGAAAGAGAGGAAAGCTGATGGAGATTGGAGGTACAAATTGGCAACAAG GGCTAATCAATTCTTGGTGGCTTCATCTATTCGGTCTGCAGAAGGTAGAAAAAGGA TCTTTTCTGAAATCTGCAGCATATTTGTTGACTTCACAGACTCCCCTGCTGGTTGC AAACCCCCAATATTAAGGATGAATGCATATGTTGATTTGCTTAATGATATTCTGTCA GCCCGTTCGCCAACTGGTTCCTCCTTGTCAGCAGAATCTGCAGTTACTTTTGTTGA AGTTGGTCTTGTTCAGTATTTATCAAAAACACTGCAAGTTATAGATTTGGATCATCC TGATTCAGCAAAGATTGTAACTGCTATTGTTAAGGCCCTTGAGGTTGTCACAAAGG AACATGTTCATTCGGCAGATTTGAATGCCAAAGGGGAGAACTCATCAAAGGTTGT GTCTGACCAGAGCAATCTAGACCCGTCTTCAAATAGATTCCAAGCTCTTGACACAA CTCAACCCACTGAGATGGTTACTGATCATAGGGAAGCTTTCAATGCTGTTCAAACT TCACAAAGTTCAGATTCAGTGGCTGATGAGATGGACCATGACCGTGATCTGGATG GAGGATTTGCTCGTGATGGTGAAGATGACTTTATGCACGAGATTGCTGAAGATGG AACTCCAAATGAGTCCACAATGGAAATCAGATTTGAAATTCCACGAAATAGAGAGG ATGATATGGCTGATGATGACGAGGACAGTGATGAGGACATGTCAGCCGATGATGG TGAGGAGGTTGATGAAGATGAAGACGAGGATGAGGATGAAGAGAACAACAACCT GGAGGAGGATGATGCCCATCAAATGTCTCATCCTGACACAGATCAGGAGGACCGT GAGATGGATGAAGAGGAGTTTGACGAGGATCTGCTAGAAGAAGATGATGATGAG GATGAGGATGAGGAAGGAGTCATTCTTCGCCTCGAAGAGGGTATCAATGGAATTA ATGTGTTTGACCATATCGAGGTGTTTGGGGGAAGCAACAATTTGTCTGGGGATAC ACTGCGTGTAATGCCGTTGGACATTTTTGGAACAAGACGGCAAGGTCGTAGTACA TCTATATATAACCTTCTTGGGAGAGCAGGCGATCATGGTGTTTTTGACCACCCGCT CTTGGAGGAGCCTTCTTCGGTGCTACACCTTCCACAGCAAAGACAACAAGAAAAT TTAGTTGAGATGGCCTTCTCTGATCGGAATCATGATAATAGTTCTTCCCGCTTGGA TGCAATTTTCCGGAGCCTGCGAAGTGGCCGGAGTGGACACCGTTTTAATATGTGG CTAGATGACAGTCCCCAACGCACTGGATCAGCTGCTCCTGCAGTACCTGAAGGCA TTGAGGAGCTGCTGGTCTCTCAGTTGAGACGACCCACCCCTGAACAACCTGATGA GCAGAGTACACCTGCTGGTGGCGCTGAAGAAAATGACCAATCTAATCAGCAACAT TTGCATCAATCAGAAACTGAGGCAGGAGGAGATGCACCAACAGAACAAAATGAAA ACAATGATAATGCAGTTACTCCGGCAGCAAGGTCTGAGTTAGATGGTTCTGAAAG TGCTGATCCTGCACCTCCCAGCAATGCACTTCAAAGAGAAGTGTCTGGTGCAAGT GAGCATGCCACGGAGATGCAATATGAACGTAGTGATGCTGTAGTACGTGATGTGG AAGCAGTCAGCCAGGCAAGCAGTGGTAGCGGTGCTACTTTAGGGGAAAGCCTTA GAAGTTTAGAGGTGGAGATAGGAAGTGTTGAAGGGCATGATGATGGTGATCGCCA CGGAGCTTCAGACAGGCTTCCTTTGGGTGATTTGCAGGCAGCTTCAAGATCAAGG AGGCCACCTGGAAGTGTTGTGCTAGGTAGCAGCAGAGATATATCTCTGGAGAGTG TCAGCGAGGTTCCTCAAAATCAAAATCAAGAATCTGATCAGAATGCTGATGAAGG GGATCAGGAGCCTAACAGAGCTGCTGACACTGACTCAATTGATCCTACATTTTTG GAGGCTCTTCCAGAGGATTTACGGGCTGAAGTTCTTTCTTCACGTCAAAATCAAGT GACCCAGACTTCTAATGAACAACCTCAGAATGATGGGGATATTGATCCTGAATTCC TTGCTGCACTTCCTCCTGATATACGTGAAGAAGTTCTAGCTCAACAACGTGCGCAA AGGTTGCAGCAGTCACAGGAATTAGAAGGACAACCAGTTGAAATGGATGCTGTTT CAATTATCGCAACATTCCCTTCAGAAATTCGGGAGGAGGTGCTTTTAACATCTCCA GATACATTACTGGCTACACTTACGCCTGCACTAGTTGCTGAAGCAAACATGTTAAG GGAGAGATTTGCTCATCGGTATCACAGTGGCTCCCTTTTTGGCATGAACTCCAGG GGCAGGAGAGGTGAGTCCTCTCGACGTGGTGACATAATTGGTTCAGGTCTTGATA GAAATGCTGGTGATTCTTCTCGACAACCAACTAGCAAGCCAATTGAAACGGAAGG ATCTCCTCTTGTTGACAAGGATGCTCTTAAAGCTCTTATTAGGCTACTCCGGGTTG TTCAGCCTCTATACAAAGGTCAATTGCAGAGGCTTCTCTTGAACCTTTGTGCTCAT AGGGAAAGCAGAAAGTCCTTGGTTCAAATTCTAGTGGACATGCTTATGCTTGATCT GCAGGGCTCTTCTAAGAAATCAATTGATGCAACTGAGCCACCATTTAGGCTATATG GGTGCCATGCAAATATTACGTACTCACGCCCTCAATCGACAGATGGCGTGCCTCC ATTAGTTTCTCGTCGTGTTCTTGAAACTTTGACATACTTGGCAAGAAATCATCCAAA TGTGGCTAAACTCTTGCTATTTCTTGAGTTCCCTTGCCCCCCAACTTGCCATGCTG AAACATCTGATCAGAGGCGTGGCAAGGCTGTTCTTATGGAAGGTGACAGTGAACA GAACGCTTATGCACTTGTCCTACTTTTAACCTTGTTGAATCAGCCACTTTATATGAG GAGCGTAGCTCATCTTGAACAGCTACTAAACCTTCTCGAAGTTGTTATGCTCAATG CCGAGAATGAAATTACACAAGCTAAGCTGGAAGCAGCATCTGAAAAACCATCTGG ACCTGAGAATGCAACGCAAGATGCCCAAGAGGGTGCGAATGCTGCTGGATCATCT GGATCGAAGTCCAATGCTGAGGATAGCAGCAAACTCCCTCCTGTTGATGGTGAAA GTAGCCTGCAAAAAGTTCTGCAGAGTCTTCCCCAAGCAGAGCTTCGACTGCTATG TTCACTGCTTGCACATGATGGGTTGTCAGACAATGCGTATCTCCTGGTAGCAGAA GTTCTGAAAAAGATTGTAGCTCTTGCTCCTTTTTTCTGTTGCCATTTCATAAATGAA CTTGCACATTCAATGCAAAATTTGACGCTTTGTGCAATGAAGGAGCTTCACTTGTA TGAGGATTCTGAAAAGGCTCTTCTTAGCACATCATCAGCCAATGGCACTGCAATTC TTAGAGTTGTGCAGGCTTTGAGTTCTCTTGTCACCACTCTGCAAGAGAAAAAGGAT CCAGATCATCCTGCTGAAAAAGATCATTCTGATGCATTGTCCCAGATTTCTGAAAT TAACACTGCATTGGATGCATTATGGTTGGAGCTGAGTAATTGCATAAGCAAAATAG AGAGCTCTTCAGAATACGCATCGAATCTAAGTCCTGCTTCTGCAAATGCAGCCACA TTAACAACAGGTGTAGCACCTCCATTGCCTGCCGGAACTCAGAACATATTACCGTA CATAGAATCATTTTTCGTGACATGTGAGAAGTTACGCCCTGGGCAACCTGATGCTA TTCAAGAAGCTTCAACATCTGACATGGAGGATGCATCAACTTCTAGTGGTGGGCA GAAATCATCTGGAAGCCATGCAAATCTTGATGAGAAGCACAATGCGTTTGTTAAAT TCTCAGAGAAACACAGAAGATTGTTGAACGCATTTATCCGCCAAAACCCTGGGCT ATTGGAGAAGTCATTCTCTCTGATGTTGAAAATCCCTCGCTTGATTGAATTTGACA ACAAGCGTGCATATTTCCGGTCTAAAATTAAGCATCAGCATGATCATCATCATAGC CCTGTTAGAATTTCTGTGCGCCGGGCATATATTTTGGAGGATTCATATAACCAGCT TAGGATGCGTTCACCACAGGATTTGAAGGGTAGACTGACTGTTCATTTCCAAGGT GAAGAAGGCATTGATGCTGGTGGACTAACAAGGGAATGGTATCAGCTGCTATCAC GAGTGATTTTTGATAAGGGTGCCCTTCTATTCACAACTGTTGGAAATGACTTGACA TTTCAACCAAACCCTAACTCGGTGTATCAGACTGAACACCTCTCATATTTCAAATTT GTTGGGCGAGTGGTTGGTAAAGCTCTATTTGATGGCCAACTTTTGGATGTCCATTT TACAAGATCTTTCTACAAGCACATACTAGGTGTCAAGGTTACATACCATGACATTG AAGCTATTGATCCTGCATACTATAAAAATTTGAAATGGATGCTTGAGAATGACATAA GCGATGTTCTGGACCTCTCCTTCAGCATGGATGCAGATGAAGAGAAGCGGATATT GTATGAGAAGGCAGAGGTGACTGATTATGAGTTGATTCCTGGAGGCCGAAACATC AAGGTCACCGAGGAGAACAAGCATGAATATGTGAACCGGGTTGCAGAACATCGTT TAACCACTGCTATTAGGCCTCAAATCACCTCTTTTATGGAGGGATTTAATGAGCTC ATTCCTGAGGAGCTGATATCAATCTTTAATGACAAAGAACTTGAACTGCTAATCAG TGGACTCCCAGACATTGACTTGGACGATCTAAAAGCAAATACAGAATATTCTGGGT ACAGCATAGCTTCTCCAGTCATTCAGTGGTTCTGGGAGATTGTCCAAGGGTTCAG CAAGGAGGACAAAGCCCGGTTCCTTCAGTTTGTTACTGGCACCTCAAAGGTACCT CTGGAAGGTTTCAGTGCACTCCAAGGAATATCTGGACCACAACGATTCCAGATAC ACAAGGCCTACGGAAGCACCAACCATCTGCCTTCAGCACATACTTGCTTTAACCA ACTAGACCTTCCTGAGTACACATCGAAAGAGCAGCTCCAGGAGAGATTGCTACTG GCTATTCATGAGGCGAATGAAGGTTTCGGATTTGGTTAA SEQ ID NO: 2 Os UPL2 Protein sequence DUF908; DUF913; UBA; Glu-asp rich motif DUF4414 HECT domain. Conserved cysteine residue in the HECT domain is shown by C MAAAAAMAAHRASFPLRLQQILSGSRAVSPSIKVESEPPAKVKAFIDRVISIPLHDIAIP L SGFRWEFNKGNFHHWKPLFMHFDTYFKTQISSRKDLLLSDDMAEGDPLPKNTILQILR VMQIVLENCQNKTSFAGLEHFRLLLASSDPEIVVAALETLAALVKINPSKLHMNGKLINC GAINSHLLSLAQGWGSKEEGLGLYSCVVANERNQQEGLCLFPADMENKYDGTQHRL GSTLHFEYNLAPAQDPDQSSDKAKPSNLCVIHIPDLHLQKEDDLSILKQCVDKFNVPSE HRFSLFTRIRYAHAFNSPRTCRLYSRISLLAFIVLVQSSDAHDELTSFFTNEPEYINELI R LVRSEEFVPGPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQKAI SSLSSPNDTSSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLQDNDPSHMH LVCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGVDSHNSMVTSDAL KSEEDHLYSQKRLIKALLKALGSATYSPANPARSQSSNDNSLPISLSLIFQNVDKFGGD IYFSAVTVMSEIIHKDPTCFPSLKELGLPDAFLSSVSAGVIPSCKALICVPNGLGAICLN N QGLEAVRETSALRFLVDTFTSRKYLIPMNEGVVLLANAVEELLRHVQSLRSTGVDIIIEI I NKLSSPREDKSNEPAASSDERTEMETDAEGRDLVSAMDSSEDGTNDEQFSHLSIFHV MVLVHRTMENSETCRLFVEKGGLQALLTLLLRPSITQSSGGMPIALHSTMVFKGFTQH HSTPLARAFCSSLKEHLKNALQELDTVASSGEVAKLEKGAIPSLFVVEFLLFLAASKDN RWMNALLSEFGDSSRDVLEDIGRVHREVLWQISLFEEKKVEPETSSPLANDSQQDAA VGDVDDSRYTSFRQYLDPLLRRRGSGWNIESQVSDLINIYRDIGRAAGDSQRYPSAG LPSSSSQDQPPSSSDASASTKSEEDKKRSEHSSCCDMMRSLSYHINHLFMELGKAML LTSRRENSPVNLSASIVSVASNIASIVLEHLNFEGHTISSERETTVSTKCRYLGKVVEFI DGILLDRPESCNPIMLNSFYCRGVIQAILTTFEATSELLFSMNRLPSSPMETDSKSVKE DRETDSSWIYGPLSSYGAILDHLVTSSFILSSSTRQLLEQPIFSGNIRFPQDAEKFMKLL QSRVLKTVLPIWTHPQFPECNVELISSVTSIMRHVYSGVEVKNTAINTGARLAGPPPDE NAISLIVEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEEPQEDDELARALAMSLGN SDTSAQEEDGKSNDLELEEETVQLPPIDEVLSSCLRLLQTKESLAFPVRDMLLTMSSQ NDGQNRVKVLTYLIDHLKNCLMSSDPLKSTALSALFHVLALILHGDTAAREVASKAGLV KVALNLLCSWELEPRQGEISDVPNWVPSCFLSIDRMLQLDPKLPDVTELDVLKKDNSN TQTSVVIDDSKKKDSEASSSTGLLDLEDQKQLLKICCKCIQKQLPSATMHAILQLCATLT KLHAAAICFLESGGLHALLSLPTSSLFSGFNSVASTIIRHILEDPHTLQQAMELEIRHSL V TAANRHANPRVTPRNFVQNLAFVVYRDPVIFMKAAQAVCQIEMVGDRPYVVLLKDRE KEKNKEKEKDKPADKDKTSGAATKMTSGDMALGSPVSSQGKQTDLNTKNVKSNRKP PQSFVTVIEYLLDLVMSFIPPPRAEDRPDGESSTASSTDMDIDSSAKGKGKAVAVTPE ESKHAIQEATASLAKSAFVLKLLTDVLLTYASSIQVVLRHDADLSNARGPNRIGISSGGV FSHILQHFLPHSTKQKKERKADGDWRYKLATRANQFLVASSIRSAEGRKRIFSEICSIF VDFTDSPAGCKPPILRMNAYVDLLNDILSARSPTGSSLSAESAVTFVEVGLVQYLSKTL QVIDLDHPDSAKIVTAIVKALEVVTKEHVHSADLNAKGENSSKVVSDQSNLDPSSNRF QALDTTQPTEMVTDHREAFNAVQTSQSSDSVADEMDHDRDLDGGFARDGEDDFMH EIAEDGTPNESTMEIRFEIPRNREDDMADDDEDSDEDMSADDGEEVDEDEDEDEDEE NNNLEEDDAHQMSHPDTDQEDREMDEEEFDEDLLEEDDDEDEDEEGVILRLEEGING INVFDHIEVFGGSNNLSGDTLRVMPLDIFGTRRQGRSTSIYNLLGRAGDHGVFDHPLL EEPSSVLHLPQQRQQENLVEMAFSDRNHDNSSSRLDAIFRSLRSGRSGHRFNMWLD DSPQRTGSAAPAVPEGIEELLVSQLRRPTPEQPDEQSTPAGGAEENDQSNQQHLHQ SETEAGGDAPTEQNENNDNAVTPAARSELDGSESADPAPPSNALQREVSGASEHAT EMQYERSDAVVRDVEAVSQASSGSGATLGESLRSLEVEIGSVEGHDDGDRHGASDR LPLGDLQAASRSRRPPGSVVLGSSRDISLESVSEVPQNQNQESDQNADEGDQEPNR AADTDSIDPTFLEALPEDLRAEVLSSRQNQVTQTSNEQPQNDGDIDPEFLAALPPDIRE EVLAQQRAQRLQQSQELEGQPVEMDAVSIIATFPSEIREEVLLTSPDTLLATLTPALVA EANMLRERFAHRYHSGSLFGMNSRGRRGESSRRGDIIGSGLDRNAGDSSRQPTSKP IETEGSPLVDKDALKALIRLLRVVQPLYKGQLQRLLLNLCAHRESRKSLVQILVDMLML DLQGSSKKSIDATEPPFRLYGCHANITYSRPQSTDGVPPLVSRRVLETLTYLARNHPN VAKLLLFLEFPCPPTCHAETSDQRRGKAVLMEGDSEQNAYALVLLLTLLNQPLYMRSV AHLEQLLNLLEVVMLNAENEITQAKLEAASEKPSGPENATQDAQEGANAAGSSGSKS NAEDSSKLPPVDGESSLQKVLQSLPQAELRLLCSLLAHDGLSDNAYLLVAEVLKKIVAL APFFCCHFINELAHSMQNLTLCAMKELHLYEDSEKALLSTSSANGTAILRVVQALSSLV TTLQEKKDPDHPAEKDHSDALSQISEINTALDALWLELSNCISKIESSSEYASNLSPASA NAATLTTGVAPPLPAGTQNILPYIESFFVTCEKLRPGQPDAIQEASTSDMEDASTSSG GQKSSGSHANLDEKHNAFVKFSEKHRRLLNAFIRQNPGLLEKSFSLMLKIPRLIEFDNK RAYFRSKIKHQHDHHHSPVRISVRRAYILEDSYNQLRMRSPQDLKGRLTVHFQGEEGI DAGGLTREWYQLLSRVIFDKGALLFTTVGNDLTFQPNPNSVYQTEHLSYFKFVGRVV GKALFDGQLLDVHFTRSFYKHILGVKVTYHDIEAIDPAYYKNLKWMLENDISDVLDLSF SMDADEEKRILYEKAEVTDYELIPGGRNIKVTEENKHEYVNRVAEHRLTTAIRPQITSF MEGFNELIPEELISIFNDKELELLISGLPDIDLDDLKANTEYSGYSIASPVIQWFWEIVQ G FSKEDKARFLQFVTGTSKVPLEGFSALQGISGPQRFQIHKAYGSTNHLPSAHTCFNQ LDLPEYTSKEQLQERLLLAIHEANEGFGFG. SEQ ID NO: 3 OsUPL2 promoter sequence acattaactgtcctatatgcgatgtatttattgttatggtgtattaaatcatcagtatat atagtaaaaaacataacaaagagtgcacgacta atttaaaagataaaagaaaaagtagagtaattgggccaccaaaactaatgattttcgcta ctagatcgaagctctagccttttttttttttttg ccataagcctgcttgacatgtatcttttacttgattttagatgatcctcatattccttta tttctaaacttcccaagcaatcaaaagaatagcaa atgttcatctttacacaaatgaaaactaccattttagcttgattgtgttcttggcccatt ctaggaagctaaaattatgagaagtagccttttgg tagctaaattttgagaatctagaatatatctgagggaaggggatgcaggaactgcattct ttcatttgaagataaaggcgagaagcag gaagcttctcattccaatccttgagcatgatggcaggattgccaccacccagcatgacat gcaaagtttggcacgagaatactttgctg cagtgatgtgccctgagtgcagtgacacgaagttgctgcaatttcaccatattcagatgg caacaactgatctctccagcctcgacagt cctttcactgaagatgagatttggtcggctatccgtgctttgcctaatgaaaagtcgcca gggccggatggttatacaggcttgttttacca aagatgttgggagataattaaacctgaattgatcagcgctcttgctaaattctgtaccgg taacagtcagaacttggagaaactgaattc ggcaattgtcacgctaataccgaagaaggacagtcctaccctcctcaaggattataggcc aattagtttgattcatagtttctctaagata gctgcgaagattatggcgcagcggttagcaccgaagctgaatgtcctcattccatcctcc caaactgcttttatcaagggacgctgcat acacgagaactttgtcttcgtcaaaggattggtacaacaatttcacagacaaaggaaggc tatgatgttgctgaaattagacatctcga aagctttcgacactgtctcctggggttttcttatgtcgatgttacagttcagaggctttg gtccactttggagaagatggctctcggcggttttt ctcactgcagaaacaagaatattgataaatggtgttctgtctgacacaatcaagccggcg agggggttgaggcagggtgacccactg tcgccgctgctctttgttctagtaatggatgccttgcaagctattgtttcccaggcaagg atggcaagactgctctcgcccctcaacgtacg acagaatttgccaccaatttcagtttatgccgacgatgcggttctgtttttccgccctac agctgaagaagctcgagtcatcaagggtatc ctggagttgttcggggctgccacaagtctcaaaaccaatttctccaaaagcgcaatcact ccaatccaatgtgacgagcagcagtatg tgcaagttgaatccattctctcctgccgagtggaaaagttcccaatcacttatcttggac tccctctctccactaggaaaccaacgaagg ccgagatccagccgatccttgataggctggcaaagaaggtagccggttggaagccgaaaa tgctgtctattgatgggcgactgtgctt gatcaagtcggtcctaatggcgctgccggtgcactacatgacagtcctgcagctaccgcg atgggcgattaaggacatcgagcgga agtgccgtgggtttctttggaaaggacaggaagagatcagcggcgggcattgcctagtct cgtggcgaaaggtttgctcacccatcga gaaagggggacttggtgtcaaagatcttaatttgttcggtcaagctctccggttgaaatg gcttgcaaaatccttggagcagaaggata gaccctggaccttagcaactttccgtcctggaagcgatgtggaagagatctttcgatccg ttgctgagcacatcattggtgacggggtga acacacagttttggacagacaattggacagggaaaggttgcttcgcctggaggtggccgg tgttgttttcccatgtgagccgtgccaag ctgacagtagctgatgccctgattgctaacagatgggttcgccgattacaaggtgccttg tccaatgaagctctgggtgaattcttccaac tttgggatgaagttcacgacgtgtcactgcagcagatggctaaaacgatcaaatggaagt tgactgttgatggtaatttctcagtggcctc ggcgtatgatctatttttcatagcgacagaggactgttcctacggggacacgctgtggca ctccagggtgccgtcgcgtgttcgcttcttc atgtggattgcactcaagggccgctgtctcacggcggacaacctggcaaagagaaactgg ccgcatgacgccatttgctccctatgc caacacgagaacgaagactgccattatttgcttgtgtcctgtgattatacggcggcggtt tggcgcaagctgagacgttggtgcaacatt aacattgcaatccctgcggaagatggcatgccgcttgcagattggtggatcgcgacaaga cggcgttttcagaacacgtataggacg gatttcgatagtctgttaatgctaatttgttggcttatctggaaagagcgaaatacaagg atctttcaacacatcgccaagtcggttgaccg gctagcggatgacatcaacgaggaaatcgcaatttggagggcagcagggattttctccca ggctagcgagtaatcccgattagagg cgggacctgccccattttttccttttctttccgggcttgagtttgcttgagaccggcgcg acatccttcatgtcgttgtaattaaaactttatttcc ctcaatcttaataaaattggccggcctacctttggccgtcccggcaaaaaagaatctaga atatatagctacatattctcaaaatcgaat ctggactgttttggagagtagccgctagaaacttcctagaacaaaacccttatatttgtt ctttaagtcacatcatacttgctgatgaaatca ctatccattagttactccatccgtcccaaaaatacttaatctaggagaagatgtgactcc ttctgatacaataaatttggataaagagctat cagatttgttaggatcacacatttatttgtaggttaagttttttttaacggaagtagtac gcataaaggattggcttacccaattgttaaccgg cccggcactggaacagaaaggtcttgaacccaaacgggacgccgagaaggcccttccctg acgaaagcaaagggcttaattagc tagcaagaaacccaaaccgacccgagcccgtcacgcgccgcgcccgtgacctaccgtgcg ctgcgccgcctcctccctcccacct cccttcacaaaagcagcgacccctcctccctccccaagtttcctccccacaccgcaaccc ttctctctctctctctctcccctctcgacttct ctcctctccgccgcctccgagtcccgccgcgccgcgcgcccgtcttccccggcggccgat gtgtctgcctcgtcggcacgaaacccta gaggtaacccgccgcgccgctccccgccgcttcccgccgcgatcgggggccctcccccct agggttttcgggggacttttgagggtg gatgatttgggggtgtggggggctttgggggcggtctaacctgtttgtggtttctggtgc aggtgcggtgcagttgaggggtcccgatcgg agATGGCGGCGGCGGCGGCCATGGCGGCGCACCGGGCCAGCTTCCCGCTCCGGCTGCA GCAGATCCTGTCCGGGAGCCGCGCCGTGTCGCCGTCGATCAAGGTGGAGTCCGAGCCGG TGAGTCCCTCGCGCCGTTCCCCTGTTTCCTCGCCCTAGGGTTTTGATCGTCGGGGTTGAG GGGTTGTAGATGCGAAGTTGAGATGGTATGTAGGATCGAATCCTCCCTAGGTGCTTCCTC T AGGGTTTTGATCGGCTGCCTGTGTTGATGTGGCGTGCTGTTGGGGTGAGGTAGTTAGGCC GTAAGGAGTTTGCTCCGTTTATGATCGGTGTTGAGCATGGGGACCAGTGGTGTGGTGTGC AGGGTAGTTGTTACTGCTTTAGGCCATCTCAAATTTGGGTTTCCTTGGTCAGGGGTAGAA G AGACACCGGTTTGAAGTTTCTGGTTATCTTGCTTGTGCTGTTATTGTACTATATTGTAGT AG GGATACATGCTCGTGTTATTCTGTTACCTTGTTTAAGCATGTCTATGCCCCTCAATGCTT AG TTGCCGCTGCAGCCGTAATCTTTTAGGCTTAGCCGCTTAGGTATCCCCATTACATTTGTA TT ATCTTGTTATTACTACGGTGTCCCATTGGACATTTATTAGTTCAGACTTTCTTGCACTTG TAA TTCCTTCTGCAAAACATACGAGTCAATACAGAATGCCACATCTAGCAAATTACTATGTTA TC ATTGATGCTTAGGTGCCCATGATCAGTACTTATGGACTTGTACTGGCCATTTTATAATGT TA TTTTTTCATTCTGTTATTGCTATAGCTTTTTAATCCTTTTTTACGTATTTTTATTTCTGT GCACA ACTGCACTTATGTTGACCAATCCTGTATCATGTTTTGGATAATGGCTTACTACATAAATA TAT GACGTTGGATAGTAGCCTCAAGATTGATGCATTGATTTAGTTCACTTGATATTACAGCTC AA GAGTTGAGACAT Homologous sequences - Wheat SEQ ID NO: 4 UPL2 CDS; A genome >TraesCS5A02G121600.1(Longest) cds: protein_coding SEQ ID NO: 5 UPL2 amino acid; A genome; HECT domain underlined. MAAAAMAAHRASFPLRLQQILSGXXXXXXXXXXXXXXPAKVKAFIDRVINIPLHDIAIPL SGFHWEFNKGNFHHWKPLFMHFDTYFKTYISSRKDLLLSDDMSESEPLTKNTILQILR VMQIVLENCQNKTTFAGLEHFKNLLTSSDPEVVVAALETLASVVKINPSKLHMNGKLIS CGAINSHLLSLAQGWGSKEEGLGLYSCVVANERNQLEGLCLFPADMENKYDGTQHR LGSTLHFEYNLAPVQDSDQANDKSSNLCVIHMPDLHLRKEDDLSILKQCINKFNVPPE HRFALFTRIRYAHAFNSPRTCRLYSRISLLSFIVLVQSSDAHDELTSFFTNEPEYINELI RLVRSEDIVPGPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQK AISSLSSPNDTSSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLQDKDPSH MHLVCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGVAEITSVVASD TSKSEDDHLYSQKRLIKALLKALGSATYSPANPARSQSSNDNSLPMSLSLIFQNVGKF GGDIYFSSVTVMSEIIHKDPTCFPALKELGLPDAFLSSVTAGVIPSCKALICVPNGLGAI CLNNQGLESVRETSALRFLVETFTSKKYLIPMNEGVVLLANAVEELIRHVQSLRSTGV DIIIEIINKLSCPRGDKITEAASAEEKTDMETDVEGRDLVSAMDSGTDGTNDEQFSHLSI FHVMVLVHRTMENSETCRLFVEKGGLQTLLTLLLRPTITQSSGGMPIALHSTMVFKGF TQQHSTPLARAFCSSLKEHLKNALQELDTVFRSCEVTKMEKGAIPSLFIVEFLLFLAAS KDNRWMNALLSEFGDVSRDVLEDIGRVHREVLWQISLFDEKKIEPEASSPSANEAQQ VDAAVGDTDDNRYTSFRQYLDPLLRRRGSGWNIESQVSDLINIYRDMGRAATDSHR VGADRYPSTGLPSSSQDQPSSSSDANAKSEEDKKRSEHSSCCDMMRSLSYHINHLF MELGKAMLLTSRRENSPINLPPSVVSVASNIASIVLEHLNFEGHTISPEREITVATKCRY LGKVVEFIDGILLDRPESCNPIMVNSFYCRGVIQAILTTFEATSELLFAMNRPPSSPME TDSKTGMEEKDTDCSWIYGPLSSYGAAMDHLVTSSFVLSSSTRQLLEQPIFSGTVRF PQDAERFMKLLQSKVLKTVLPIWAHPQFPECNLELISSVTSIMRHVYSGVEVKNNVSN MAARLAGPPPDENAISLIIEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEEPPEDD ELARALAMSLGNSDTPVQEEDDRTNDLELEEVNVQLPPMDEVLSSCLRLLQAKETLA FPVRDMLVTISSQNDGQNRVKVLTYLIDHLKQCLVASDPLKNTALSAFFHVLALILHGD TAAREVASKAGLVKVVLNLLCSWELEPREGQTTKVPNWVTSCFLSVDRMLQLEPKLP DVTELDVLKKDNSPTQTSVVIDDSKKKDSESSSSVGLLDLEDQDQLLRVCCKCIQKQL PSGTMHAILQLCATLTKVHVAAISFLESGGLHALLSLPTSSLFSGFNSVVSTIIRHILED P HTLQQAMELEIRHSLVTAANRHANPRVTPRNFVQNLAFVVYRDPVIFMKAAQAVCQI EMVGDRPYVVLLKDREKEKSKEKEKDKLVDKDKSSGVATKITSGDMVMASPVSAKG KQSDFSARNMKSHRKPPQTFVTVIEHLLDLVMSFVPPQRAEDQSDGSSSMDMDIDS SSAKGKGKAVAVTHEESKQAIQDATACLAKNAFVLKLLTDVLLTYASSVQVVLRHDAE FSSTRGPTRTSGGIFNHILQHLLPHATKQKKERKPDGDWRYKLATRGNQFLVASSIR SSEGRKRICSEICSIFVEFTDNSTGCKPPMLRMNAYVDLLNDILSARSPTGSSLSAESV VTFVEVGLVQCLTKTLQVLDLDHSDSAKIVTGIVKALEVVTKEHVHLADFNAKGENSS KTVLEQNNVDSSSNRFQVLDTTSQPTAMVTDHRETFNAVHASRSSDSVADEMDHDR DIDGGFAHDGEDDFMHEIAEDRTGNESTMDIRFDIPRNREDDMAEDEDDSDEDMSA DDGEEVDEDDDDEENNNLEEDDAHQISHADTDQDDREIDEEEFDEDLLEEEDDDEE DEEGVILRLEEGINGINVFDHIEVFGGSNNVSGDTLRVMPLDIFGTRRQGRSTSIYNLL GRASDQGVLDHPLLEEPSMLLPQQRQPENLVEMAFSDRNQENSSSRLDAIFRSLRS GRNGHRFNMWLDDGPQRNGSAAPTVPEGIEELLLSQLRRPMAEHPDEQSTPAVDA QVNDPPSNFHGPETDAREGSAEQNENNENDDIPAVRSEVDGSASAGPAAPHSDEL QRDASNASEHVADMQYERSDTAVRDVEAVSQASSGSGATLGESLRSLDVEIGSVEG HDDGDRHGASDRTPLGDVQAATRSRRPSGNAVPVSSRDISLESVREIPQNTVQESD QNASEGDQEPNRATGTDSIDPTFLEALPEDLRAEVLSSRQNQVTQTSSEQPQHDADI DPEFLAALPPDIREEVLAQQRAQRLQQQSQELEGQPVEMDAVSIIATFPSEIREEVLLT SPDTLLATLTPALVAEANMLRERFAHRYHSGSLFGMNSRNRRGESSRRGDIIGSGLE RNTGDSSRQTASKLIETVGTPLVDKDALNALIRLLRVVQPIYKGQLQRLLLNLCAHRES RKSLVQILVDMLMLDLQGSSKKSIDATEPSFRLYGCHANITYSRPQSSDGVPPLVSRR VLETLTYLARNHPNVAKLLLFLRFPCPPTCHTETLDQRHGKAVLVEDGEQQSAFALVL LLTLLNQPLYMRSVAHLEQLLNLLEVVMLNAENEVNQAKLESSSERPSGPENAIQDA QEDASVAGSSGAKPNADDSGKSSADNISDLQAVLHSLPQAELRLLCSLLAHDGLSDN AYLLVAEVLKKIVALAPFICCHFINELSRSMQNLTVCAMNELHLYEDSEKAILSTSSAN GMAVLRVVQALSSLVTSLQERKDPELLAEKDHSDSLSQISDINTALDALWLELSHCISK IESSSEYTSNLSPTSANATRVSTGVAPPLPAGTQNILPYIESFFVTCEKLRPGQPDAVQ EPSTSDMEDASTSSSGQKSSASHTSLDEKHTAFVKFSEKHRRLLNAFIRQNSGLLEK SFSLMLKVPRLIDFDNKRAYFRSKIKHQHDHHHSPVRISVRRAYILEDSYNQLRMRSP QDLKGRLTVHFQGEEGIDAGGLTREWYQLLSRVIFDKGALLFTTVGNDLTFQPNPNS VYQTEHLSYFKFVGRVVGKALFDAQLLDVHFTRSFYKHILGAKVTYHDIEAIDPAYYR NLKWMLENDISDVLDLTFSMDADEEKLILYEKAEVTDCELIPGGRNIRVTEENKHEYV DRVAEHRLTTAIRPQINAFMEGFNELIPRELISIFNDKEFELLISGLPDIDLDDLKANTE Y SGYSIASPVIQWFWEIVQGFSKEDKARFLQFVTGTSKVPLEGFSALQGISGPQRFQIH KAYGSTNHLPSAHTCFNQLDLPEYTSKDQLQERLLLAIHEANEGFGFG SEQ ID NO: 6 UPL2 CDS; B genome TraesCS5B02G112800.1 SEQ ID NO: 7 UPL2 amino acid; B genome; HECT domain underlined. MAAAAMAAHRASFPLRLQQILSGSRAVSPAIKVESXXPAKVKAFIDRVINIPLHDIAIPL S GFHWEFNKGNFHHWKPLFMHFDTYFKTYISSRKDLLLSDDMSESEPLTKNTILQILRV MQIVLENCQNKTTFAGLEHFKNLLASSDPEVVVAALETLASVVKINPSKLHMNGKLISC GAINSHLLSLAQGWGSKEEGLGLYSCVVANERNQLEGLCLFPADMENKYDGTQHRL GSTLHFEYNLAPVQDSDQANDKSSNLCVIHMPDLHLRKEDDLSILKQCIDKFNVPPEH RFALFTRIRYAHAFNSPRTCRLYSRISLLSFIVLVQSSDAHDELTSFFTNEPEYINELIR L VRSEDIVPGPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQKAIS SLSSPNDTSSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLQDKDPSHMHL VCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGVAEITSVVASDTSKS EDDHLYSQKRLIKALLKALGSATYSPANPARSQSSNDNSLPMSLSLIFQNVGKFGGDI YFSSVTVMSEIIHKDPTCFPALKELGLPDAFLSSVTAGAIPSCKALICVPNGLGAICLNN QGLESVRETSALRFLVETFTSRKYLIPMNEGVVLLANAVEELLRHVQSLRSTGVDIIIEI I NKLSCPRGDKITEAASAEEKTDMETDVEGRDLVSAMDSGTDGTNDEQFSHLSIFHVM VLVHRTMENSETCRLFVEKGGLQTLLTLLLRPTITQSSGGMPIALHSTMVFKGFTQQH STPLARAFCSSLKEHLKNALQELDTVFRSCEVTKLEKGAIPSLFIVEFLLFLAASKDNR WMNALLSEFGDVSRDVLEDIGRVHREVLWQISLFDEKKIEPEASSPSANEAQQVDAA VGDTGDNRYTSFRQYLDPLLRRRGSGWNIESQVSDLINIYRDMGRAASDSHRVGAD RYPSTGLPSSSQDQPSSSSDANAKSEEDKKRSEHLSCCDMMRSLSYHINHLFMELG KAMLLTSRRENSPINLSPSVVSVASNIASIVLEHLNFEGHTISPEREITVATKCRYLGKV VEFIDGILLDRPESCNPIMVNSFYCRGVIQAILTTFEATSELLFAMNRPPSSPMETDSKT GKEEKDADCSWIYGPLSSYGAAMDHLVTSSFILSSSTRQLLEQPIFSGTVRFPQDAEK FMKLLQSKVLKTVLPIWAHPQFPECNLELISSVTSIMRHVYSGVEVKNNVSNIAARLAG PPPDENAISLIIEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEEPPEDDELARALAM SLGNSDTPVQEEDDRTNDLELEEVNVQLPPMDEVLSSCLRLLQAKETLAFPVRDMLV TISSQNDGQNRVKVLTYLIDHLKQCLVASDPLKNTALSAFCHVLALILHGDTAAREVAS KAGLVKVVLSLLCSWEMEPREGQTTKVPNWVTSCFLSVDRMLQLEPKLPDVTELDVL KKDSSPTQTSVVIDDSKKKVSESSSSVGLLDLEDQEQLLRICCKCIQKQLPSGTMHAIL QLCATLTKVHVAAISFLESGGLHALLSLPTSSLFSGFNSVVSTIIRHILEDPHTLQQAME LEIRHSLVTAANRHANPRVTPRNFVQNLAFVVHRDPVIFMKAAQAVCQIEMVGDRPYV VLLKDREKEKSKEKEKDKLVDKDKSSGVATKITSGDMVMASPVSAKGKQSDLSVRNM KSHRKPPQTFVTVIEHLLDLVMSFVPPQRAEDQSDGSSSMDMDIDSSSAKGKGKAVA VTHEESKQAIQDATACLAKNAFVLKLLTDVLLTYASSVQVVLRHDAELSSTRGPTRTS GGIFNHILQHLLPHATKQKKERKPDSDWRYKLATRGNQFLVASSIRSSEGRKRICSEIC SIFVEFTDNSTGCKPPMLRMNAYVDLLNDILSARSPTGSSLSAESVVTFVEVGLVQCL TKTLQVLDLDHPDSAKIVTGIVKALEVVTKEHVHLADFNAKGENSSKTVLEQNNVDSS SNRFQVLDTTSQPTAMVTDHRETFNAVHAPRSSDSVADEMDHDRDIDGGFAHDGED DFMHEIAEDRTGNESTMDIRFDIPRNREDDMAEDEDDSDEDMSGDDGEEVDEDDDD EENNNLEEDDAHQISHADTDQDDREIDEEEFDEDLLEEDDDDEDEEGVILRLEEGINGI NVFDHIEVFGGSNNVSGDTLRVMPLDIFGTRRQGRSTSIYNLLGRASDQGVLDHPLLE EPSMLLPQQRQPENLVEMAFSDRNHENSSSRLDAIFRSLRSGRNGHRFNMWLDDGP QRNGSAAPTVPEGIEELLLSQLRRPTAEHPDEQSTPAVDAQVNDPPSNFHGSETDAR EGSAEQNENDDIPAVRSEVDGSASAGPAPPHSDELQRDASNASEHVADMQYERSDA AVRDVEAVSQASSGSGATLGESLRSLDVEIGSVEGHDDGDRHGASDRTPLGDVQAA TRSRRPSGNAVLVSSRDISLESVREIPQNTVQESDQNASEGDQEPNRATGTDSIDPTF LEALPEDLRAEVLSSRQNQVTQTSSEQPQHDADIDPEFLAALPPDIREEVLAQQRAQR LQQQSQELEGQPVEMDAVSIIATFPSEIREEVLLTSPDTLLATLTPALVAEANMLRERF AHRYHSGSLFGMNSRNRRGESSRRGDIIGSGLDRNTGDSSRQTASKLIETVGTPLVD KDALNALIRLLRVVQPIYKGQLQRLLLNLCAHRESRKSLVQILVDMLMLDLQGSSKKSI DATEPSFRLYGCHANITYSRPQSSDGVPPLVSRRVLETLTYLARNHPNVAKLLLFLQF PCPPTCHTETLDQRRGKAVLVEDGEQQSAFALVLLLTLLNQPLYMRSVAHLEQLLNLL EVVMLNAENEVNQVKLQSSSERPSGPENATQDAQEDASVPGSSGAKPNADDSGKS SSDNISDLQAVLHSLPQAELRLLCSLLAHDGLSDNAYLLVAEVLKKIVALAPFICCHFIN ELSRSMQNLTVCAMNELHLYEDSEKAILSTSSANGMAVLRVVQALSSLVTSLQERKDP ELLAEKDHSDALSQISDINTALDALWLELSNCISKIESSSDYTSNLSPTSANATRVSTGV APPLPAGTQNILPYIESFFVTCEKLRPGQPDAVQEPSTSDMEDASTSSSGQKSSASHT SLDEKHTAFVKFSEKHRRLLNAFIRQNSGLLEKSFSLMLKVPRLIDFDNKRAYFRSKIK HQHDHHHSPVRISVRRAYILEDSYNQLRMRSPQDLKGRLTVHFQGEEGIDAGGLTRE WYQLLSRVIFDKGALLFTTVGNDLTFQPNPNSVYQTEHLSYFKFVGRVVGKALFDAQL LDVHFTRSFYKHILGAKVTYHDIEAIDPAYYRNLKWMLENDISDVLDLTFSMDADEEKLI LYEKAEVTDCELIPGGRNIRVTEENKHEYVDRVAEHRLTTAIRPQINAFMEGFNELIPR ELISIFNDKEFELLISGLPDIDLDDLKANTEYSGYSIASPVIQWFWEIVQGFSKEDKARF L QFVTGTSKVPLEGFSALQGISGPQRFQIHKAYGSTNHLPSAHTCFNQLDLPEYTSKDQ LQERLLLAIHEANEGFGFG SEQ ID NO: 8 UPL2 CDS; D genome TraesCS5D02G118000:TraesCS5D02G118000.1 SEQ ID NO: 9 UPL2 amino acid; D genome; HECT domain underlined MAAAAMAAHRASFPLRLQQILSGSRXXXXXXXXXXXXPAKVKAFIDRVINIPLHDIAIPL SGFHWEFNKGNFHHWKPLFMHFDTYFKTYISSRKDLLLSDDMSESEPLTKNTILQILR VVQIVLENCQNKTTFAGLEHFKNLLASSDPEVVVAALETLASVVKINPSKLHMNGKLIS CGAINSHLLSLAQGWGSKEEGLGLYSCVVANERNQLEGLCLFPADMENKYDGTQHR LGSTLHFEYNLAPVQDSDQANDKSSNLCVIHMPDLHLRKEDDLSILKQCIDKFNVPPE HRFALFTRIRYAHAFNSPRTCRLYSRISLLSFIVLVQSSDAHDELTSFFTNEPEYINELI RLVRSEDIVPGPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQK AISSLSSPNDTSSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLQDKDPSH MHLVCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGVAEITSVLASD TSKSEDDHLYSQKRLIKALLKALGSATYSPANPARSQSSNDNSLPMSLSLIFQNVGKF GGDIYFSSVTVMSEIIHKDPTCFPALKELGLPDAFLSSVTAGVIPSCKALICVPNGLGAI CLNNQGLESVRETSVLRFLVETFTSRKYLIPMNEGVVLLANAVEELLRHVQSLRSTGV DIIIEIINKLSCPRGDKITEAARAEEKTDMETDVEGRDLVSAMDSGTDGTNDEQFSHLSI FHVMVLVHRTMENSETCRLFVEKGGLQTLLTLLLRPTITQSSGGMPIALHSTMVFKGF TQQHSTPLARAFCSSLKEHLKNALQELDTVFRSCEVTKLEKGAIPSLFIVEFLLFLAAS KDNRWMNALLSEFGDVSRDVLEDIGRVHREVLWQISLFDEKKIEPEASSPSANEAQQ VDAAVGDTDDNRYTSFRQYLDPLLRRRGSGWNIESQVSDLINIYRDMGRAATDSHR VGADRYPSTGLPSSSQDQPSSSSDANAKSEEDKKRSEHSSCCDMMRSLSYHINHLF MELGKAMLLTSRRENSPINLSPSVVSVASNIASIVLEHLNFEGHTISPEREITVATKCRY LGKVVEFIDGILLDRPESCNPIMVNSFYCRGVIQAILTTFEATSELLFAMNRPPSSPME TDSKTGKEEKDTDCSWIYGPLSSYGAAMDHLVTSSFILSSSTRQLLEQPIFSGTVRFP QDAERFMKLLQSKVLKTVLPIWAHPQFPECNLELISSVTSIMRHVYSGVEVKNNVSNI AARLAGPPPDENAISLIIEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEEPPEDDE LARALAMSLGNSDTPVQEEDDRTNDLELEEVNVQLTSMDEVLSSCLRLLQAKETLAF PVRDMLVTISSQNDGQNRVKVLTYLIDHLKQCLVASDPLKNTALSAFFHVLALILHGDT AAREVASKAGLVKVVLNLLCSWELEPREGQTTKVPNWVTSCFLSVDRMLQLEPKLP DVTELDVLKKDNSPTQTSVVIDDSKKKDSESSSSVGLLDLEDQEQLLRICCKCIQKQL PSGTMHAILQLCATLTKVHVAAISFLESGGLHALLSLPTSSLFSGFNSVVSTIIRHILED P HTLQQAMELEIRHSLVTAANRHANPRVTPRNFVQNLAFVVYRDPVIFMKAAQAVCQI EMVGDRPYVVLLKDREKEKSKEKEKDKLVDKDKSSGVATKITSGDMVMASPVSAKG KQSDLSARNMKSHRKPPQTFVTVIEHLLDLVMSFVPPQRAEDQSDGSSSMDMDIDS SSAKGKGKAVAVTHEESKQAIQDATACLAKNAFVLKLLTDVLLTYASSVQVVLRHDAE LSSTRGPTRTSGGIFNHILQHLLPHATKQKKERKPDGDWRYKLATRGNQFLVASSIRS SEGRKRICSEICSIFVEFTDNTGCKPPMLRMDAYVDLLNDILSARSPTGSSLSAESVVT FVEVGLVQCLTKTLQVLDLDHPDSAKIVTGIVKALEVVTKEHVHLADFNAKGENSSKT VLEQNNVDSSSNRFQVLDTTSQPTAMVTDHRETFNAVHASRSSDSVADEMDHDRDI DGGFARDGEDDFMHEIAEDRTGNESTMDIRFDIPRNREDDMAEDEDDSDEDMSGD DGEEVDEDDDDEENNNLEEDDAHQRSHADTDQDDREIDEEEFDEDLLEEEDDDDED EEGVILRLEEGINGINVFDHIEVFGGSNNVSGDTLRVMPLDIFGTRRQGRSTSIYNLLG RASDQGVLDHPLLEEPSMLLPQQRQPENLVEMAFSDRNHENSSSRLDAIFRSLRSG RNGHRFNMWLDDGPQRNGSAAPTVPEGIEELLLSQLRRPMAEHPDEQSTPAVDAQ VNDPPSNFHGPETDAREGSAEQNENNENVDIPAVRSEVDGSASAGPAPPHSDELQR DASNASEHVADMQYERSDTAVRDVEAVSQASSGSGATLGESLRSLDVEIGSVEGHD DGDRHGASDRTPLGDVQAATRSRRPSGNAVPVSSRDISLESVREIPPNTVQESDQN ASEGDQEPNRATGTDSIDPTFLEALPEDLRAEVLSSRQNQVTQTSSEQPQHDADIDP EFLAALPPDIREEVLAQQRAQRLQQQSQELEGQPVEMDAVSIIATFPSEIREEVLLTSP DTLLATLTPALVAEANMLRERFAHRYHSGSLFGMNSRNRRGESSRRGDIIGSGLDRN TGDSSRQTASKLIETVGTPLVDKDALNALIRLLRVVQPIYKGQLQRLLLNLCAHRESRK SLVQILLDMLMLDLQGSSKKSIDATEPSFRLYGCHANITYSRPQSSDGVPPLVSRRVL ETLTYLARNHPNVAKLLLFLQFPCPPTCHTETLDQRRGKAVLVEDGEQQSAFALVLLL TLLNQPLYMRSVAHLEQLLNLLEVVMLNAENEVNQAKLESSAERPSGPENATQDALE DASVAGSSGVKPNADDSGKSSADNISDLQAVLHSLPQAELRLLCSLLAHDGLSDNAY LLVAEVLKKIVALAPFICCHFINELSRSMQNLTVCAMNELHLYEDSEKAILSTSSANGM AVLRVVQALSSLVTSLQERKDPELLAEKDHSDALSQISDINTALDALWLELSNCISKIES SSEYTSNLSPTSANATRVSTGVAPPLPAGTQNILPYIESFFVTCEKLRPGQPDAVQEP STSDMEDASTSSSGQKSSASHTSLDEKHTAFVKFSEKHRRLLNAFIRQNSGLLEKSF SLMLKVPRLIDFDNKRAYFRSKIKHQHDHHHSPVRISVRRAYILEDSYNQLRMRSPQD LKGRLTVHFQGEEGIDAGGLTREWYQLLSRVIFDKGALLFTTVGNDLTFQPNPNSVY QTEHLSYFKFVGRVVGKALFDAQLLDAHFTRSFYKHILGAKVTYHDIEAIDPAYYRNLK WMLENDISDVLDLTFSMDXXXXXXXXXXXXXVTDCELIPGGRNIRVTEENKHEYVDR VAEHRLTTAIRPQINAFMEGFNELIPRELISIFNDKEFELLISGLPDIDLDDLKANTEYS G YSIASPVIQWFWEIVQGFSKEDKARFLQFVTGTSKVPLEGFSALQGISGPQRFQIHKA YGSTNHLPSAHTCFNQLDLPEYTSKDQLQERLLLAIHEANEGFGFG - Maize SEQ ID NO: 10 UPL2 CDS sequence GRMZM2G331368_T02 CDS SEQ ID NO: 11 : UPL2 genome sequence GRMZM2G331368 | 10:20707761..20724390 SEQ ID NO: 12 UPL2 amino acid sequence MAAAAAAMAAHRASFPLRLQQILAGSRAVSPAIKIESEPPANIKAFIDRVVNIPLHDIAI P LSGFCWEFNKGNFHHWRPLFIHFDTYFKTYISSRKDLLLSDDMTEADPMPKNAILKILR VMQIILENCQNRSSFTGLAHLKLLLASSDPEIVVAALETLVALVKINPSKLHMNGKLISC GPINTHLLSLAQGWGSKEEGLGIYSCVVANEGNHQGGLSLFPVDLENKYGGTQHRLG STLHFEYNLGPAQYPGQTSDKGKSSNLCVIHIPDMHLQKEDDLSILKQCVDKFNVPPE HRFALLTRIRYARAFNSARTCRIYSRISLLSFIVLVQSSDAHDELTYFFTNEPEYINELI RL VRSEDSVPGSIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQKAI SSLNSLNDTSSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLRDNDPSHMH LVCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGTADGHNSMVTDA VKSDDNHMYSQKRLIKALLKALGSATYSPGNPARSQSSQDNSLPVSLSLIFQNVDKFG GDIYFSAVTVMSEIIHKDPTCFITLKELGVPDAFISSVTAGVIPSCKALICVPNGLGAIC LN NQGLEAVRETSALRFLVDTFTSRKYLIPMNEGVVLLANAVEELLRHVQSLRSIGVDIIIE I INKLSSSQEYKNNETATLQEKTDMETDVEGRDLVSAMDSSVDGSNDEQFSHLSIFHV MVLVHRTMENSETCRLFVEKGGLHALLTLLLRPSITQSSGGMPIALHSTMVFKGFTQH HSTPLARAFCSSLKEHLKSALKELDKVSNSFDMTKIEKGAIPSLFVVEFLLFLAASKDN RWMNALLSEFGDASREVLEDVGQVHREVLWKISLFEKNKIVAETSSSSSTSEAQQPD MSASDIGDSRYTSFRQYLDPILRRRGSGWNIESQVSDLINMYRDIGRAASDSQRVGS DRYSSLGLPSSSQDQFSSSSDANASTRSEEDKKKSEHSSCFDMMRSLSYHINHLFLE LGKAMLFASRRENSPVNLSPAVISVANNIASIVLEHLNFEGHSVSFERDMTVTTKCRYL GKVVEFVDGMLLDRPESCNSIMVNSFYCRGVIQAILTTFQATSELLFTMSRPPSSPME TDSKTGKDGKEMDSSWIYGPLTSYGAIMDHLVTSSFILSSSTRQLLEQPIFNGSVRFP QDAETFMKLLQSKVLKTVLPIWAHPQFPECNIELISSVMSIMRHVCSGVEVKDTVGNG GARLAGPPPDESAISLIVEMGFSRARAEEALRQVGTNSVEIATDWLFAHPEEPQEEDD ELARALAMSLGNSVTPAQEGDSRSNDLELEEATVQPPPIDEMLRSCLQLLQRKEALAF SVRDMLVTISSQNDGQNRVKVLTYLIDNLKQCVVASEPSNDTALSALLHVLALILHGDT AAREVASKAGLVKVALDLLCSWEVQIRESSMIEVPNWVISCFLSVDQMLQLEPKLPDV TELHVLKRDNSNIKTSLVIDDSKRKDSESLPNVGLLDMEDQFQLLKICCKCIGKQLPSA SMHAILQLSATLTKVHAAAICFLESGGLNALLSLPTSSLFSGFNNMASTIIRHILEDPHT L QQAMELEIRHSLVTAANRHANPRVTPRNFIQNLAFVVYRDPVIFMKAAQSVCQIEMVG DRPYVVLLKDREKERIKEKDKDKSVDKDKATVAVTKVVSGDTAAGSPANSHGKQSDL NSRNVKSHRKPPQSFVTVIEHLLDLLMSFVPPPRPEDQVDVSGTALSSDMDIDCSSAK GKGKAVSVPPEESKHAIQESTASLAKTAFFLKLLTDVLLTYASSIHVVLRHDAELSNMH GPNRTSARLTSGGIFNHILQHFLPHATRQKKERKNDGDWMYKLATRANQFLVASSIRS AEARKRIFSEICSIFLDFTDSSAGYNAPVPRMNVYVDLLNDILSARSPTGSSLSAESAVI FVEAGLVHSLSTMLQVLDLDHPDSAKIVTAVVKALELVSKEHIHSADNAKGVNSSKIAS DSNNVNSSSNRFQALDMTSQPTEMVTDHRETFNAVRTSQISDSVADEMDHDRDMD GGFARDGEDDFMHEMAEDGTGDGSTMEIRIEIPRNREDDMAPAADDTDEDISAEDGE DDEDEDEENNNLEEDDAHRMSHPDTDQEDREMDEEEFDEDLLEEDDEDEDEEGVIL RLEEGINGINVLDHVEVFGGSNNLSGDTLRVMPLDIFGTRRQGRSTSIYNLLGRASDH GVLDHPLLEEPSSTTNFSDQGHPENLVEMAFSDRNHESSSSRLDAIFRSLRSGRNGH RFNMWLDDGPQRNGSAAPAVPEGIEELLISHLRRPTPQPDGQRTPVGGAQENDQPN HGSDAEAREVAPAQQNENSESTLNPLDLSECAGPAPPDSDALQRDVSNASELATEM QYERSDAITRDVEAVSQASSGSGATLGESLRSLEVEIGSVEGHDDGDRHGTSGTSER LPLGDIQAAARSRRPSGNAVPVSSRDMSLESVSEVPQNPDQEPDQNASEGNQEPTR AAGADSIDPTFLEALPEDLRAEVLSSRQNQVTQTSNDQPQDDGDIDPEFLAALPPDIR EEVLAQQRTQRMQQQSQELEGQPVEMDAVSIIATFPSEIREEVLLTSPDTLLATLTPAL VAEANMLRERFAHRYHSSSLFGMNSRNRRGESSRRDIMAAGLDRNTGDPSRSTSKP IETEGAPLVDEDGLKALIRLLRVVQPLYKGQLQKLLVNLCTHRGSRQALVQILVDMLML DLQGFSKKSIDAPEPPFRLYGCHANIAYSRPQSSDGLPPLVSRRVLETLTNLARSHPN VAKLLLFLEFPCPSRCFPEAHDHRHGKAVLLDDGEEQKTFALVLLLNLLDQPLYMRSV AHLEQLLNLLDVVMHNAENEIKQAKLEASSEKPSAPDNAVQDGKNNSDISVSYGSELN PEDGSKAPAVDNRSNLQAVLRSLPQPELRLLCSLLAHDGLSDSAYLLVGEVLKKIVAL APFFCCHFINELARSMQNLTLRAMKELHLYENSEKALLSSSSANGTAVLRVVQALSSL VNTLQERKDPEQPAEKDHSDAVSQISEINTALDSLWLELSNCISKIESSSEYASNLSPA SASAAMLTTGVAPPLPAGTQNLLPYIESFFVTCEKLRPGQPDAVQDASTSDMEDAST SSGGQRSSACQASLDEKQNAFVKFSEKHRRLLNAFIRQNSGLLEKSFSLMLKIPRLIDF DNKRAYFRSKIKHQYDHHHHSPVRISVRRPYILEDSYNQLRMRSPQDLKGRLTVQFQ GEEGIDAGGLTREWYQSISRVIVDKSALLFTTVGNDLTFQPNPNSVYQTEHLSYFKFV GRVVGKALFDGQLLDAHFTRSFYKHILGVKVTYHDIEAIDPSYYKNLKWMLENDISDVL DLTFSMDADEEKLILYEKAEVFAVTDCELIPGGRNIRVTEENKHEYVDRVAEHRLTTAI RPQINAFLEGFNELIPRELISIFNDKELELLISGLPDIDLDDLKTNTEYSGYSIASPVVQ W FWEIVQGFSKEDKARFLQFVTGTSKVPLEGFSELQGISGPQRFQIHKAYGSTNHLPSA HTCFNQLDLPEYTSKEQLQERLLLAIHEANE SEQ ID NO: 13 UPL2 CDS sequence GRMZM2G411536_T03 CDS SEQ ID NO: 14 : UPL2 genome sequence >GRMZM2G411536 | 3:111568547..111585874 SEQ ID NO: 15 UPL2 amino acid sequence MAAAAAAHRASFPLRLQQILAGSRAVSPAIKVESEPPANVKAFIDQVINIPLHDIAIPLS G FRWEFNKGNFHHWKPLFIHFDTYFKTYISSRKDLLLSDDMTEAEPMPKNAILKILIVMQI ILENCQNRSSFTGLEHLKLLLASSDPEIVVAALETLVALVKINPSKLHMNGKLISCGSIN T HLLSLAQGWGSKEEGLGIYSCVVANEGNQQGGLSLFPVDLESKYQHRLGSTLHFEYN LGSAQYPDQTSDKGKSSNLCVIHIPDMHLQKEDDLSILKQCVDKFNVPPEHRFALLTRI RYARAFNSTRTCSIYSRISLLSFIVLVQSSDAHDELTYFFTNEPEYINELIRLVRSEDSV P GPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQKAIFSLNSPNDA SSPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLRDNDSSHMHLVCLAVKTL QKLMEYSSPAVSLFKDLGGVDLLSRRLHVEVQRVIGTADGHNSMVTDAVKSKEDHLY SQKRLIKALLKALGSSTYSPGIPARSQSSQDNSLPVSLSLIFQNVEKFGGDIYFSAVTV MSEIIHKDPTCFPALKELGLPDAFLSSVTAGVIPSCKALICVPNGLGAICLNNQGLEAVR ETSALRFLVYTFTSRKYLIPLNEGVVLLANAAEELLRHVQSLRSIGVDIIIEIINKLSSS LK DRNNETAILEEKTDMETDVEGRDLVGGMDSSVEGSNDEQFSHLSIFHVMVLVHRTME NSETCRLFVEKGGLNALLTLLLRPSITLSSGGMPIALHSTMVFKGFTQHHSTPLARAFC SSLREHLKSALGELDKVSNSFEMTKIEKGAIPSLFVVEFLLFLAASKDNRWMNALLSEF GDASREVLEDIGRVHREVLWKISLFEENKIDAEISLSSSTSEAQQPDLSASDIGDSRYT SFRQYLDPILRRRGSGWNIESQVSDLINMYRDIGSAASDSQRVGSDRYSSLGLPSSS QDQSSSSSDANVSTRSEEEKKNSEHSSCFDMMRSLSYHINHLFMELGKAMLLTSRRE NSPVNLSPSVISVANNIASIMLEHLNFEGHSVSSEREMTVTTKCQYLGKVAEFIDGILLD RPESCNPIMVNSFYCCGVIQAILTTFQATSELLFTMSRPPSSPMETDSKTGKDGKDMN SSWIYGPLISYGAIMDHLVTSSFILSSSTRQLLEQPIFNGSVRFPQDAERFMKLLQSKVL KTVLPIWAHPEFPECNIELISSVMSIMRHVCSGVEVKNTVGNDGARLTGPPPDESAISL IVEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEDELARALAMSLGNSDTPAQEGN GRSNDLELEEVTVQLPPIDEMLHSCFQLLQTKEALAFPVRDMLVTISSQKDGQNRVKV LTYLIENLKQCVVASEPSNDTALSALLHVLALILHGDTAAREVASKAGIVKVALDLLSSW ELELRESGMIEVPNWVSSCFLSVDQMLQLEPKLPDVTELDVLKRDNSNIKTSLVIDESK KKDSESLSSVGLLDMEDQYQLLKICCKCIEKQLPSASMHAILQLSATLTKVHAAAICFLE SGGLNALLSLPTSSLFSGFNSVASTIIRHILEDPHTLQQAMELEIRHSLVTAANRHTNPR VTPRNFVQNLAFVIYRDPVIFMKAVQSVCQIEMVGDRPYVVLLKDREKERSKEKDKDK SVDKDKATGAVAKVVSGDTAAGSPANAQGKQSDLNSRNVKSHRKPPQSFVTVIEHLL DLVMSFVPPPRPEDQADVVSGTALSSDMDIDCSSAKGKGKAVSVPPEESKHAIQEST ASLAKASFFLKLMTDVLLTYTSSIQVVLRHDADLSNMHGPNRTNSGLISGGIFNHILQH FLPHATKQKKERKSDGDWMYKLATRANQFLVASSIRSAEARKKVFSEICNILLDFTDS SAAYKAPVARMNVYVDLLNDILSARSPTGSSLSAESAVTFVEVGLAPSLLKMLQNLDL DHPDSAKIVTAIVKALELVSKEHVHSADNAKGENSSKIASDSNNVNSSPNRFQALDMT SQPTEMITDHRETFNADQTSQSSDSVADEMDHDRDMDGGFARDGEDDFMHEMAGD GTGNESTMEIRFEISRNRDDMADDDDDDDNTDEDMSAEDDEEVNEDDEDEDEENNN LEEDDAHQMSHPDTDQEDREMDEEEFDEDLLEDDDDEDEEGVILRLEEGINGINVFD HIEVFGGSNNLSGDTLRVMPLDIFGTRRQGRSTSIYNLLGRASDHGVLDHPLLEEPSS TLNFSHQEQPENLVEMAFSDRNHEGSSSRLDAIFRSLRSGRNGHRFNMWLDDGPQR NGSAAPAVPEGIEELLISHLSRPTQQPGAQTVGGTQENDQPKHGSAAEAREGSPAQ QNENSENTTNPVDLSESAGPAPPDSDALQRVVSNASIEHATEMQYERSDTITRDVEA VSQASSGSGATLGESLRSLEVEIGSVEGHDDGDRHGTSGASERLPLGDIQAAARSRR PSGNAVAVSSRDMSLESVSEVPQNPDQEPDHNASEGNQEPRGVGADTIDPTFLEAL PEDLRAEVLSSRQNQVTQTSNDQPQNDGDIDPEFLAALPLDIREEVLAQQRSQRIQQ QSQELEGQPVEMDAVSIIATFPSEIREEVLLTSPDTLLATLTPALVAEANMLRERFAHR YHSSSLFGMNSRNRRGESSRRDIMAAGLDRNTGDPSRSTSKPIEIEGAPLVDEDGLK ALIRLLRVVQPLYKGQLQRLLVNLCTHRDNRQALVQILVDMLMLDLQGFSKKSVDASE PPFRLYGCHANITYSRPQSSNGVPPLVSRRVLETLTNLARSHPNVAKLLLFLEFPCPS RCRSEAHDHRHGKAVLEDGEERKAFAVVLLLTLLNQPLYMRSVAHLEQLLNLLEVVM HNAENEINQAKLEASSEKPSENAVKDVKDNTSISDSYGSKSNPEDGSKALAVDNKSNL RAVLRSLPQSELRLLCSLLAHDGLSDSAYLLVGEVLKKIVALAPFFCCHFINELARSMQ SLTFCAMKELRLYENSEKALLSSTSANGTAILRVVQALSSLVSTLQDRKDPEQPAEKD HSDAVSQISEINTALDALWLELSNCISKIESSSEYASNLTPASASAATLTAGVAPPLPAG TQNILPYIESFFVTCEKLRPGQPDAVQEASTSDMEDASTSSGGQRSYSCQASLDEKQ NAFVKFSEKHRRLLNAFIHQNPGLLEKSFSLMLKIPRLIDFDNKRAYFRSKIKHQYDHH HHNPVRISVRRSYILEDSYNQLRMRSPQDLKGRLTVHFQGEEGIDAGGLTREWYQSL SRVIFDKSALLFTTVGNDLTFQPNPNSVYQTEHLSYFKFAGRVVGKALFDGQLLDAHF TRSFYKHILGVRVTYHDIEAIDPAYYKNLKWMLENDISDVLDLTFSMDADEEKLILYEKA EVFAVTDCELIPGGRNIRVTEENKHQYVDRVAEHRLTTAIRPQINAFLEGFNELIPRELI SIFNDKELELLISGLPDIDLDDLKANTEYSGYSIASPVIQWFWEIVQGFSKEDKARFLQF VTGTSKVPLEGFSALQGISGPQRFQIHKAYGSTNHLPSAHTCFNQLDLPEYTSKEQLQ ERLLLAIHEANEGFGFG - Millet SEQ ID NO: 16 UPL2 CDS sequence Seita.3G302600.1 SEQ ID NO: 17 UPL2 genome sequence >Seita.3G302600 | scaffold_3:34832073..34846959 SEQ ID NO: 18 UPL2 amino acid sequence MAAAAMAAHRASFPLRLQQILAGSRAVSPAIKVESEPPAKVKEFIDRVINIPLHDIAIPL S GFRWEFNKGNFHHWKPLFMHFDTYFKTYLSSRKDLLLSDDMAEADPLPKNTILKILRV MQIVLENCHNKSSFAGLEHFKLLLASSDPEIVVAALETLAALVKINPSKLHMNGKLISCG AINTHLLSLAQGWGSKEEGLGLYSCVVANEGNQQEGLSLFPADMENKYDGSQHRLG STLHFEYNLSPTQDPDQTSDKSKSSNLCVIHIPDMHLQKEDDLSILKQCVDKFNVPPE HRFALLTRIRYARAFNSARTCRLYSRISLLSFIVLVQSSDAHDELTSFFTNEPEYINELI R LVRSEDFVPGPIRALAMLALGAQLAAYASSHERARILSGSSIISAGGNRMVLLSVLQKAI SSLNSPNDTSAPLIVDALLQFFLLHVLSSSSSGTTVRGSGMVPPLLPLLQDNDPSHMH LVCLAVKTLQKLMEYSSPAVSLFKDLGGVELLSQRLHVEVQRVIGTVDGHNSMVTDA VKSEEDVLYSQKRLIRALLKALGSATYSPGNPARSQSSQDNSLPVSLSLIFQNVEKFG GDIYFSAVTVMSEIIHKDPTCFPALKELGLPDAFLSSVTAGVIPSCKALICVPNGLGAIC L NNQGLEAVRETSALRFLVDTFTSRKYLMPMNEGVVLLANAVEELLRHVQSLRSTGVDI IIEIINKLCSSQEYRSNEPAISEEEKTDMETDVEGRDLVSAMDSSAEGMHDEQFSHLSI FHVMVLVHRTMENSETCRLFVEKGGLQALLALLLRPSITQSSGGMPIALHSTMVFKGF TQHHSTPLARAFCSSLREHLKSALEELDKVSSSVEMSKLEKGAIPSLFVVEFLLFLAAS KDNRWMNALLSEFGDASREVLEDIGRVHREVLYKISLFEENKIDSEASSSSLASEAQQ PDSSASDIDDSRYTSFRQYLDPLLRRRGSGWNIESQVSDLINIYRDIGRAASDSQRVD SDRYSNQGLPSSSQDQSSSSSDANASTRSEEDKKKSEHSSCCDMMRSLSYHISHLF MELGKAMLLTSRRENSPVNLSPSVISVAGSIASIVLEHLNFEGRSVSSEKEINVTTKCR YLGKVVEFVDGILLDRPESCNPIMVNSFYCRGVIQAILTTFQATSELLFTMSRPPSSPM DTDSKTGKDGKETDSSWIYGPLSSYGAVMDHLVTSSFILSSSTRQLLEQPIFNGSVRF PQDAERFMKLLQSKVLKTVLPIWAHSQFPECNIELISSVTSIMRHVCTGVEVKNTVGN GSGRLAGPPPDENAISLIVEMGFSRARAEEALRQVGTNSVEIATDWLFSHPEEPQEED DELARALAMSLGNSDTSAQEEDSRSNDLELEEETVQLPPIDEILYSCLRLLQTKEALAF PVRDMLVTISTQNDGQNREKVLTYLIENLKQCVMASESLKDTTLSALFHVLALILHGDT AAREVASKAGLVKVALDLLFSWELEPRESEMTEVPNWVTSCFLSVDRMLQLEPKLPD VTELDVLKKDNSNAKTSLVIDDSKKKDSESLSSVGLLDLEDQKQLLKICCKCIEKQLPS ASMHAILQLCATLTKVHAAAICFLESGGLNALLSLPTSSFFSGFNSVASTIIRHILEDPH T LQQAMELEIRHSLVTAANRHANPRVTPRNFVQNLAFVVYRDPVIFMKAAQAVCQIEMV GDRPYVVLLKDREKERSKEKDKDKSADKDKATGAVTKVTSGDIAAGSPASAQGKQPD LSARNVKPHRKPPQSFVTVIEHLLDLVISFVPPPRSEDQADVSGTASSSDMDIDCSSA KGKGKAVAVAPEESKHAAQEATASLAKSAFVLKLLTDVLLTYASSIQVVLRHDADLSS MHGPNRPSAGLVSGGIFNHILQHFLPHAVKQKKDRKTDGDWRYKLATRANQFLVASS IRSAEGRKRIFSEICNIFLDFTDSSTAYKAPVSRLNAYVDLLNDILSARSPTGSSLSAES AVTFVEVGLVQSLSRTLQVLDLDHPDSAKIVSAIVKALEVVTKEHVHSADLNAKGDNSS KIASDSNNVDLSSNRFQALDTTSQPTEMITDDRETFNAVQTSQSSDSVEDEMDHDRD MDGGFARDGEDDFMHEMAEDGTGNESTMEIRFEIPRNREDDMADDDEDTDEDMSA DDGEEVDEDDEDEDDDEENNNLEEDDAHQMSHPDTDQDDREMDEEEFDEDLLEDD DEDEDEEGVILRLEEGINGINVFDHIEVFGGSNNLSGDTLRVMPLDIFGTRRQGRSTSI YNLLGRASDHGVLDHPLLEEPSSMLNLPHQGQPENLVEMAFSDRNHESSSSRLDAIF RSLRSGRNGHRFNMWLDDSPQRSGSAAPAVPEGIEELLISHLRRPTPEQPDDQRTPA GGTQENDQPTNVSEAEAREEAPAEQNENNENTVNPVDVLENAGPAPPDSDALQRDV SNASEHATEMQYERSDAVVRDVEAVSQASSGSGATLGESLRSLEVEIGSVEGHDDG DRHGASGASDRLPLGDMQATARSRRPSGSAVQVGGRDISLESVSEVPQNSNQEPD QNANEGNQEPARAADADSIDPTFLEALPEDLRAEVLSSRQNQVAQTSNDQPQNDGDI DPEFLAALPPDIREEVLAQQRAQRLQQQSQELEGQPVEMDAVSIIATFPSEIREEVLLT SPDTLLATLTPALVAEANMLRERFAHRYHSSSLFGMNSRNRRGESSRREIMAAGLDR NGDPSRSTSKPIETEGAPLVDEDALRALIRLLRVVQPLYKGQLQRLLLNLCAHRDSRK SLVQILVDMLMLDLQGSSKKSIDATEPPFRLYGCHANITYSRPQSSDGVPPLVSRRVL ETLTYLARSHPNVAKLLLFLEFPSPSRCHTEALDQRHGKAVVEDGEEQKAFALVLLLTL LNQPLYMRSVAHLEQLLNLLEVVMLNAETQINQAKLEASSEKPSGPENAVQDSQDNT NISESSGSKSNAEDSSKTPAVDNENILQAVLQSLPQPELRLLCSLLAHDGLSDNAYLLV AEVLKKIVALAPFFCCHFINELARSMQNLTLCAMKELRLYENSEKALLSSSSANGTAILR VVQALSSLVTTLQEKKDPELPAEKDHSDAVSQISEINTALDALWLELSNCISKIESSSEY VSNLSPAAANAPTLATGVAPPLPAGTQNILPYIESFFVTCEKLRPGQPDAVQEASTSD MEDASTSSGGLRSSGGQASLDEKQNAFVKFSEKHRRLLNAFIRQNPGLLEKSFSLML KIPRLIDFDNKRAYFRSKIKHQHDHHHSPVRISVRRAYILEDSYNQLRMRSPQDLKGRL TVHFQGEEGIDAGGLTREWYQSLSRVIFDKGALLFTTVGNDLTFQPNPNSVYQTEHLS YFKFVGRVVGKALFDGQLLDAHFTRSFYKHILGVKVTYHDIEAIDPAYYKNLKWMLEN DITDVLDLTFSMDADEEKLILYEKAEVTDSELIPGGRNIKVTEENKHEYVDRVVEHRLTT AIRPQINAFLEGFNELIPRELISIFNDKELELLISGLPDIDLDDLKANTEYSGYSIASPV IQ WFWEIVQGFSKEDKARFLQFVTGTSKVPLEGFSALQGISGPQRFQIHKAYGSTNHLP SAHTCFNQLDLPEYTSKEQLQERLLLAIHEANEGFGFG - Soybean SEQ ID NO: 19 CDS UPL2 KRH72480 ATGACAACCCTAAGATCAAGTTGGCCTTCGAGGCTGCGCCAACTTCTGTCCAGCGGGGGC GCCATTGG TCCTTCAGTCAAGGTGGACTCCGAGCCCCCTCCTAAGATCAAAGCCTTCATTGAGAAGAT CATCCAGTG TCCATTACAAGATATTGCCATACCACTTTCTGGCTTTCGGTGGGAGTACAATAAGGGGAA TTTTCATCAC TGGAGACCGCTGTTGCTTCATTTTGATACATACTTCAAGACTTATTTGTCGTGTAGAAAT GATCTGACGT TGTTAGATAATCTAGAAGATGACAGCCCTTTACCAAAACATGCAATTCTGCAAATATTGC GAGTGATGC AAAAAATTTTAGAGAACTGTCCAAACAAGAGTTCCTTTGATGGCTTAGAGCATTTCAAGC TTTTACTTGC ATCAACAGATCCTGAGATTCTTGTTGCTACATTGGAAACTCTTTCTGCACTTGTAAAAAT TAATCCCTCTA AGCTTCATGGAAGTCCAAAGATGATTTGCTGTGGTTCGGTGAACAGCTATCTTTTGTCCT TAGCACAAG GCTGGGGAAGCAAGGAGGAGGGCCTAGGATTGTACTCTTGTGTTATGGCAAATGAGAAAG CCCAAGA TGAAGCACTGTGCTTGTTTCCTTCTGAAGAGATTGGTCATGACCAATCAAATTGCCGCAT AGGCACTAC CCTTTATTTTGAATTGCATGGTCCCAATGCCCAAAGCAAGGAACATAGTGCAGATGCAGT TTCCCCTAG CTCAACAGTTATACACATGCCAGATTTGCATCTGCGCAAAGAAGATGATTTGTCATTGAT GAAGCAGTG CACTGAAGAATTTAGCATTCCTTCTGAGCTCAGGTTTTCCTTGCTCACTAGAATCAGATA TGCTCGTGCC TTTCGTTCTCCTAGAATATGCAGGCTTTACAGCCGGATTTGCCTACTTTCTTTCATTGTT CTGGTGCAGTC TGGTGATGCTCAGGAAGAACTTGTCTCCTTTTTTGCTAATGAACCAGAATATACAAATGA ATTAATTAGA ATTGTACGATCAGAGGAAGTTATATCTGGATCTATCAGGACACTTGCAATGCTTGCTCTA GGAGCTCAA TTAGCAGCATATACATCATCGCATCATCGGGCACGGATCAGTGGATCTAGTTTAACTTTT GCTGGTGGG AACCGCATGATACTCCTAAATGTGCTCCAGAGGGCTATTTTGTCATTGAAGATTTCTAAT GATCCATCAT CCCTTGCCTTTGTTGAAGCACTTCTTCAGTTCTATCTGCTCCATGTGGTCTCAACCTCAA CTTCTGGTAAT AATATTAGAGGTTCTGGCATGGTGCCAACATTCTTGCCGTTGCTGGAGGATTTTGATCCT ACACATATTC ATCTAGTCTGTTTTGCTGTGAAAACTCTTCAGAAGCTTATGGATTATAGTAGCTCAGCTG TATCATTGTT TAAAGAATTGGGGGGCATTGAACTTTTGGCTCAGAGGTTACAGAAAGAGGTACACAGAGT CATTGGTT TGGTTGGAGGAACTGATAACATGATGCTTACTGGTGAAAGCTTGGGACATAGTACTGATC AATTGTACT CCCAGAAGAGACTCATAAAGGTCTCCCTTAAGGCGCTTGGTTCTGCAACATACGCACCTG CAAACTCTA CCAGATCTCAACATTCTCAAGACAGTTCATTACCTATAACTCTAAGCTTGATTTTTAAGA ATGTAGATAA GTTTGGAGGTGACATTTATTATTCAGCTGTTACTGTTATGAGTGAAATAATCCACAAAGA TCCTACCTTT TTTTCTGCTCTGCATGAAATAGGTCTTCCTGATGCGTTTTTATTGTCAGTTGGATCTGGA ATACTTCCATC ATCAAAGGCTTTGACATGCATTCCAAATGGTCTTGGGGCCATTTGTCTTAATGCCAAAGG GTTAGAGGC CGTTAGAGAATCTTCATCGCTACGGTTCCTTGTTGACATTTTCACTAGCAAGAAGTATGT CTTAGCCATG AATGAGGCTATTGTTCCTTTGGCAAATGCTGTGGAGGAACTTCTACGCCATGTATCTACA TTGAGAAGC ACTGGTGTTGATATTATCATTGAAATCATCCATAAGATCACATCTTTTGGGGATGGAAAT GGTGCAGGA TTTTCTGGAAAAGCTGAGGGCACCGCCATGGAAACAGATTCTGAAAACAAAGAAAAAGAA GGCCATTG TTGCATTGTAGGCACATCATATTCGGCTGTAGAAGGGATAAGTGATGAGCAGTTTATTCA GCTATGTGT CTTTCATTTGATGGTATTAGTTCATAGGACTATGGAAAATGCCGAGACATGCCGGTTGTT TGTGGAAAA ATCAGGAATTGAAGCTTTATTGAATTTGTTATTACGACCCACTATTGCACAATCCTCAGA TGGCATGTCT ATTGCTTTACATAGCACAATGGTATTTAAAGGGTTTGCTCAACATCATTCAATTCCTCTG GCACATGCCTT CTGTTCTTCTCTTAGAGAGCACTTAAAGAAAACTTTAGTGGGGTTTGGTGCAGCATCAGA ACCTTTGTT GCTGGATCCAAGGATGACAACTGATGGTGGCATCTTTTCTTCACTTTTCCTGGTTGAGTT CCTTCTATTTC TTGTGGCATCGAAAGACAATCGTTGGGTGACTGCCTTGCTTACAGAATTTGGAAATGAGA GTAAGGAT GTTCTTGAAGACATTGGATGCGTTCACCGTGAAGTTCTGTGGCAAATTTCTCTACTTGAA AATAGAAAA CCTGAGATTGAGGAAGATGGTGCTTGTTCTTCTGATTCACAACAGGCTGAAGGGGATGTA AGTGAAAC TGAAGAGCAAAGGTTCAATTCTTTCAGGCAGTATCTTGACCCATTATTGAGAAGGAGAAC ATCAGGAT GGAGCATTGAATCCCAGTTTTTTAACCTTATAAACCTGTATCGAGATTTGGGCCGTTCCA CTGGTTCTCA AAATAGATTAGTTGGTCCGAGGTCAAGTTCTAGTAATCAGGTACAGCATTCTGGGTCAGA TGATAATTG GGGGACTGCTAATAAGAAGGAATCTGACAAGCAGAGAGCATATTATACATCTTGTTGTGA CATGGTCA GATCACTTTCATTTCACATTACCCATTTGTTCCAAGAGTTAGGAAAAGTAATGTTGCTAC CTTCACGTCG GCGTGATGATGTTGTGAATGTAAGTCCTGCTTCAAAATCAGTGGCTTCTACATTTGCATC CATTGCTTTT GATCACATGAATTATGGTGGCCGTTGTGTAAATCTTTCGGGAACAGAAGAATCCATATCA ACAAAATGT CGATATTTTGGGAAAGTGATTGATTTTATGGATAATGTTCTAATGGAGAGGCCAGATTCA TGCAATCCT ATTATGCTGAATTGCTTGTATGGACGTGGAGTTATTGAAATTGTATTAACTACCTTTGAA GCTACCAGTC AGCTGCTCTTTACAGTTAATCGGGCCCCTGCCTCGCCCATGGATACTGATGATGCAAATG CAAAGCAAG ACGACAAGGAAGATACAGATAATTCATGGATTTATGGTTCTTTAGCTAGTTATGGGAAAT TGATGGACC ATCTAGTGACCTCCTCTTTTATATTATCATCATTCACAAAGCATTTGCTTGCACAGCCCC TTACTAATGGT GATACACCTTTCCCAAGGGATGCTGAGACTTTTGTGAAGGTCCTTCAATCCAGAGTGTTG AAGACTGTA CTTCCTGTTTGGACTCATCCCAAGTTTGTTGACTGTAGTTATGAATTTATTTCTACAGTT ATTTCTATCATT AGGCATGTCTATACAGGTGTTGAAGTAAAAAATGTGAATGGCAGTGCTGGTGCTCGCATT ACTGGGCC GCCTCCTAATGAAACAACTATTTCAACCATTGTAGAAATGGGGTTTTCCAGGTCTAGAGC AGAAGAAGC TTTGAGGCAAGTTGGGTCAAATAGTGTGGAGTTGGCAATGGAGTGGTTGTTCTCTCATCC AGAGGAGG CACAAGAAGATGATGAACTTGCCCGTGCACTTGCCATGTCCCTTGGAAACTCTGAATCAG ATTCAAAGG ATGCAGTTGCTAATGACAATGCCCTGCAGCTTGAGGAAGAGATGGTCCAACTTCCTCCTG TTGATGAGT TGTTATCTACTTGTACAAAACTTTTGTCGAAGGAACCACTTGCTTTTCCAGTCCGTGACT TGCTTGTGAT GATATGCTCTCAGGATGATGGTCAACATAGATCTAATGTGGTCTCATTTATTGTGGAACG GATCAAAGA ATGTGGTTTGGTTCCTAGCAATGGAAATTATGCCATGCTGGCTGCTCTTTTTCATGTTCT AGCTTTAATTC TTAATGAGGATGCTGTGGCTAGGGAAGCTGCTTCTACAAGTGGTTTAATCAAAATTGCCT CAGATCTAC TCTACCAGTGGGATTCTAGTCTTGATATCAAGGAGAAACATCAGGTACCAAAATGGGTGA CTGCTGCTT TCCTTGCATTAGACAGATTGTTGCAAGTGGATCAAAAATTGAATTCTGAAATCGCAGAGC AGTTGAAGA AGGAAGCTGTGAATAGCCAGCAGACATCAATTACCATTGATGAAGACAGGCAAAACAAGA TGCAGTCT GCATTGGGACTCTCTATGAAGTATGCAGATATACATGAACAGAAGAGACTTGTTGAGGTT GCTTGTAGT TGTATGAAGAATCAACTTCCATCCGACACAATGCATGCTGTTCTGCTACTATGTTCCAAT CTTACAAGGA ATCATTCTGTAGCTCTTACTTTTTTGGATTCTGGTGGTTTAAGTCTACTTCTTTCTTTGC CAACCAGCAGTC TCTTCCCTGGGTTTGACAATGTTGCTGCTAGTATTGTTCGTCATGTTCTTGAAGATCCTC AAACGCTCCAT CAAGCAATGGAATCTGAGATAAAACATAGTCTTGTAGTTGCATCTAACCGGCATCCAAAT GGAAGGGT CAATCCTCATAATTTCCTTTTAAATTTAGCTTCTGTGATTTCTCGGGATCCAGTAATTTT TATGCAAGCTG CTCAATCTGTGTGCCAAGTTGAAATGGTAGGTGAGAGGCCATACATTGTCTTGCTGAAAG ATAGGGAT AAAGACAAAGCTAAGGATAAAGAAAAGGATAAGGATAAAACATTGGAGAAAGATAAAGTA CAGAACA TTGATGGGAAGGTTGTTTTGGGAAATACTAACACGGCACCTACTGGCAATGGCCATGGCA AAATTCAA GATTCAAATACCAAGAGTGCCAAAGGTCACAGAAAACCTACCCAAAGTTTTATTAATGCA ATAGAACTT CTTCTTGAATCTGTATGCACTTTTGTTCCTCCCTTGAAGGGTGACATTGCCTCAAATGTT CTTCCTGGCAC CCCAGCATCAACCGATATGGACATTGATGCCTCCATGGTTAAGGGAAAAGGAAAAGCAGT TGCCACTG ATTCTGAGGGCAATGAAACTGGTAGTCAGGATGCTTCTGCATCACTTGCAAAGATTGTCT TCATTCTAA AGCTTCTGACAGAGATACTATTGATGTATTCATCATCTGTTCATGTTTTACTTAGACGAG ATGCTGAAAT GAGCAGCATTAGAGGTTCTTATCAAAAGAGTCCTGCAGGTTTAAGCATGGGTGGGATATT CTCTCATAT TCTTCATAATTTTCTTCCATATTCTCGAAACTCCAAAAAGGACAAGAAAGCTGATGGTGA TTGGAGGCA GAAACTAGCAACCAGGGCCAACCAGTTTATGGTGGGTGCTTGTGTTCGATCTACAGAGGC AAGGAAGA GGGTTTTTGGTGAGATTTGTTGTATCATCAATGAATTTGTTGATTCATGTCATGGCATTA AGCGTCCAGG AAAAGAAATTCAGGTTTTTGTTGATCTACTAAATGATGTTTTGGCTGCTCGTACACCCGC TGGTTCATCC ATTTCAGCTGAGGCCTCTACCACTTTTATTGATGCTGGTTTGGTTAAATCATTCACATGT ACTCTACAAGT TTTGGACCTTGACCATGCTGATTCATCTGAAGTTGCTACGGGTATTATTAAAGCTCTTGA GTTGGTAACC AAGGAGCATGTCCAATTAGTTGATTCTAGTGCAGGGAAGGGTGATAATTCAGCAAAGCCT TCTGTTCTA AGTCAACCCGGAAGAACAAATAATATTGGTGACATGTCTCAGTCCATGGAGACATCACAA GCCAATCCT GATTCCCTTCAAGTTGACCGTGTTGGGTCTTATGCAGTTTGCTCCTATGGTGGGTCTGAA GCTGTTACTG ATGATATGGAACATGATCAAGATCTTGATGGGAGCTTTGCTCCTGCTAATGAGGATGATT ACATGCATG AAAATTCTGAGGATGCAAGAGATCTTGAAAATGGAATGGAAAATGTGGGTCTACAATTTG AAATCCAA TCTCATGGCCAAGAAAATCTTGATGAGGATGACGATGAGGACGATGATATGTCTGAAGAT GAAGGTGA GGATGTAGATGAAGATGAGGATGATGATGAGGAACACAATGATTTGGAAGAAGTCCATCA TTTGCCAC ATCCTGACACAGATCAAGATGAGCATGAGATTGATGATGAAGATTTTGATGATGAAGTGA TGGAGGAA GAGGATGAGGATGACGAGGAAGATGAAGATGGTGTTATACTGCAACTCGAGGAGGGGATT AATGGA ATTAATGTTTTTGATCATATTGAGGTTTTTGGCAGAGATAATAGTTTTGCAAATGAAGCT TTTCAAGTGA TGCCGGTTGAGGTTTTTGGATCCAGACGTCAGGGGAGGACAACATCTATTTATAGTCTTT TGGGAAGAA CTGGTGATACCGCTGTGCCTTCTCGTCACCCACTCTTGCTTGAACCTTCTTCATTCCCCC CACCTACAGGG CAATCAGATAGTTCATTGGAGAACAACTCATTGGGTTTGGATAATATATTTCGATCGCTG AGGAGTGGA CGCCATGGACAGCGTTTGCACTTGTGGACTGATAATAACCAACAAAGTGGTGGGACAAAC ACTGTTGT TGTACCCCAAGGCCTTGAGGATTTGCTTGTCACTCAATTAAGGCGACCAATCCCTGAAAA GTCATCCAA TCAGAACATTGCAGAAGCAGGTTCTCATGGTAAAGTTGGAACGACCCAGGCACAAGATGC AGGGGGT GCAAGGCCAGAAGTCCCTGTTGAAAGTAATGCTGTTCTGGAAGTTAGTACTATAACTCCC TCGGTTGAT AACAGTAACAATGCGGGTGTCAGACCAGCTGGGACTGGACCTTCACATACAAATGTTTCA AACACACA CTCACAGGAAGTTGAGATGCAATTTGAACATGCTGATGGAGCTGTGAGGGATGTTGAAGC TGTCAGCC AGGAGAGTAGTGGTAGTGGTGCAACTTTTGGTGAAAGCCTTCGGAGCTTGGATGTTGAGA TTGGAAGT GCTGATGGCCATGATGATGGTGGTGAAAGGCAGGTTTCTGCTGATAGGGTGGCAGGTGAT TCGCAGG CAGCACGCACAAGAAGAGCAAATACGCCTTTGAGTCACATTTCTCCTGTGGTTGGAAGAG ATGCGTTCC TTCACAGTGTAACTGAAGTTTCAGAAAATTCAAGCCGTGATGCAGATCAAGATGGTGCAG CAGCAGAG CAGCAGGTGAACAGTGATGCAGGATCAGGAGCTATTGATCCTGCTTTTCTGGATGCTCTT CCTGAGGA GCTGCGTGCCGAACTCCTTTCAGCTCAGCAGGGTCAAGTGGCTCAGCCATCAAATGCTGA GTCTCAAAA CACTGGGGATATTGATCCAGAGTTCCTTGCAGCTCTTCCAGCTGATATTCGAGCAGAAAT TCTAGCTCA GCAGCAAGCACAGAGGCTGCATCAATCTCAGGAGCTGGAAGGCCAACCTGTGGAAATGGA TACAGTC TCAATAATTGCAACTTTTCCATCAGATTTACGAGAAGAGGTTCTGTTGACGTCACCAGAT ACTATCCTTG CCAATCTTACACCTGCTCTTGTTGCTGAGGCAAATATGTTGCGGGAGAGGTTTGCACACC GTTACAGTC GTACCCTCTTTGGTATGTATCCTAGAAGTCGTAGAGGGGAGACTTCAAGACGTGAAGGTA TTGGTTCTG GTCTGGATGGAGCAGGGGGAACCATTTCTTCTCGCCGTTCCAATGGAGTTAAGGTTGTTG AAGCTGAT GGAGCACCACTAGTTGACACAGAAGCTTTGCATGCTATGATTCGGTTGTTACGCGTAGTG CAGCCACTC TATAAAGGCCAACTCCAGAGGCTTCTATTAAATCTTTGTGCCCATAGTGAAACAAGAACC TCTCTGGTG AAAATTCTGATGGACTTGCTAATGCTTGATGTAAAAAGGCCTGTCAGTTATTTTAGTAAA GTTGAGCCA CCATATAGATTATATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCAATCTTTTGAT GGAGTTCCCC CATTGCTGTCTCGTAGAATACTTGAAACTCTCACTTATCTTGCTCGCAATCATCTGTATG TGGCAAAAATT TTGCTTCAGTGTTGGCTACCAAATCCTGCAATAAAAGAACCAGATGATGCACGGGGCAAA GCCGTGAT GGTTGTTGAAGATGAAGTAAATATAGGTGAAAGTAATGATGGGTACATCGCCATTGCAAT GCTATTGG GTCTCTTGAACCAACCACTTTATTTGAGGAGCATAGCCCACCTTGAGCAGCTGCTAAATT TACTGGATGT TATCATTGACAGTGCTGGAAACAAGTCATCTGACAAATCCTTGATATCTACTAACCCATC ATCAGCTCCA CAAATTTCTGCCGTGGAAGCCAATGCGAATGCAGATTCTAATATTTTATCTTCTGTGGAT GATGCATCTA AAGTTGATGGTTCCTCCAAACCAACGCCCTCTGGCATAAATGTTGAATGTGAGTCACATG GAGTGTTGA GTAATCTTTCAAATGCAGAACTCCGGCTCCTGTGCTCACTGCTTGCACAAGAAGGTTTGT CAGATAATG CATATAATCTTGTTGCCGAGGTAATGAAGAAATTGGTGGCCATTGCTCCAACACATTGTG AGCTTTTTGT CACTGAGCTGGCAGAAGCAGTTCAAAAGTTGACTTCATCTGCAATGAATGAGTTACGTGT CTTTAGTGA AGCAATGAAAGCTCTGCTTAGTACCTCTTCTACTGATGGAGCTGCAATTCTGAGAGTTTT GCAAGCCTTG AGTTCCCTTGTCACCTTACTGACGGAGAAAGAGAATGACAGAGGTACTCCTGCTCTATCT GAGGTTTGG GAAATCAATTCAGCATTAGAGCCCTTGTGGCATGAGCTTAGCTGTTGCATAAGCAAGATA GAATCCTAC TCAGAGTCTGCATCTGAGATTTCGACATCTTCTAGTACCTTTGTGTCTAAACCATCTGGT GTAATGCCTC CACTTCCTGCTGGCTCTCAAAATATCTTACCATACATTGAATCTTTCTTTGTGGTTTGTG AGAAATTGCAT CCTGCTCAGCCAGGTGATAGTCATGACTCAAGTATCCCTGTTATTTCTGATGTTGAGTAT GCCACCACAT CTGCAACTCCCCAGAAAGCATCTGGAACTGCTGTGAAAGTAGATGAGAAACATATGCCTT TTGTCCGGT TCTCAGAGAAGCATAGGAAGCTACTAAATGCATTCTTAAGGCAAAACCCTGGTTTGCTTG AGAAATCTT TCTCACTCATGCTAAAGGTTCCAAGATTTATTGATTTTGATAACAAGCGTGCCCACTTCC GATCAAAAAT TAAGCATCAGCATGACCATCACCATAGCCCATTGAGAATATCAGTAAGAAGGGCATATGT TCTAGAAG ATTCTTACAACCAGCTTCGCTTGAGATCAACTCAAGATTTGAAGGGAAGGTTGACTGTTC ACTTCCAAG GGGAGGAGGGTATTGATGCAGGTGGGCTTACAAGGGAATGGTATCAATTATTGTCCAGAG TTATTTTT GATAAAGGAGCACTGCTTTTTACTACAGTGGGCAATGAATCAACATTTCAGCCTAACCCT AACTCTGTTT ATCAAACAGAGCATTTATCTTATTTCAAATTTGTTGGTAGAGTGGTTGGCAAAGCATTAT TTGATGGTCA ACTCTTGGATGTTCATTTTACTCGGTCATTCTACAAGCACATTCTTGGAGTCAAAGTTAC ATATCATGATA TTGAAGCCATTGATCCTCATTATTTCAGAAATTTGAAATGGATGCTTGAGAATGACATCA GTGATGTTCT GGATCTTACTTTTAGCATTGATGCAGATGAGGAAAAATTGATCTTATATGAACGAACAGA GGTGACTGA TTATGAGTTGATTCCCGGGGGACGGAATATCAAAGTTACTGAGGAGAACAAACATCAATA TGTTGATTT GGTTGCCGAGCATCGGCTGACAACTGCCATTCGACCTCAAATAAATTCTTTCTTGGAAGG GTTCAATGA AATGATTCCCAGGGAGTTGATATCGATATTCAATGACAAAGAGCTGGAATTGTTGATCAG TGGACTTCC TGATATTGACTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATAGTGCTGCATC GCCAGTTAT CCAATGGTTTTGGGAGGTTGTTCAAGGTTTGAGCAAAGAAGACAAAGCTCGACTGTTGCA ATTTGTGA CAGGCACATCCAAGGTGCCTTTGGAAGGCTTTAGCGCTCTTCAAGGAATTTCAGGCTCCC AGAAGTTTC AGATACACAAAGCATATGGAAGTCCTGATCACTTGCCTTCTGCTCATACTTGCTTCAATC AATTAGATTT GCCGGAGTATCCATCTAAACACCATTTAGAAGAGAGGTTACTGCTGGCAATTCACGAAGC AAGTGAGG GTTTTGGATTTGGTTGA SEQ ID NO: 20 CDS UPL2 >KRH72479 cds:protein_coding ATGACAACCCTAAGATCAAGTTGGCCTTCGAGGCTGCGCCAACTTCTGTCCAGCGGGGGC GCCATTGG TCCTTCAGTCAAGGTGGACTCCGAGCCCCCTCCTAAGATCAAAGCCTTCATTGAGAAGAT CATCCAGTG TCCATTACAAGATATTGCCATACCACTTTCTGGCTTTCGGTGGGAGTACAATAAGGGGAA TTTTCATCAC TGGAGACCGCTGTTGCTTCATTTTGATACATACTTCAAGACTTATTTGTCGTGTAGAAAT GATCTGACGT TGTTAGATAATCTAGAAGATGACAGCCCTTTACCAAAACATGCAATTCTGCAAATATTGC GAGTGATGC AAAAAATTTTAGAGAACTGTCCAAACAAGAGTTCCTTTGATGGCTTAGAGCATTTCAAGC TTTTACTTGC ATCAACAGATCCTGAGATTCTTGTTGCTACATTGGAAACTCTTTCTGCACTTGTAAAAAT TAATCCCTCTA AGCTTCATGGAAGTCCAAAGATGATTTGCTGTGGTTCGGTGAACAGCTATCTTTTGTCCT TAGCACAAG GCTGGGGAAGCAAGGAGGAGGGCCTAGGATTGTACTCTTGTGTTATGGCAAATGAGAAAG CCCAAGA TGAAGCACTGTGCTTGTTTCCTTCTGAAGAGATTGGTCATGACCAATCAAATTGCCGCAT AGGCACTAC CCTTTATTTTGAATTGCATGGTCCCAATGCCCAAAGCAAGGAACATAGTGCAGATGCAGT TTCCCCTAG CTCAACAGTTATACACATGCCAGATTTGCATCTGCGCAAAGAAGATGATTTGTCATTGAT GAAGCAGTG CACTGAAGAATTTAGCATTCCTTCTGAGCTCAGGTTTTCCTTGCTCACTAGAATCAGATA TGCTCGTGCC TTTCGTTCTCCTAGAATATGCAGGCTTTACAGCCGGATTTGCCTACTTTCTTTCATTGTT CTGGTGCAGTC TGGTGATGCTCAGGAAGAACTTGTCTCCTTTTTTGCTAATGAACCAGAATATACAAATGA ATTAATTAGA ATTGTACGATCAGAGGAAGTTATATCTGGATCTATCAGGACACTTGCAATGCTTGCTCTA GGAGCTCAA TTAGCAGCATATACATCATCGCATCATCGGGCACGGATCAGTGGATCTAGTTTAACTTTT GCTGGTGGG AACCGCATGATACTCCTAAATGTGCTCCAGAGGGCTATTTTGTCATTGAAGATTTCTAAT GATCCATCAT CCCTTGCCTTTGTTGAAGCACTTCTTCAGTTCTATCTGCTCCATGTGGTCTCAACCTCAA CTTCTGGTAAT AATATTAGAGGTTCTGGCATGGTGCCAACATTCTTGCCGTTGCTGGAGGATTTTGATCCT ACACATATTC ATCTAGTCTGTTTTGCTGTGAAAACTCTTCAGAAGCTTATGGATTATAGTAGCTCAGCTG TATCATTGTT TAAAGAATTGGGGGGCATTGAACTTTTGGCTCAGAGGTTACAGAAAGAGGTACACAGAGT CATTGGTT TGGTTGGAGGAACTGATAACATGATGCTTACTGGTGAAAGCTTGGGACATAGTACTGATC AATTGTACT CCCAGAAGAGACTCATAAAGGTCTCCCTTAAGGCGCTTGGTTCTGCAACATACGCACCTG CAAACTCTA CCAGATCTCAACATTCTCAAGACAGTTCATTACCTATAACTCTAAGCTTGATTTTTAAGA ATGTAGATAA GTTTGGAGGTGACATTTATTATTCAGCTGTTACTGTTATGAGTGAAATAATCCACAAAGA TCCTACCTTT TTTTCTGCTCTGCATGAAATAGGTCTTCCTGATGCGTTTTTATTGTCAGTTGGATCTGGA ATACTTCCATC ATCAAAGGCTTTGACATGCATTCCAAATGGTCTTGGGGCCATTTGTCTTAATGCCAAAGG GTTAGAGGC CGTTAGAGAATCTTCATCGCTACGGTTCCTTGTTGACATTTTCACTAGCAAGAAGTATGT CTTAGCCATG AATGAGGCTATTGTTCCTTTGGCAAATGCTGTGGAGGAACTTCTACGCCATGTATCTACA TTGAGAAGC ACTGGTGTTGATATTATCATTGAAATCATCCATAAGATCACATCTTTTGGGGATGGAAAT GGTGCAGGA TTTTCTGGAAAAGCTGAGGGCACCGCCATGGAAACAGATTCTGAAAACAAAGAAAAAGAA GGCCATTG TTGCATTGTAGGCACATCATATTCGGCTGTAGAAGGGATAAGTGATGAGCAGTTTATTCA GCTATGTGT CTTTCATTTGATGGTATTAGTTCATAGGACTATGGAAAATGCCGAGACATGCCGGTTGTT TGTGGAAAA ATCAGGAATTGAAGCTTTATTGAATTTGTTATTACGACCCACTATTGCACAATCCTCAGA TGGCATGTCT ATTGCTTTACATAGCACAATGGTATTTAAAGGGTTTGCTCAACATCATTCAATTCCTCTG GCACATGCCTT CTGTTCTTCTCTTAGAGAGCACTTAAAGAAAACTTTAGTGGGGTTTGGTGCAGCATCAGA ACCTTTGTT GCTGGATCCAAGGATGACAACTGATGGTGGCATCTTTTCTTCACTTTTCCTGGTTGAGTT CCTTCTATTTC TTGTGGCATCGAAAGACAATCGTTGGGTGACTGCCTTGCTTACAGAATTTGGAAATGAGA GTAAGGAT GTTCTTGAAGACATTGGATGCGTTCACCGTGAAGTTCTGTGGCAAATTTCTCTACTTGAA AATAGAAAA CCTGAGATTGAGGAAGATGGTGCTTGTTCTTCTGATTCACAACAGGCTGAAGGGGATGTA AGTGAAAC TGAAGAGCAAAGGTTCAATTCTTTCAGGCAGTATCTTGACCCATTATTGAGAAGGAGAAC ATCAGGAT GGAGCATTGAATCCCAGTTTTTTAACCTTATAAACCTGTATCGAGATTTGGGCCGTTCCA CTGGTTCTCA AAATAGATTAGTTGGTCCGAGGTCAAGTTCTAGTAATCAGGTACAGCATTCTGGGTCAGA TGATAATTG GGGGACTGCTAATAAGAAGGAATCTGACAAGCAGAGAGCATATTATACATCTTGTTGTGA CATGGTCA GATCACTTTCATTTCACATTACCCATTTGTTCCAAGAGTTAGGAAAAGTAATGTTGCTAC CTTCACGTCG GCGTGATGATGTTGTGAATGTAAGTCCTGCTTCAAAATCAGTGGCTTCTACATTTGCATC CATTGCTTTT GATCACATGAATTATGGTGGCCGTTGTGTAAATCTTTCGGGAACAGAAGAATCCATATCA ACAAAATGT CGATATTTTGGGAAAGTGATTGATTTTATGGATAATGTTCTAATGGAGAGGCCAGATTCA TGCAATCCT ATTATGCTGAATTGCTTGTATGGACGTGGAGTTATTGAAATTGTATTAACTACCTTTGAA GCTACCAGTC AGCTGCTCTTTACAGTTAATCGGGCCCCTGCCTCGCCCATGGATACTGATGATGCAAATG CAAAGCAAG ACGACAAGGAAGATACAGATAATTCATGGATTTATGGTTCTTTAGCTAGTTATGGGAAAT TGATGGACC ATCTAGTGACCTCCTCTTTTATATTATCATCATTCACAAAGCATTTGCTTGCACAGCCCC TTACTAATGGT GATACACCTTTCCCAAGGGATGCTGAGACTTTTGTGAAGGTCCTTCAATCCAGAGTGTTG AAGACTGTA CTTCCTGTTTGGACTCATCCCAAGTTTGTTGACTGTAGTTATGAATTTATTTCTACAGTT ATTTCTATCATT AGGCATGTCTATACAGGTGTTGAAGTAAAAAATGTGAATGGCAGTGCTGGTGCTCGCATT ACTGGGCC GCCTCCTAATGAAACAACTATTTCAACCATTGTAGAAATGGGGTTTTCCAGGTCTAGAGC AGAAGAAGC TTTGAGGCAAGTTGGGTCAAATAGTGTGGAGTTGGCAATGGAGTGGTTGTTCTCTCATCC AGAGGAGG CACAAGAAGATGATGAACTTGCCCGTGCACTTGCCATGTCCCTTGGAAACTCTGAATCAG ATTCAAAGG ATGCAGTTGCTAATGACAATGCCCTGCAGCTTGAGGAAGAGATGGTCCAACTTCCTCCTG TTGATGAGT TGTTATCTACTTGTACAAAACTTTTGTCGAAGGAACCACTTGCTTTTCCAGTCCGTGACT TGCTTGTGAT GATATGCTCTCAGGATGATGGTCAACATAGATCTAATGTGGTCTCATTTATTGTGGAACG GATCAAAGA ATGTGGTTTGGTTCCTAGCAATGGAAATTATGCCATGCTGGCTGCTCTTTTTCATGTTCT AGCTTTAATTC TTAATGAGGATGCTGTGGCTAGGGAAGCTGCTTCTACAAGTGGTTTAATCAAAATTGCCT CAGATCTAC TCTACCAGTGGGATTCTAGTCTTGATATCAAGGAGAAACATCAGGTACCAAAATGGGTGA CTGCTGCTT TCCTTGCATTAGACAGATTGTTGCAAGTGGATCAAAAATTGAATTCTGAAATCGCAGAGC AGTTGAAGA AGGAAGCTGTGAATAGCCAGCAGACATCAATTACCATTGATGAAGACAGGCAAAACAAGA TGCAGTCT GCATTGGGACTCTCTATGAAGTATGCAGATATACATGAACAGAAGAGACTTGTTGAGGTT GCTTGTAGT TGTATGAAGAATCAACTTCCATCCGACACAATGCATGCTGTTCTGCTACTATGTTCCAAT CTTACAAGGA ATCATTCTGTAGCTCTTACTTTTTTGGATTCTGGTGGTTTAAGTCTACTTCTTTCTTTGC CAACCAGCAGTC TCTTCCCTGGGTTTGACAATGTTGCTGCTAGTATTGTTCGTCATGTTCTTGAAGATCCTC AAACGCTCCAT CAAGCAATGGAATCTGAGATAAAACATAGTCTTGTAGTTGCATCTAACCGGCATCCAAAT GGAAGGGT CAATCCTCATAATTTCCTTTTAAATTTAGCTTCTGTGATTTCTCGGGATCCAGTAATTTT TATGCAAGCTG CTCAATCTGTGTGCCAAGTTGAAATGGTAGGTGAGAGGCCATACATTGTCTTGCTGAAAG ATAGGGAT AAAGACAAAGCTAAGGATAAAGAAAAGGATAAGGATAAAACATTGGAGAAAGATAAAGTA CAGAACA TTGATGGGAAGGTTGTTTTGGGAAATACTAACACGGCACCTACTGGCAATGGCCATGGCA AAATTCAA GATTCAAATACCAAGAGTGCCAAAGGTCACAGAAAACCTACCCAAAGTTTTATTAATGCA ATAGAACTT CTTCTTGAATCTGTATGCACTTTTGTTCCTCCCTTGAAGGGTGACATTGCCTCAAATGTT CTTCCTGGCAC CCCAGCATCAACCGATATGGACATTGATGCCTCCATGGTTAAGGGAAAAGGAAAAGCAGT TGCCACTG ATTCTGAGGGCAATGAAACTGGTAGTCAGGATGCTTCTGCATCACTTGCAAAGATTGTCT TCATTCTAA AGCTTCTGACAGAGATACTATTGATGTATTCATCATCTGTTCATGTTTTACTTAGACGAG ATGCTGAAAT GAGCAGCATTAGAGGTTCTTATCAAAAGAGTCCTGCAGGTTTAAGCATGGGTGGGATATT CTCTCATAT TCTTCATAATTTTCTTCCATATTCTCGAAACTCCAAAAAGGACAAGAAAGCTGATGGTGA TTGGAGGCA GAAACTAGCAACCAGGGCCAACCAGTTTATGGTGGGTGCTTGTGTTCGATCTACAGAGGC AAGGAAGA GGGTTTTTGGTGAGATTTGTTGTATCATCAATGAATTTGTTGATTCATGTCATGGCATTA AGCGTCCAGG AAAAGAAATTCAGGTTTTTGTTGATCTACTAAATGATGTTTTGGCTGCTCGTACACCCGC TGGTTCATCC ATTTCAGCTGAGGCCTCTACCACTTTTATTGATGCTGGTTTGGTTAAATCATTCACATGT ACTCTACAAGT TTTGGACCTTGACCATGCTGATTCATCTGAAGTTGCTACGGGTATTATTAAAGCTCTTGA GTTGGTAACC AAGGAGCATGTCCAATTAGTTGATTCTAGTGCAGGGAAGGGTGATAATTCAGCAAAGCCT TCTGTTCTA AGTCAACCCGGAAGAACAAATAATATTGGTGACATGTCTCAGTCCATGGAGACATCACAA GCCAATCCT GATTCCCTTCAAGTTGACCGTGTTGGGTCTTATGCAGTTTGCTCCTATGGTGGGTCTGAA GCTGTTACTG ATGATATGGAACATGATCAAGATCTTGATGGGAGCTTTGCTCCTGCTAATGAGGATGATT ACATGCATG AAAATTCTGAGGATGCAAGAGATCTTGAAAATGGAATGGAAAATGTGGGTCTACAATTTG AAATCCAA TCTCATGGCCAAGAAAATCTTGATGAGGATGACGATGAGGACGATGATATGTCTGAAGAT GAAGGTGA GGATGTAGATGAAGATGAGGATGATGATGAGGAACACAATGATTTGGAAGAAGTCCATCA TTTGCCAC ATCCTGACACAGATCAAGATGAGCATGAGATTGATGATGAAGATTTTGATGATGAAGTGA TGGAGGAA GAGGATGAGGATGACGAGGAAGATGAAGATGGTGTTATACTGCAACTCGAGGAGGGGATT AATGGA ATTAATGTTTTTGATCATATTGAGGTTTTTGGCAGAGATAATAGTTTTGCAAATGAAGCT TTTCAAGTGA TGCCGGTTGAGGTTTTTGGATCCAGACGTCAGGGGAGGACAACATCTATTTATAGTCTTT TGGGAAGAA CTGGTGATACCGCTGTGCCTTCTCGTCACCCACTCTTGCTTGAACCTTCTTCATTCCCCC CACCTACAGGG CAATCAGATAGTTCATTGGAGAACAACTCATTGGGTTTGGATAATATATTTCGATCGCTG AGGAGTGGA CGCCATGGACAGCGTTTGCACTTGTGGACTGATAATAACCAACAAAGTGGTGGGACAAAC ACTGTTGT TGTACCCCAAGGCCTTGAGGATTTGCTTGTCACTCAATTAAGGCGACCAATCCCTGAAAA GTCATCCAA TCAGAACATTGCAGAAGCAGGTTCTCATGGTAAAGTTGGAACGACCCAGGCACAAGATGC AGGGGGT GCAAGGCCAGAAGTCCCTGTTGAAAGTAATGCTGTTCTGGAAGTTAGTACTATAACTCCC TCGGTTGAT AACAGTAACAATGCGGGTGTCAGACCAGCTGGGACTGGACCTTCACATACAAATGTTTCA AACACACA CTCACAGGAAGTTGAGATGCAATTTGAACATGCTGATGGAGCTGTGAGGGATGTTGAAGC TGTCAGCC AGGAGAGTAGTGGTAGTGGTGCAACTTTTGGTGAAAGCCTTCGGAGCTTGGATGTTGAGA TTGGAAGT GCTGATGGCCATGATGATGGTGGTGAAAGGCAGGTTTCTGCTGATAGGGTGGCAGGTGAT TCGCAGG CAGCACGCACAAGAAGAGCAAATACGCCTTTGAGTCACATTTCTCCTGTGGTTGGAAGAG ATGCGTTCC TTCACAGTGTAACTGAAGTTTCAGAAAATTCAAGCCGTGATGCAGATCAAGATGGTGCAG CAGCAGAG CAGCAGGTGAACAGTGATGCAGGATCAGGAGCTATTGATCCTGCTTTTCTGGATGCTCTT CCTGAGGA GCTGCGTGCCGAACTCCTTTCAGCTCAGCAGGGTCAAGTGGCTCAGCCATCAAATGCTGA GTCTCAAAA CACTGGGGATATTGATCCAGAGTTCCTTGCAGCTCTTCCAGCTGATATTCGAGCAGAAAT TCTAGCTCA GCAGCAAGCACAGAGGCTGCATCAATCTCAGGAGCTGGAAGGCCAACCTGTGGAAATGGA TACAGTC TCAATAATTGCAACTTTTCCATCAGATTTACGAGAAGAGGTTCTGTTGACGTCACCAGAT ACTATCCTTG CCAATCTTACACCTGCTCTTGTTGCTGAGGCAAATATGTTGCGGGAGAGGTTTGCACACC GTTACAGTC GTACCCTCTTTGGTATGTATCCTAGAAGTCGTAGAGGGGAGACTTCAAGACGTGAAGGTA TTGGTTCTG GTCTGGATGGAGCAGGGGGAACCATTTCTTCTCGCCGTTCCAATGGAGTTAAGGTTGTTG AAGCTGAT GGAGCACCACTAGTTGACACAGAAGCTTTGCATGCTATGATTCGGTTGTTACGCGTAGTG CAGCCACTC TATAAAGGCCAACTCCAGAGGCTTCTATTAAATCTTTGTGCCCATAGTGAAACAAGAACC TCTCTGGTG AAAATTCTGATGGACTTGCTAATGCTTGATGTAAAAAGGCCTGTCAGTTATTTTAGTAAA GTTGAGCCA CCATATAGATTATATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCAATCTTTTGAT GGAGTTCCCC CATTGCTGTCTCGTAGAATACTTGAAACTCTCACTTATCTTGCTCGCAATCATCTGTATG TGGCAAAAATT TTGCTTCAGTGTTGGCTACCAAATCCTGCAATAAAAGAACCAGATGATGCACGGGGCAAA GCCGTGAT GGTTGTTGAAGATGAAGTAAATATAGGTGAAAGTAATGATGGGTACATCGCCATTGCAAT GCTATTGG GTCTCTTGAACCAACCACTTTATTTGAGGAGCATAGCCCACCTTGAGCAGCTGCTAAATT TACTGGATGT TATCATTGACAGTGCTGGAAACAAGTCATCTGACAAATCCTTGATATCTACTAACCCATC ATCAGCTCCA CAAATTTCTGCCGTGGAAGCCAATGCGAATGCAGATTCTAATATTTTATCTTCTGTGGAT GATGCATCTA AAGTTGATGGTTCCTCCAAACCAACGCCCTCTGGCATAAATGTTGAATGTGAGTCACATG GAGTGTTGA GTAATCTTTCAAATGCAGAACTCCGGCTCCTGTGCTCACTGCTTGCACAAGAAGGTTTGT CAGATAATG CATATAATCTTGTTGCCGAGGTAATGAAGAAATTGGTGGCCATTGCTCCAACACATTGTG AGCTTTTTGT CACTGAGCTGGCAGAAGCAGTTCAAAAGTTGACTTCATCTGCAATGAATGAGTTACGTGT CTTTAGTGA AGCAATGAAAGCTCTGCTTAGTACCTCTTCTACTGATGGAGCTGCAATTCTGAGAGTTTT GCAAGCCTTG AGTTCCCTTGTCACCTTACTGACGGAGAAAGAGAATGACAGAGGTACTCCTGCTCTATCT GAGGTTTGG GAAATCAATTCAGCATTAGAGCCCTTGTGGCATGAGCTTAGCTGTTGCATAAGCAAGATA GAATCCTAC TCAGAGTCTGCATCTGAGATTTCGACATCTTCTAGTACCTTTGTGTCTAAACCATCTGGT GTAATGCCTC CACTTCCTGCTGGCTCTCAAAATATCTTACCATACATTGAATCTTTCTTTGTGGTTTGTG AGAAATTGCAT CCTGCTCAGCCAGGTGATAGTCATGACTCAAGTATCCCTGTTATTTCTGATGTTGAGTAT GCCACCACAT CTGCAACTCCCCAGAAAGCATCTGGAACTGCTGTGAAAGTAGATGAGAAACATATGCCTT TTGTCCGGT TCTCAGAGAAGCATAGGAAGCTACTAAATGCATTCTTAAGGCAAAACCCTGGTTTGCTTG AGAAATCTT TCTCACTCATGCTAAAGGTTCCAAGATTTATTGATTTTGATAACAAGCGTGCCCACTTCC GATCAAAAAT TAAGCATCAGCATGACCATCACCATAGCCCATTGAGAATATCAGTAAGAAGGGCATATGT TCTAGAAG ATTCTTACAACCAGCTTCGCTTGAGATCAACTCAAGATTTGAAGGGAAGGTTGACTGTTC ACTTCCAAG GGGAGGAGGGTATTGATGCAGGTGGGCTTACAAGGGAATGGTATCAATTATTGTCCAGAG TTATTTTT GATAAAGGAGCACTGCTTTTTACTACAGTGGGCAATGAATCAACATTTCAGCCTAACCCT AACTCTGTTT ATCAAACAGAGCATTTATCTTATTTCAAATTTGTTGGTAGAGTGGTTGGCAAAGCATTAT TTGATGGTCA ACTCTTGGATGTTCATTTTACTCGGTCATTCTACAAGCACATTCTTGGAGTCAAAGTTAC ATATCATGATA TTGAAGCCATTGATCCTCATTATTTCAGAAATTTGAAATGGATGCTTGAGAATGACATCA GTGATGTTCT GGATCTTACTTTTAGCATTGATGCAGATGAGGAAAAATTGATCTTATATGAACGAACAGA GGTGACTGA TTATGAGTTGATTCCCGGGGGACGGAATATCAAAGTTACTGAGGAGAACAAACATCAATA TGTTGATTT GGTTGCCGAGCATCGGCTGACAACTGCCATTCGACCTCAAATAAATTCTTTCTTGGAAGG GTTCAATGA AATGATTCCCAGGGAGTTGATATCGATATTCAATGACAAAGAGCTGGAATTGTTGATCAG TGGACTTCC TGATATTGACTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATAGTGCTGCATC GCCAGTTAT CCAATGGTTTTGGGAGGTTGTTCAAGGTTTGAGCAAAGAAGACAAAGCTCGACTGTTGCA ATTTGTGA CAGGCACATCCAAGGTGCCTTTGGAAGGCTTTAGCGCTCTTCAAGGAATTTCAGGCTCCC AGAAGTTTC AGATACACAAAGCATATGGAAGTCCTGATCACTTGCCTTCTGCTCATACTTGCTTCAATC AATTAGATTT GCCGGAGTATCCATCTAAACACCATTTAGAAGAGAGGTTACTGCTGGCAATTCACGAAGC AAGTGAGG GTTTTGGATTTGGTTGA SEQ ID NO: 21 CDS UPL2 >KRH62267 cds: protein_coding ATGACAAGCGTAAGATCGAGTTGGCCATCAAGGCTGCGCCAACTTCTTTCCAGCGAGGGT TCCATTGGC CCTTCCGTCAAACTCGACTCTGACCCTTCTCCTAAGATCAAAGCCTTCATTGAGAAGGTC ATTCAATGTC CATTACAAGATATAGCTATACCCCTCTTTGGCTTTCGGTGGGAGTATAATAAGGGGAATT TTCATCACTG GAGGCCATTGTTTCTTCATTTTGATACATACTTCAAGACATATTTATCATGTCGAAATGA CCTGACATTGT CCGATAATCTAGAAGTTGGCATTCCATTACCAAAACATGCAATTCTACAAATACTACGGG TGATGCAAA TAATCTTAGAGAACTGTCCAAACAAGAGTTCATTTGATGGCTTAGAGCACTTCAAGCTTT TACTAGCATC AACAGATCCTGAGATTATTATTGCTACATTAGAAACTCTTGCTGCGCTTGTAAAAATAAA TCCTTCTAAG CTTCATGGAAGTGCAAAAATGGTTGGCTGTGGTTCAGTAAATAGCTATCTCCTGTCCCTA GCACAGGGG TGGGGAAGCAAGGAGGAGGGCATGGGTTTGTACTCTTGTATTATGGCAAATGAGAAAGCC CAGGATG AAGCACTGTGTTTGTTTCCTTCTGATGCAGAGAATGGTAGTGACCACTCCAATTACTGCA TAGGTTCTAC TCTTTATTTTGAATTGCGTGGACCCATTGCTCAAAGCAAGGAACAAAGTGTAGATACAGT TTCCTCAAGT TTGAGAGTTATACACATTCCAGATATGCATTTACACAAAGAAGATGATTTGTCAATGTTG AAGCAATGC ATTGAGCAGTATAATGTTCCTCCTGAGCTCCGATTTTCATTGCTCACAAGAATTAGATAT GCTCGTGCTT TCCGGTCTGCGAGAATAAGCAGGCTTTATAGCAGGATTTGCCTTCTTGCTTTCACTGTGT TGGTCCAATC CAGTGATGCTCATGACGAGCTTGTGTCCTTTTTTGCCAACGAACCAGAGTACACAAGCGA ATTGATTAG AGTTGTGCGATCTGAAGAAACAATATCTGGATCTATCAGAACACTTGTAATGCTTGCATT AGGAGCCCA GTTAGCAGCATACACATCATCTCATGAACGGGCACGGATACTGAGTGGATCTAGTATGAA CTTCACTGG AGGGAACCGCATGATTCTACTGAATGTACTTCAGAGGGCTATTTTGTCATTGAAGAGTTC TAATGATCC AACTTCCTTTGCTTTTGTTGAGGCACTTCTTCAATTCTATCTGCTGCATGTAGTGTCAAC ATCATCTTCTG GGAGTAATATTAGAGGTTCTGGCATGGTACCCACATTCTTGCCTCTGCTGGAGGATTCTG ATCTTGCTC ATATTCATCTTGTTTGTTTAGCAGTGAAAACCCTTCAGAAGCTTATGGATTATAGTAGTT CAGCTGTATC TTTGTTTAAAGAGTTGGGGGGTGTTGAGCATTTGGCTCAAAGATTACAGATAGAGGTTCA TAGGGTCA TTGGTTTTGCTGGAGAGAATGATAATGTGATGCTCACTGGTGAAAGCTCAAGACATAGTA CTCATCAGC TTTACTCTCAGAAGAGGCTGATAAAAGTGTCCCTTAAGGCCCTTGGTTCTGCAACATATG CTCCTGCAAA CTCTACCAGATCTCAACACTCCCATGACAGTTCATTACCTGCAACTCTAGTCATGATTTT TCAGAATGTAA ATAAGTTCGGAGGTGACATTTATTACTCAGCTGTTACTGTTATGAGTGAAATAATCCACA AAGATCCTAC ATGCTTCTCTTCTTTGCATGAAATGGGTCTTCCAAATGCTTTTTTATCTTCAGTTGCATC TGGAATTCTTCC TTCATCAAAGGCTCTGACATGCATTCCAAATGGCATTGGGGCCATTTGTCTTAATGCCAA AGGCTTAGA GGTTGTTCGAGAGACTTCATCACTGCAGTTCCTTTTTAATATCTTTACAAGCAAAAAGTA TGTCCTTTCCA TGAATGAGGCTATTGTTCCGCTAGCAAATTCTGTAGAGGAACTTCTTCGACACGTGTCTC CATTGAGAA GTACTGGTGTTGACATCATCATTGAAATCATCCATAAGATTGCATCCTTTGGTGATGGTA TTGATACAGG ATCTTCTTCAGGAAAAGCTAATGAGGATAGTGCAATGGAAACCAATTCTGAAGACAAAGG AAATGAAA ACCATTGTTGCCTCGTGGGCACAGCAGAGTCTGCCGCTGAAGGGATTAATGATGAGCAAT TCATTCAGC TTTGCACTTTTCATTTGATGGTATTGGTTCACCGGACAATGGAAAATTCTGAAACATGTC GGCTATTTGT AGAAAAATCAGGAATTGAAGCTTTATTGAAGCTGTTATTACGACCTACCATTGCACAATC CTCGGATGG CATGTCTATTGCTCTGCATAGCACCATGGTATTTAAGGGGTTTGCTCAACATCATTCCGC TCCTTTGGCA CGTGCCTTTTGTTCCTCTCTTAAAGAGCACTTGAATGAAGCATTAACTGGGTTTGTTGCA TCTTCGGGAC CTTTGTTGCTGGATCCAAAGATGACCACAAATAACATCTTTTCTTCACTTTTCTTGGTTG AGTTTCTTCTCT TTCTTGCTGCGTCAAAAGACAACCGTTGGGTGACTGCTTTGCTTACAGAATTTGGAAATG GTAGTAAGG ATGTTCTTGAAAACATTGGACGTGTCCACCGTGAAGTTTTGTGGCAAATTGCTCTTCTTG AAAATACGAA GCCTGATATTGAGGATGACGTTTCTTGTTCTACTTCTGATTCACAACAGGCAGAAGTGGA TGCAAATGA AACTGCAGAGCAAAGGTACAATTCTATCAGGCAGTTTCTTGATCCATTACTCAGGAGGAG GACTTTAGG ATGGAGTGTAGAATCACAGTTTTTTGATCTTATTAACCTGTATCGAGATCTGGGTCGTGC CCCTGGTTCC CAGCACCGATCAAATTCTGTTGGTCCTACAAACAGGCGGTTAGGATCCCCTAATCCGTTG CATCCGTCT GAGTCTTCAGATGTATTGGGGGATGCTAGTAAGAAAGAATGTGACAAGCAAAGAACATAT TATACCTC TTGTTGTGACATGGCCAGATCACTTTCATTTCACATTATGCATTTGTTCCAAGAGTTAGG AAAAGTAATG CTGCAACCTTCTCGCCGTCGTGATGATGTTGCAAGTGTAAGTCCTGCTTCAAAATCAGTG GCTTCTACTT TTGCAAGCATTGCTCTAGATCACATGAATTTTGGGGGCCATGTAGAAGAAGCATCCATAT CAACAAAAT GTCGTTATTTTGGTAAAGTCATTGATTTTGTGGATGGCATTCTAATGGAAAGGCCTGATT CTTGCAATCC CATTTTACTGAATTGCTTGTATGGGCATGGAGTTATTCAATCTGTATTGACCACATTTGA AGCAACTAGT CAGTTGTTATTTGCAGTTAATCGGACCCCTGCATCGCCGATGGAAATTGATGATGGAAAT GTGAAGCAG GATGACAAGGAAGATACCGATCATTTGTGGATATATGGTTCTTTAGCCAGTTATGGTAAA TTTATGGAC CATCTAGTAACCTCCTCTTTCATATTATCTTCTTTCACAAAGCCTATACTTGCACAGCCC CTTAGTGGTGA TACCTCATATCCCCGGGATGCTGAGATATTTGTGAAAGTCCTCCAATCTATGGTGTTGAA GGCTGTGCT CCCAGTTTGGATGCATCCCCAGTTTGTTGATTGTAGTCATGGATTTATTTCTAATGTTAT CTCTATCATCA GGCATGTTTATTCAGGGGTTGAAGTAAAAAATGTAAATGGCAGCAGCAGTGCTCGTATTA CTGGGCCT CCTCCTAATGAAACAACAATTTCAACCATTGTAGAGATGGGATTTTCCAGGTCGAGAGCA GAAGAAGCT TTGAGGCATGTTGGATCAAATAGTGTGGAGTTGGCGATGGAGTGGCTGTTTTCCCATCCA GAGGACAC ACAAGAAGATGACGAACTTGCTCGTGCACTTGCCATGTCCCTTGGGAACTCTGAATCAGA CACCAAGG ATGCTGCTGCAAATGACAGTGTACAACTGCTTGAGGAAGAAATGGTCCATCTTCCTCCTG TTGATGAGT TGTTATCAACTTGCACTAAACTTCTTCAAAAGGAACCTCTTGCTTTTCCTGTCCGTGACT TGCTCATGATG ATATGCTCTCAGAATGATGGTCAAAATAGATCTAATGTTCTCACTTTTATTGTTGACCGG ATCAAGGAAT GTGGATTGATTTCTGGTAACGGAAATAATACCATGCTTGCTGCTCTATTTCATGTTCTTG CATTGATTCTT AATGAGGATGCTGTTGCGCGAGAAGCTGCTTCAAAGAGTGGTTTCATAAAAATTGCCTCA GATCTACTC TACCAATGGGATTCTAGTCTTGGTAACAGGGAGAAAGAACAGGTTCCAAAATGGGTCACA GCTGCTTT TCTTGCATTAGACAGGCTGTTGCAAGTGGATCAAAAATTGAATTCTGAAATTGCAGAGCT TTTGAAGAA GGAAGCTTTGAATGTTCAGCAGACATCAGTTATCATTGATGAGGATAAGCAACACAAATT GCAGTCTGC GTTGGGACTTTCCACCAAGTATGCAGATATACATGAACAGAAGAGACTTGTTGAGATTGC TTGTAGTTG CATGAAGAACCAACTTCCCTCAGACACAATGCATGCTATTTTGCTACTATGTTCCAATCT TACAAAGAAT CACTCTGTTGCTCTTACCTTTTTTGATGCTGGTGGTTTAAGTTTACTTCTTTCTCTGCCA ACCGGTAGCCTC TTTCCTGGGTTTGACAACGTTGCTGCTGGTATTGTCCGTCATGTTATTGAAGATCCACAA ACTCTCCAGC AAGCAATGGAATCTGAGATAAAACACAGTCTTGTAGCTGCGTCTAACCGCCATCCAAATG GGAGGGTC AATCCACAAAATTTTCTGTTAAGTTTAGCTTCTGTAATTTCCCGGGATCCAATAATATTT ATGCAAGCTGC TCAATCTGCTTGCCAAGTTGAAATGGTGGGTGAAAGACCTTACATTGTCTTGCTGAAAGA TCGGGATAA AGAGAAATCCAAGGATAAGGATAAGTCACTGGAGAAAGATAAAGCACATAATGATGGAAA AATTGGT TTGGGAAGTACAGCCACAGCAGCTTCAGGGAATGTTCATGGAAAACTTCATGATTCAAAC TCAAAGAA TGCCAAAAGTTACAAAAAGCCTACTCAAAGTTTTGTTAATGTGATAGAACTTCTTCTTGA ATCTATATGC ACATTTGTTGCCCCCCCTTTGAAGGACAATAATGTATCAAATGTTGTCCCTGGCTCCCCA ACATCAAGTG ACATGGACATTGATGTTTCTACAGTTAGGGGGAAAGGAAAAGCAGTTGCCACTGTGCCTG AGGGGAAT GAAACCAGCAGTGAGGAAGCATCTGCATCACTAGCAAAGATAGTATTTATTTTGAAGCTT CTGATGGA GATATTGTTGATGTATTCATCGTCTGTTCATGTTCTGCTTCGACGGGATGCTGAAATGAG CAGCTCTAG GGACATTTATCAAAAGAATCATGGTAGTTTTGGTGCGGGAGTAATATTCTACCATATTCT TCGTAATTTT CTTCCTTGTTCTCGAAATTCCAAAAAAGACAAGAAAGTTGATGATGATTGGAGGCAGAAA CTAGCAACA AGGGCTAATCAGTTTATGGTAGCTGCTTGTGTTCGTTCTTCAGAGGCAAGGAGGCGGGTT TTTACTGAG ATTAGCCATATCATTAATGAATTTGTTGATTCATGTAATTGTGTTAAGCCAAAGCCATCA GGCAATGAAA TTCTGGTTTTTGTTGATCTACTTAATGATGTTTTGGCTGCTCGGACACCTGCTGGCTCAA GCATCTCAGC AGAGGCCTCTGTCACTTTTATGGATGCTGGTCTACTTAAATCTTTTACCCGTACTCTCCA AGTTTTAGACT TGGACCATGCTGACTCGTCTAAAGTTGCTACTGGTATTATCAAAGCTCTTGAACTAGTAA CCAAGGAGC ATGTTCACTCAGTTGAACCGAGTGCAGGAAAGGGTGATAATCAAACTAAGCCTTCTGATC CTAGTCAAT CCGGAAGAACAGATAATATTGGTCACATGTGTCAGTCCATGGAAACAACATCTCAGGCCA ATCACGATT CCCTTCAAGTTGACCATGTTGGGTCTTACAATGTGATTCAGTCTTATGGTGGGTCTGAAG CTGTTATTGG TGATATGGAACATGATCTTGATGGGGACTTTGCTCCTGCTAATGAAGATGAGTTCATGCA TGAAACTGG TGAGGATGCCAGAGGCCATGGGAATGGAATTGAAAATGTTGGGCTACAATTTGAAATCCA ATCCCATG GACAAGAAAATCTCGATGATGACGATGATGAGGGTGATATGTCTGGAGATGAGGGTGAAG ATGTAGA TGAAGATGACGAAGATGATGAGGAACACAATGATTTGGAAGAAGATGAAGTCCATCACTT GCCACATC CTGACACTGATCGTGATGATCATGAGATGGATGATGATGATTTTGATGAAGTGATGGAGG GGGAGGA GGATGAAGATGAGGATGATGAAGATGGTGTTATACTGAGACTTGAGGAGGGCATCAATGG AATTAAT GTTTTTGACCATATTGAGGTTTTTGGAAGAGACAATAGTTTTCCAAATGAATCCCTTCAT GTCATGCCAG TTGAAGTTTTTGGATCTAGACGTCCAGGGCGGACCACCTCTATTTACAGCCTGTTGGGCA GAAGTGGTG ATAATGCCGCCCCTTCTTGCCATCCACTTTTAGTTGGTCCTTCTTCCTCATTCCATCTAT CTAATGGTCAAT CAGATAGTATAACAGAGAACTCCACAGGCTTGGATAATATCTTTCGTTCATTGAGGAGCG GACGTCATG GGCACCGCTTGAACTTGTGGAGTGATAATAGCCAGCAAATCAGTGGGTCAAATACTGGCG CTGTACCA CAGGGCCTTGAGGAGTTGCTTGTGTCTCAATTGAGGCGACCTACTGCTGAGAAGTCGTCT GATAATAAT ATAGCAGACGCTGGTCCTCATAATAAAGTTGAGGTCAGCCAGATGCACAGTTCCGGAGGT TCAAAGCT TGAAATCCCAGTTGAAAGCAATGCAATTCAGGAAGGTGGTAATGTGACTCCTGCATCAAT TGATAACAC TGACATCAATGCTGATATCAGACCTGTAGGAAATGGAACTCTGCAAGCAGATGTATCAAA CACTCACTC TCAGACAGTTGAGATGCAGTTTGAGAATAATGATGCAGCTGTGCGGGATGTTGAAGCTGT GAGCCAGG AGAGTAGTGGTAGTGGGGCAACTTTTGGTGAAAGCCTTCGGAGCCTAGATGTTGAGATTG GAAGTGCT GATGGCCATGATGATGGTGGAGAAAGGCAGGTTTCTGCGGATAGGATAGCAGGTGATTCA CAGGCTG CACGCACAAGAAGAGCAACCATGTCTGTTGGTCATTCTTCTCCTGTAGGTGGGAGAGATG CTTCCCTTC ATAGTGTAACTGAAGTTTCAGAAAATTCAAGCCGAGATGCAGATCAAGATGGTCCAGCAG CTGCGGAG CAGGTGAACAGTGATGCTGGATCAGGATCAATTGATCCTGCCTTTCTGGAAGCTCTTCCT GAGGAGCTG CGTGCTGAAGTCCTCTCATCCCAGCAAGGTCACGTGGCTCAACCATCAAATGCTGAGTCT CAAAACAAT GGGGATATTGATCCAGAATTCCTTGCAGCTCTTCCCCCAGATATTCGAGCAGAAGTTCTA GCTCAGCAG CAAGCACAAAGACTACATCAAGCTCAGGAGTTGGAAGGGCAACCTGTTGAAATGGACACC GTCTCAAT AATTGCAACATTTCCTTCTGAATTACGAGAAGAGGTTCTATTAACATCCTCTGATGCTAT CCTTGCCAAC CTTACACCTGCCCTTGTCGCTGAGGCAAATATGTTGCGGGAGAGGTTTGCACATCGATAC AGTCGTACC CTCTTTGGTATGTATCCCAGAAGTCGTAGAGGAGACACTTCTAGGCGTGATGGTATTGGT TCTGGCCTG GACGGTGCAGGGGGAAGTGTCACTTCACGCAGGTCTGCTGGCGCTAAGGTTATTGAAGCT GATGGAG CACCTCTACTTGACACCGAAGCTTTGCATGCCATGATTCGGTTATTTCGCGTAGTTCAGC CACTATATAA AGGTCAATTGCAGAGGCTTCTTTTGAATCTTTGTGCCCATAGTGAAACCCGAATTTCCCT GGTGAATATT CTGATGGACTTACTAATGCTTGATGTAAGAAAGCCTGCCAATTATTTTAGTGCCGTTGAA CCTCCATACA GACTATATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCAATCGTTTGATGGAGTTC CCCCGTTACT CTCTCGGCGAATACTTGAAACTCTCACCTATCTTGCTCGCCATCATCCATTTGTGGCAAA AATTTTGCTTC AGTTTAGGCTGCATCCTCCTGCATTAAGAGAACCAGATAATGCTGGTGTTGCACGTGGCA AAGCTGTGA TGGTGGTTGAAGATGAAATAAATGCTGGTTACATATCCATTGCTATGCTTTTGGGTCTCT TGAAGCAAC CCCTTTATTTGAGGAGCATAGCTCATCTTGAGCAGTTGCTAAATTTACTGGATGTTATCA TTGATAGTGC TGGAAGCATGCCTAGTTCATCTGATAAATCTCAGATATCTACTGAGGCAGTTGTGGGTCC ACAAATTTCT GCAATGGAGGTAGATGCGAATATTGATTCAGCTACATCTTCTGCTCTTGACGCATCTCCT CAAGTCAATG AATCCTCCAAACCCACACCTCACAGTAATAAGGAATGTCAGGCTCAGCAAGTATTGTGTG ATCTGCCGC AGGCAGAACTTCAGCTCCTTTGCTCATTGCTTGCTCAAGAAGGTTTGTCAGATAATGCAT ATGGTCTTGT TGCGGAGGTAATGAAAAAACTAGTGGCCATTGCTCCGATTCACTGTCAGCTTTTTGTCAC TCATCTGGC AGAAGCAGTTCGAAAATTGACTTCATCTGCAATGGATGAGTTACGCACTTTCAGTGAAGC AATGAAAG CTCTTCTCAGTACAACATCTTCTGATGGCGCTGCAATTTTAAGAGTTTTGCAGGCCTTAA GTTCCCTGGT AATCTCATTGACCGAGAAAGAGAATGATGGATTAACTCCTGCCCTTTCTGAAGTTTGGGG AATTAATTC AGCATTAGAGCCCTTGTGGCATGAGCTTAGCTGTTGTATAAGCAAGATAGAAGCCTACTC TGAGTCAGT ATCTGAGTCTATTACCTCTTCTAGAACATCTGTGTCAAAACCATCCAGTGTCATGCCTCC ACTTCCAGCTG GTTCTCAAAATATCTTACCATACATAGAATCTTTTTTTGTGGTCTGTGAGAAGCTACATC CTGCACAGTC AGGTGCTAGTAATGACACAAGTGTTCCTGTTATTTCTGATGTGGAAGATGCTAGGACATC TGGTACTCG GCTGAAAACATCTGGGCCTGCTATGAAGGTAGATGAGAAAAATGCTGCTTTTGCCAAGTT TTCGGAGA AGCACAGGAAACTATTAAATGCTTTTATCAGGCAAAATCCTGGCTTGCTTGAAAAGTCTC TTTCCCTCAT GCTGAAGACTCCAAGATTTATTGATTTTGATAACAAGCGTTCCCATTTCCGATCAAAAAT TAAACATCAG CACGACCATCACCACAGCCCATTAAGAATATCAGTAAGAAGAGCGTATGTTCTAGAAGAT TCATATAAC CAGCTTCGCATGAGATCAACTCAAGATTTGAAGGGAAGGTTGACTGTTCATTTCCAAGGG GAAGAAGG TATCGATGCTGGTGGGCTTACAAGGGAATGGTACCAACTGTTGTCTAGAGTTATTTTTGA CAAAGGAGC GCTACTTTTCACTACAGTAGGCAATGAATCAACATTTCAGCCAAACCCTAACTCTGTTTA CCAAACAGAA CACCTATCTTATTTCAAATTTGTTGGTAGAGTGGTTGGAAAAGCTTTATTTGATGGTCAG CTCTTGGATG TCCATTTTACTCGGTCATTCTACAAGCACATCCTAGGGGCCAAAGTTACATATCATGATA TTGAAGCCAT TGATCCTGACTATTTCAGAAATTTGAAATGGATGCTTGAGAATGATATCAGTGATGTTCT GGATCTTACT TTTAGCATTGATGCAGATGAGGAAAAGTTGATTTTGTATGAGCGGACAGAGGTGACTGAT TATGAGCT AATTCCTGGTGGACGGAATACGAAAGTTACGGAGGAGAATAAGCACCAATATGTTGATTT GGTTGCTG AGCATCGGTTGACCACTGCTATTCGACCTCAAATAAATGCTTTCTTGGAAGGGTTCAATG AATTAATTCC CAGGGAGTTAATATCTATATTCAATGACAAAGAGCTGGAATTATTGATCAGTGGACTTCC TGATATTGA TTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATAGTGGTGCCTCACCAGTTAT CCAATGGTT TTGGGAGGCTGTTCAAGGTTTCAGCAAAGAAGACAAAGCTAGATTGCTGCAGTTTGTGAC TGGCACAT CCAAGGTGCCTTTGGAGGGTTTTAGCGCTCTTCAAGGAATTTCAGGTGCCCAGAGGTTTC AGATACATA AGGCATATGGGAGTTCTGATCACTTACCTTCTGCTCATACTTGTTTCAATCAATTAGATT TGCCAGAGTA TCCATCTAAACAACATTTGGAAGAGAGGTTACTGCTTGCCATTCATGAAGCAAATGAGGG ATTCGGATT TGGTTGA SEQ ID NO: 22 CDS UPL2 >KRH62268 cds: protein_coding ATGACAAGCGTAAGATCGAGTTGGCCATCAAGGCTGCGCCAACTTCTTTCCAGCGAGGGT TCCATTGGC CCTTCCGTCAAACTCGACTCTGACCCTTCTCCTAAGATCAAAGCCTTCATTGAGAAGGTC ATTCAATGTC CATTACAAGATATAGCTATACCCCTCTTTGGCTTTCGGTGGGAGTATAATAAGGGGAATT TTCATCACTG GAGGCCATTGTTTCTTCATTTTGATACATACTTCAAGACATATTTATCATGTCGAAATGA CCTGACATTGT CCGATAATCTAGAAGTTGGCATTCCATTACCAAAACATGCAATTCTACAAATACTACGGG TGATGCAAA TAATCTTAGAGAACTGTCCAAACAAGAGTTCATTTGATGGCTTAGAGCACTTCAAGCTTT TACTAGCATC AACAGATCCTGAGATTATTATTGCTACATTAGAAACTCTTGCTGCGCTTGTAAAAATAAA TCCTTCTAAG CTTCATGGAAGTGCAAAAATGGTTGGCTGTGGTTCAGTAAATAGCTATCTCCTGTCCCTA GCACAGGGG TGGGGAAGCAAGGAGGAGGGCATGGGTTTGTACTCTTGTATTATGGCAAATGAGAAAGCC CAGGATG AAGCACTGTGTTTGTTTCCTTCTGATGCAGAGAATGGTAGTGACCACTCCAATTACTGCA TAGGTTCTAC TCTTTATTTTGAATTGCGTGGACCCATTGCTCAAAGCAAGGAACAAAGTGTAGATACAGT TTCCTCAAGT TTGAGAGTTATACACATTCCAGATATGCATTTACACAAAGAAGATGATTTGTCAATGTTG AAGCAATGC ATTGAGCAGTATAATGTTCCTCCTGAGCTCCGATTTTCATTGCTCACAAGAATTAGATAT GCTCGTGCTT TCCGGTCTGCGAGAATAAGCAGGCTTTATAGCAGGATTTGCCTTCTTGCTTTCACTGTGT TGGTCCAATC CAGTGATGCTCATGACGAGCTTGTGTCCTTTTTTGCCAACGAACCAGAGTACACAAGCGA ATTGATTAG AGTTGTGCGATCTGAAGAAACAATATCTGGATCTATCAGAACACTTGTAATGCTTGCATT AGGAGCCCA GTTAGCAGCATACACATCATCTCATGAACGGGCACGGATACTGAGTGGATCTAGTATGAA CTTCACTGG AGGGAACCGCATGATTCTACTGAATGTACTTCAGAGGGCTATTTTGTCATTGAAGAGTTC TAATGATCC AACTTCCTTTGCTTTTGTTGAGGCACTTCTTCAATTCTATCTGCTGCATGTAGTGTCAAC ATCATCTTCTG GGAGTAATATTAGAGGTTCTGGCATGGTACCCACATTCTTGCCTCTGCTGGAGGATTCTG ATCTTGCTC ATATTCATCTTGTTTGTTTAGCAGTGAAAACCCTTCAGAAGCTTATGGATTATAGTAGTT CAGCTGTATC TTTGTTTAAAGAGTTGGGGGGTGTTGAGCATTTGGCTCAAAGATTACAGATAGAGGTTCA TAGGGTCA TTGGTTTTGCTGGAGAGAATGATAATGTGATGCTCACTGGTGAAAGCTCAAGACATAGTA CTCATCAGC TTTACTCTCAGAAGAGGCTGATAAAAGTGTCCCTTAAGGCCCTTGGTTCTGCAACATATG CTCCTGCAAA CTCTACCAGATCTCAACACTCCCATGACAGTTCATTACCTGCAACTCTAGTCATGATTTT TCAGAATGTAA ATAAGTTCGGAGGTGACATTTATTACTCAGCTGTTACTGTTATGAGTGAAATAATCCACA AAGATCCTAC ATGCTTCTCTTCTTTGCATGAAATGGGTCTTCCAAATGCTTTTTTATCTTCAGTTGCATC TGGAATTCTTCC TTCATCAAAGGCTCTGACATGCATTCCAAATGGCATTGGGGCCATTTGTCTTAATGCCAA AGGCTTAGA GGTTGTTCGAGAGACTTCATCACTGCAGTTCCTTTTTAATATCTTTACAAGCAAAAAGTA TGTCCTTTCCA TGAATGAGGCTATTGTTCCGCTAGCAAATTCTGTAGAGGAACTTCTTCGACACGTGTCTC CATTGAGAA GTACTGGTGTTGACATCATCATTGAAATCATCCATAAGATTGCATCCTTTGGTGATGGTA TTGATACAGG ATCTTCTTCAGGAAAAGCTAATGAGGATAGTGCAATGGAAACCAATTCTGAAGACAAAGG AAATGAAA ACCATTGTTGCCTCGTGGGCACAGCAGAGTCTGCCGCTGAAGGGATTAATGATGAGCAAT TCATTCAGC TTTGCACTTTTCATTTGATGGTATTGGTTCACCGGACAATGGAAAATTCTGAAACATGTC GGCTATTTGT AGAAAAATCAGGAATTGAAGCTTTATTGAAGCTGTTATTACGACCTACCATTGCACAATC CTCGGATGG CATGTCTATTGCTCTGCATAGCACCATGGTATTTAAGGGGTTTGCTCAACATCATTCCGC TCCTTTGGCA CGTGCCTTTTGTTCCTCTCTTAAAGAGCACTTGAATGAAGCATTAACTGGGTTTGTTGCA TCTTCGGGAC CTTTGTTGCTGGATCCAAAGATGACCACAAATAACATCTTTTCTTCACTTTTCTTGGTTG AGTTTCTTCTCT TTCTTGCTGCGTCAAAAGACAACCGTTGGGTGACTGCTTTGCTTACAGAATTTGGAAATG GTAGTAAGG ATGTTCTTGAAAACATTGGACGTGTCCACCGTGAAGTTTTGTGGCAAATTGCTCTTCTTG AAAATACGAA GCCTGATATTGAGGATGACGTTTCTTGTTCTACTTCTGATTCACAACAGGCAGAAGTGGA TGCAAATGA AACTGCAGAGCAAAGGTACAATTCTATCAGGCAGTTTCTTGATCCATTACTCAGGAGGAG GACTTTAGG ATGGAGTGTAGAATCACAGTTTTTTGATCTTATTAACCTGTATCGAGATCTGGGTCGTGC CCCTGGTTCC CAGCACCGATCAAATTCTGTTGGTCCTACAAACAGGCGGTTAGGATCCCCTAATCCGTTG CATCCGTCT GAGTCTTCAGATGTATTGGGGGATGCTAGTAAGAAAGAATGTGACAAGCAAAGAACATAT TATACCTC TTGTTGTGACATGGCCAGATCACTTTCATTTCACATTATGCATTTGTTCCAAGAGTTAGG AAAAGTAATG CTGCAACCTTCTCGCCGTCGTGATGATGTTGCAAGTGTAAGTCCTGCTTCAAAATCAGTG GCTTCTACTT TTGCAAGCATTGCTCTAGATCACATGAATTTTGGGGGCCATGTAGAAGAAGCATCCATAT CAACAAAAT GTCGTTATTTTGGTAAAGTCATTGATTTTGTGGATGGCATTCTAATGGAAAGGCCTGATT CTTGCAATCC CATTTTACTGAATTGCTTGTATGGGCATGGAGTTATTCAATCTGTATTGACCACATTTGA AGCAACTAGT CAGTTGTTATTTGCAGTTAATCGGACCCCTGCATCGCCGATGGAAATTGATGATGGAAAT GTGAAGCAG GATGACAAGGAAGATACCGATCATTTGTGGATATATGGTTCTTTAGCCAGTTATGGTAAA TTTATGGAC CATCTAGTAACCTCCTCTTTCATATTATCTTCTTTCACAAAGCCTATACTTGCACAGCCC CTTAGTGGTGA TACCTCATATCCCCGGGATGCTGAGATATTTGTGAAAGTCCTCCAATCTATGGTGTTGAA GGCTGTGCT CCCAGTTTGGATGCATCCCCAGTTTGTTGATTGTAGTCATGGATTTATTTCTAATGTTAT CTCTATCATCA GGCATGTTTATTCAGGGGTTGAAGTAAAAAATGTAAATGGCAGCAGCAGTGCTCGTATTA CTGGGCCT CCTCCTAATGAAACAACAATTTCAACCATTGTAGAGATGGGATTTTCCAGGTCGAGAGCA GAAGAAGCT TTGAGGCATGTTGGATCAAATAGTGTGGAGTTGGCGATGGAGTGGCTGTTTTCCCATCCA GAGGACAC ACAAGAAGATGACGAACTTGCTCGTGCACTTGCCATGTCCCTTGGGAACTCTGAATCAGA CACCAAGG ATGCTGCTGCAAATGACAGTGTACAACTGCTTGAGGAAGAAATGGTCCATCTTCCTCCTG TTGATGAGT TGTTATCAACTTGCACTAAACTTCTTCAAAAGGAACCTCTTGCTTTTCCTGTCCGTGACT TGCTCATGATG ATATGCTCTCAGAATGATGGTCAAAATAGATCTAATGTTCTCACTTTTATTGTTGACCGG ATCAAGGAAT GTGGATTGATTTCTGGTAACGGAAATAATACCATGCTTGCTGCTCTATTTCATGTTCTTG CATTGATTCTT AATGAGGATGCTGTTGCGCGAGAAGCTGCTTCAAAGAGTGGTTTCATAAAAATTGCCTCA GATCTACTC TACCAATGGGATTCTAGTCTTGGTAACAGGGAGAAAGAACAGGTTCCAAAATGGGTCACA GCTGCTTT TCTTGCATTAGACAGGCTGTTGCAAGTGGATCAAAAATTGAATTCTGAAATTGCAGAGCT TTTGAAGAA GGAAGCTTTGAATGTTCAGCAGACATCAGTTATCATTGATGAGGATAAGCAACACAAATT GCAGTCTGC GTTGGGACTTTCCACCAAGTATGCAGATATACATGAACAGAAGAGACTTGTTGAGATTGC TTGTAGTTG CATGAAGAACCAACTTCCCTCAGACACAATGCATGCTATTTTGCTACTATGTTCCAATCT TACAAAGAAT CACTCTGTTGCTCTTACCTTTTTTGATGCTGGTGGTTTAAGTTTACTTCTTTCTCTGCCA ACCGGTAGCCTC TTTCCTGGGTTTGACAACGTTGCTGCTGGTATTGTCCGTCATGTTATTGAAGATCCACAA ACTCTCCAGC AAGCAATGGAATCTGAGATAAAACACAGTCTTGTAGCTGCGTCTAACCGCCATCCAAATG GGAGGGTC AATCCACAAAATTTTCTGTTAAGTTTAGCTTCTGTAATTTCCCGGGATCCAATAATATTT ATGCAAGCTGC TCAATCTGCTTGCCAAGTTGAAATGGTGGGTGAAAGACCTTACATTGTCTTGCTGAAAGA TCGGGATAA AGAGAAATCCAAGGATAAGGATAAGTCACTGGAGAAAGATAAAGCACATAATGATGGAAA AATTGGT TTGGGAAGTACAGCCACAGCAGCTTCAGGGAATGTTCATGGAAAACTTCATGATTCAAAC TCAAAGAA TGCCAAAAGTTACAAAAAGCCTACTCAAAGTTTTGTTAATGTGATAGAACTTCTTCTTGA ATCTATATGC ACATTTGTTGCCCCCCCTTTGAAGGACAATAATGTATCAAATGTTGTCCCTGGCTCCCCA ACATCAAGTG ACATGGACATTGATGTTTCTACAGTTAGGGGGAAAGGAAAAGCAGTTGCCACTGTGCCTG AGGGGAAT GAAACCAGCAGTGAGGAAGCATCTGCATCACTAGCAAAGATAGTATTTATTTTGAAGCTT CTGATGGA GATATTGTTGATGTATTCATCGTCTGTTCATGTTCTGCTTCGACGGGATGCTGAAATGAG CAGCTCTAG GGACATTTATCAAAAGAATCATGGTAGTTTTGGTGCGGGAGTAATATTCTACCATATTCT TCGTAATTTT CTTCCTTGTTCTCGAAATTCCAAAAAAGACAAGAAAGTTGATGATGATTGGAGGCAGAAA CTAGCAACA AGGGCTAATCAGTTTATGGTAGCTGCTTGTGTTCGTTCTTCAGAGGCAAGGAGGCGGGTT TTTACTGAG ATTAGCCATATCATTAATGAATTTGTTGATTCATGTAATTGTGTTAAGCCAAAGCCATCA GGCAATGAAA TTCTGGTTTTTGTTGATCTACTTAATGATGTTTTGGCTGCTCGGACACCTGCTGGCTCAA GCATCTCAGC AGAGGCCTCTGTCACTTTTATGGATGCTGGTCTACTTAAATCTTTTACCCGTACTCTCCA AGTTTTAGACT TGGACCATGCTGACTCGTCTAAAGTTGCTACTGGTATTATCAAAGCTCTTGAACTAGTAA CCAAGGAGC ATGTTCACTCAGTTGAACCGAGTGCAGGAAAGGGTGATAATCAAACTAAGCCTTCTGATC CTAGTCAAT CCGGAAGAACAGATAATATTGGTCACATGTGTCAGTCCATGGAAACAACATCTCAGGCCA ATCACGATT CCCTTCAAGTTGACCATGTTGGGTCTTACAATGTGATTCAGTCTTATGGTGGGTCTGAAG CTGTTATTGG TGATATGGAACATGATCTTGATGGGGACTTTGCTCCTGCTAATGAAGATGAGTTCATGCA TGAAACTGG TGAGGATGCCAGAGGCCATGGGAATGGAATTGAAAATGTTGGGCTACAATTTGAAATCCA ATCCCATG GACAAGAAAATCTCGATGATGACGATGATGAGGGTGATATGTCTGGAGATGAGGGTGAAG ATGTAGA TGAAGATGACGAAGATGATGAGGAACACAATGATTTGGAAGAAGATGAAGTCCATCACTT GCCACATC CTGACACTGATCGTGATGATCATGAGATGGATGATGATGATTTTGATGAAGTGATGGAGG GGGAGGA GGATGAAGATGAGGATGATGAAGATGGTGTTATACTGAGACTTGAGGAGGGCATCAATGG AATTAAT GTTTTTGACCATATTGAGGTTTTTGGAAGAGACAATAGTTTTCCAAATGAATCCCTTCAT GTCATGCCAG TTGAAGTTTTTGGATCTAGACGTCCAGGGCGGACCACCTCTATTTACAGCCTGTTGGGCA GAAGTGGTG ATAATGCCGCCCCTTCTTGCCATCCACTTTTAGTTGGTCCTTCTTCCTCATTCCATCTAT CTAATGGTCAAT CAGATAGTATAACAGAGAACTCCACAGGCTTGGATAATATCTTTCGTTCATTGAGGAGCG GACGTCATG GGCACCGCTTGAACTTGTGGAGTGATAATAGCCAGCAAATCAGTGGGTCAAATACTGGCG CTGTACCA CAGGGCCTTGAGGAGTTGCTTGTGTCTCAATTGAGGCGACCTACTGCTGAGAAGTCGTCT GATAATAAT ATAGCAGACGCTGGTCCTCATAATAAAGTTGAGGTCAGCCAGATGCACAGTTCCGGAGGT TCAAAGCT TGAAATCCCAGTTGAAAGCAATGCAATTCAGGAAGGTGGTAATGTGACTCCTGCATCAAT TGATAACAC TGACATCAATGCTGATATCAGACCTGTAGGAAATGGAACTCTGCAAGCAGATGTATCAAA CACTCACTC TCAGACAGTTGAGATGCAGTTTGAGAATAATGATGCAGCTGTGCGGGATGTTGAAGCTGT GAGCCAGG AGAGTAGTGGTAGTGGGGCAACTTTTGGTGAAAGCCTTCGGAGCCTAGATGTTGAGATTG GAAGTGCT GATGGCCATGATGATGGTGGAGAAAGGCAGGTTTCTGCGGATAGGATAGCAGGTGATTCA CAGGCTG CACGCACAAGAAGAGCAACCATGTCTGTTGGTCATTCTTCTCCTGTAGGTGGGAGAGATG CTTCCCTTC ATAGTGTAACTGAAGTTTCAGAAAATTCAAGCCGAGATGCAGATCAAGATGGTCCAGCAG CTGCGGAG CAGGTGAACAGTGATGCTGGATCAGGATCAATTGATCCTGCCTTTCTGGAAGCTCTTCCT GAGGAGCTG CGTGCTGAAGTCCTCTCATCCCAGCAAGGTCACGTGGCTCAACCATCAAATGCTGAGTCT CAAAACAAT GGGGATATTGATCCAGAATTCCTTGCAGCTCTTCCCCCAGATATTCGAGCAGAAGTTCTA GCTCAGCAG CAAGCACAAAGACTACATCAAGCTCAGGAGTTGGAAGGGCAACCTGTTGAAATGGACACC GTCTCAAT AATTGCAACATTTCCTTCTGAATTACGAGAAGAGGTTCTATTAACATCCTCTGATGCTAT CCTTGCCAAC CTTACACCTGCCCTTGTCGCTGAGGCAAATATGTTGCGGGAGAGGTTTGCACATCGATAC AGTCGTACC CTCTTTGGTATGTATCCCAGAAGTCGTAGAGGAGACACTTCTAGGCGTGATGGTATTGGT TCTGGCCTG GACGGTGCAGGGGGAAGTGTCACTTCACGCAGGTCTGCTGGCGCTAAGGTTATTGAAGCT GATGGAG CACCTCTACTTGACACCGAAGCTTTGCATGCCATGATTCGGTTATTTCGCGTAGTTCAGC CACTATATAA AGGTCAATTGCAGAGGCTTCTTTTGAATCTTTGTGCCCATAGTGAAACCCGAATTTCCCT GGTGAATATT CTGATGGACTTACTAATGCTTGATGTAAGAAAGCCTGCCAATTATTTTAGTGCCGTTGAA CCTCCATACA GACTATATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCAATCGTTTGATGGAGTTC CCCCGTTACT CTCTCGGCGAATACTTGAAACTCTCACCTATCTTGCTCGCCATCATCCATTTGTGGCAAA AATTTTGCTTC AGTTTAGGCTGCATCCTCCTGCATTAAGAGAACCAGATAATGCTGGTGTTGCACGTGGCA AAGCTGTGA TGGTGGTTGAAGATGAAATAAATGCTGGTTACATATCCATTGCTATGCTTTTGGGTCTCT TGAAGCAAC CCCTTTATTTGAGGAGCATAGCTCATCTTGAGCAGTTGCTAAATTTACTGGATGTTATCA TTGATAGTGC TGGAAGCATGCCTAGTTCATCTGATAAATCTCAGATATCTACTGAGGCAGTTGTGGGTCC ACAAATTTCT GCAATGGAGGTAGATGCGAATATTGATTCAGCTACATCTTCTGCTCTTGACGCATCTCCT CAAGTCAATG AATCCTCCAAACCCACACCTCACAGTAATAAGGAATGTCAGGCTCAGCAAGTATTGTGTG ATCTGCCGC AGGCAGAACTTCAGCTCCTTTGCTCATTGCTTGCTCAAGAAGGTTTGTCAGATAATGCAT ATGGTCTTGT TGCGGAGGTAATGAAAAAACTAGTGGCCATTGCTCCGATTCACTGTCAGCTTTTTGTCAC TCATCTGGC AGAAGCAGTTCGAAAATTGACTTCATCTGCAATGGATGAGTTACGCACTTTCAGTGAAGC AATGAAAG CTCTTCTCAGTACAACATCTTCTGATGGCGCTGCAATTTTAAGAGTTTTGCAGGCCTTAA GTTCCCTGGT AATCTCATTGACCGAGAAAGAGAATGATGGATTAACTCCTGCCCTTTCTGAAGTTTGGGG AATTAATTC AGCATTAGAGCCCTTGTGGCATGAGCTTAGCTGTTGTATAAGCAAGATAGAAGCCTACTC TGAGTCAGT ATCTGAGTCTATTACCTCTTCTAGAACATCTGTGTCAAAACCATCCAGTGTCATGCCTCC ACTTCCAGCTG GTTCTCAAAATATCTTACCATACATAGAATCTTTTTTTGTGGTCTGTGAGAAGCTACATC CTGCACAGTC AGGTGCTAGTAATGACACAAGTGTTCCTGTTATTTCTGATGTGGAAGATGCTAGGACATC TGGTACTCG GCTGAAAACATCTGGGCCTGCTATGAAGGTAGATGAGAAAAATGCTGCTTTTGCCAAGTT TTCGGAGA AGCACAGGAAACTATTAAATGCTTTTATCAGGCAAAATCCTGGCTTGCTTGAAAAGTCTC TTTCCCTCAT GCTGAAGACTCCAAGATTTATTGATTTTGATAACAAGCGTTCCCATTTCCGATCAAAAAT TAAACATCAG CACGACCATCACCACAGCCCATTAAGAATATCAGTAAGAAGAGCGTATGTTCTAGAAGAT TCATATAAC CAGCTTCGCATGAGATCAACTCAAGATTTGAAGGGAAGGTTGACTGTTCATTTCCAAGGG GAAGAAGG TATCGATGCTGGTGGGCTTACAAGGGAATGGTACCAACTGTTGTCTAGAGTTATTTTTGA CAAAGGAGC GCTACTTTTCACTACAGTAGGCAATGAATCAACATTTCAGCCAAACCCTAACTCTGTTTA CCAAACAGAA CACCTATCTTATTTCAAATTTGTTGGTAGAGTGGTTGGAAAAGCTTTATTTGATGGTCAG CTCTTGGATG TCCATTTTACTCGGTCATTCTACAAGCACATCCTAGGGGCCAAAGTTACATATCATGATA TTGAAGCCAT TGATCCTGACTATTTCAGAAATTTGAAATGGATGCTTGAGAATGATATCAGTGATGTTCT GGATCTTACT TTTAGCATTGATGCAGATGAGGAAAAGTTGATTTTGTATGAGCGGACAGAGGTGACTGAT TATGAGCT AATTCCTGGTGGACGGAATACGAAAGTTACGGAGGAGAATAAGCACCAATATGTTGATTT GGTTGCTG AGCATCGGTTGACCACTGCTATTCGACCTCAAATAAATGCTTTCTTGGAAGGGTTCAATG AATTAATTCC CAGGGAGTTAATATCTATATTCAATGACAAAGAGCTGGAATTATTGATCAGTGGACTTCC TGATATTGA TTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATAGTGGTGCCTCACCAGTTAT CCAATGGTT TTGGGAGGCTGTTCAAGGTTTCAGCAAAGAAGACAAAGCTAGATTGCTGCAGTTTGTGAC TGGCACAT CCAAGGCTTATGATGGAGATAAGACACATTGGGAGCCTTTGCTTAACAAATTTCAAGCCA AGCTCTCAA AGTGGAATCAGAAAACTTTGTCTATGGGTGGTAGAGTTACCTTGATAAAATCTGTCCTGA GTGCACTCC CTATATATCTACTATCTTTCTTCAAGATCCCCCAAAGAATAGTGGATAAGTTGGTGACCC TCCAAAGGCA GTTTCTGTGGGGGGGAACTCAACACCATAACAGAATTCCTTGGGTCAAGTGGGCTGACAT CTGCAATCC GAAGATTGATGGGGGATTGGGAATCAAAGACCTGTCCAATTTCAATGCAGCCTTAAGGGG AAGATGG ATCTGGGGATTAGCTTCTAATCACAATCAGCTTTGGGCCAGACTTGCAGAGCAGTAG SEQ ID NO: 23 CDS UPL2 >KRH16871 cds:protein_coding ATGACAACCCTAAGATCGAGTTGGCCTTCGAGGCTGCGCCAACTTCTGTCGAGCGAGGGC GCCATTGG TCCTTCCGTCAAGGTGGACACCGAGCCCCCTCCTATGGTCAAAGCCTTCATTGAGAAGAT CATCCAGTG TCCATTACAAGATATTGCCATACCACTTTCTGGCTTTCGGTGGGAGTACAATAAGGGGAA TTTTCATCAC TGGAGACTGTTGTTGCTTCATTTTGATACATACTTCAAGACTTATTTGTCGTGTAGAAAT GATCTGACAT TGTTAGATAATCTAGAAGATGACAGCCCATTACCAAAACATGCAATTCTGCAAATATTGC GAGTGTTGC AAATAATTTTAGAGAACTGTCCAAACAAGAGTTCCTTTGATGGCTTAGAGCATTTCAAGC TTTTACTAGC ATCAACAGATCCTGAGATTCTTATTGCTACATTAGAAACTCTTTCTGCACTTGTAAAAAT TAATCCCTCTA AGCTTCATGGAAGTACAAAGATGATTTGCTGTGGTTCGGTGAACAGCTATCTTTTGTCCC TAGCACAAG GCTGGGGAAGCAAGGAGGAGGGCCTAGGATTGTACTCTTGTGTTATGGCAAATGAGAAAG TCCAAGA TGAAGCACTGTGCTTATTTCCTTCTGAAGAGATTGGTCATGACCAATCAAATTGCCGCAT GGGCACTAC CCTTTATTTTGAATTGCATGGTCCCAGTGCCCAAAGCAAGGAACATAGTGCAGATGCAGT TTCCCCTGG CTCAACAGTTATACATATGCCAGATTTGCATCTGCGCAAAGAAGATGATTTGTCCTTGAT GAAGCAGTG CATTGAACAATTTAGCGTTCCTTCTGAGCTCAGATTTTCATTGCTCACTAGAATCAGATA TGCTCGTGCC TTTCGTTCTCCTAGAATATGCAGGCTTTACAGCAGGATTTGCCTACTTTCTTTCATTGTT CTGGTGCAGTC TGGTGATGCTCAGGAAGAACTCGTCTCCTTTTTTGCCAATGAACCAGAATATACAAATGA ATTAATTAG AATTGTACGTTCAGAGGAAGTTATATCTGGATCTATCAGGACACTTGCAATGCTTGCTTT AGGAGCTCA ATTAGCCGCATATACATCATCGCATCATCGGGCACGAATACTCAGTGGATCTAGTTTAAC TTTTGCTGGT GGGAACCGCATGATACTCCTAAATGTGCTCCAGAGGGCTATTTTGTCATTGAAGAGTTCT AATGATCCA TCATCCCTTGCTTTTGTTGAAGCACTTCTTCAGTTCTATCTGCTCCATGTGGTTTCAACC TCAACTTCTGGT AATAATATTAGAGGTTCTGGCATGGTGCCTACATTCTTGCCGTTGCTGGAGGATTTTGAT CCTACACATA TTCATCTAGTCTGTTTTGCTGTGAAAACACTTCAGAAGCTTATGGATTATAGTAGCTCAG CTGTATCATT GTTTAAAGAATTGGGGGGCATTGAACTTTTGGCTCAGAGATTACAGAAAGAGGTACACAG AGTCATTG GTTTGGTTGGAGAAACTGATAACATTATGCTTACTGGTGAAAGCTTGAGATATAGTACTG ATCAATTGT ACTCCCAGAAGAGACTCATAAAGGTCTCCCTTAAGGCGCTTGGTTCTGCAACATACGCGC CTGCAAACT CTACCAGATCTCAACATTCTCAAGACAGTTCATTACCTGTAACTCTAAGATTGATTTTTC AGAATGTAGA TAAGTTTGGAGGTGACATTTATTATTCAGCTGTTACTGTTATGAGCGAAATAATCCACAA AGATCCAACC TGTTTTTCTGCTCTGCATGAAATGGGTCTTCCTGATGCTTTTTTATTGTCAGTTGGATCT GAAATACTTCC ATCATCAAAGGCTTTGACATGCATTCCAAATGGTCTTGGGGCAATTTGTCTTAATGCCAA AGGGTTAGA GGCTGTTAGAGAATCTTCATCGCTACGGTTCCTTATTGACATTTTCACTAGCAAGAAGTA TATCTTAGCC ATGAATGAGGCTATTGTTCCTTTGGCAAATGCTGTGGAGGAACTTCTACGTCATGTATCT ACATTGAGA AGCTCCAGTGTTGATATTATCATTGAAATCATCCACAAGATCGCATCTTTTGGGGATGGA AATGGTACT GGATTTTCTGGAAAAGCTGAGGGCACTGCCATGGAAACAGATTCTGAAAACAAAGAAAAA GAAGGCC ATTGTTGCATTGTAGGCACATCATATTCAGCCATAGAAGGGATAAGTGATGAGCAGTTTA TTCAGCTAT GTGTCTTTCATTTAATGGTATTGATTCATAGGACTATGGAAAATGCCGAGACATGCCGGT TGTTTGTGG AAAAATCAGGAATTGAAGCTTTATTGAATTTGTTGTTGCGGCCAACTATTGCACAATCCT CAGATGGCA TGTCTATTGCTTTACATAGCACGATGGTATTTAAAGGGTTTGCTCAACATCATTCCATTC CTCTGGCACAT GCCTTCTGTTCTTCTCTTAGAGAGCACTTGAAGAAAGCTTTAGCGGGGCTTGGTGCAGCA TCAGAACCT TTGTTGCTGGATCCAAGGATGACAACTGATGGTGCCATCTTTTCTTCACTTTTCCTGGTT GAGTTCCTTCT ATTTCTTGCTGCACCAAAAGACAATCGTTGGGTGACTGCCTTGCTTACAGAATTTGGAAA TGGAGGTAA GGATGTTCTTGAAGACATTGGACGTGTACACCGTGAAGTCCTGTGGCAAATTGCTCTACT TGAAAACAG AAAGCCTGAGATTGAGGAAGATGGTGCTTGTACTTCTGATTTACAACAGGCCGAAGGGGA TGCAAGTG AAACTGAAGAGCAAAGGTTGAATTCTTTCAGGCAGTTTCTTGACCCATTATTGAGAAGAA GAACATCAG GATGGAGCATTGAATCTCAGTTTTTTAACCTTATAAACCTGTATCGAGATTTGGGCCGTT CCACTGGTTC TCAACATAGATCAAATTTAGTTGGTCCGAGGTCAAGTTCTAGTAATCAGGTACAGCATTC TGGGTCAGA TGATAATTCTGGGACTGCTGATAAGAAGGAATCTGACAAGCAGAGACCATATTATACCTC TTGTTGTGA CATGGTCAGATCACTTTCATTTCACATTACCCATTTGTTCCAAGAGTTGGGAAAAGTAAT GTTGCTACCT TCACGTCGACGTGATGATGTTGTGAATGTAAGTCCTGCTTCAAAATCAGTGGCTTCTACT TTTGCATCCA TTGCTTTTGATCACATGAATTATGGTGGCCGTTGTGTAAATCTTTCGGGAACAGAAGAAT CCATATCAAC AAAATGTCGATATTTTGGGAAAGTGATTGATTTTATGGATAATGTTCTAATGGAGAGGCC AGATTCATG CAATCCTATTATGCTGAATTGCTTGTATGGACGTGGAGTTATTGAAACTGTATTAACTAC CTTTGAAGCT ACCAGTCAGCTGCTCTTTACAGTTAATCGGGCCCCTGCCTCGCCCATGGATACTGATGAT GCGAATGCA AAGCAAGATGACAAGGAAGATACAGATAATTCATGGATTTATGGTTCTTTAGCTAGTTAT GGGAAATTG ATGGACCATCTAGTGACCTCCTCTTTTATATTATCATCATTCACAAAGCATTTACTTGCA CAGCCCCTTAC TAATGGTAATACAGCTTTCCCAAGGGATGCTGAGACTTTTGTGAAGGTCCTTCAATCCAG AGTGTTGAA GACTGTGCTTCCTGTTTGGACTCATCCCCAGTTTGTTGACTGTAGTTATGAATTTATTTC TACAGTTATTT CTATCATTAGGCATGTCTATACAGGTGTTGAAGTAAAAAATGTGAACGGAAGTGGTGGTG CTCGCATT ACTGGGCCGCCTCCTAATGAAACAACTATTTCAACCATTGTAGAGATGGGGTTTTCCAGG TCTAGAGCA GAAGAAGCTTTGAGGCAAGTTGGGTCAAATAGTGTGGAGTTGGCAATGGAGTGGTTGTTC TCTCATCC AGAGGAGATACAAGAAGATGATGAACTTGCCCGTGCACTTGCCATGTCCCTTGGAAACTC AGAATCAG ATGCAAAGGATGCAGTTGCTAATGACAATGCCCTGCAGCTTGAAGAAGAGATGGTCCTAC TCCCTCCTG TTGATGAGTTGTTATCTACTTGCACAAAACTTTTGTCGAAGGAACCACTTGCTTTTCCTG TCCGTGACTT GCTTGTGATGATATGCTCTCATGATGATGGTCACCATAGATCTAATGTGGTCTCATTTAT TGTGGAACG GATCAAAGAATGTGGTTTGGTTCCTAGCAATGGAAATGTTGCCACGCTGGCTGCTCTTTT TCATGTTCTA GCCTTAATTCTTAATGAGGATGCTGTGGCTAGGGAAGCTGCTTCTACAAGTGGTTTGATC AAAATTGCC TCAGATCTACTCTACCAGTGGGATTCTAGTCTTGATAGCAGGGAGAAACAGCAGGTACCA AAATGGGT GACTGCTGCTTTCCTTGCATTAGACAGATTGTTGCAAGTAGATCAAAAATTGAATTCTGA AATCGCAGA GCAGTTGAAGAAGGAAGCTGTGAATAGCCAGCAGACATCGATTACCATTGATGAAGACAG GCAAAAC AAGTTGCAGTCTGCATTGGGACTCTCTATGAAGTATGCAGATATACATGAACAGAAGAGA CTTGTTGA GGTTGCTTGTAGTTGTATGAATAATCAACTTCCATCTGACACAATGCATGCTATTCTGCT ACTATGTTCC AATCTTACAAGGAATCATTCTGTAGCTCTTACATTTTTGGATGCTGGTGGTTTGAATCTA CTTCTTTCTTT GCCAACCAGCAGCCTCTTCCCTGGGTTTGACAATGTTGCTGCTAGTATTGTTCGTCATGT TCTTGAAGAT CCACAAACGCTCCAGCAAGCAATGGAATCTGAGATAAAACATAGTCTTGCAGTGGCATCT AATCGGCAT CCAAATGGAAGGGTCAATCCTCATAATTTCCTTTTAAATTTAGCTTCTGTTATTTATCGG GATCCAGTAAT CTTTATGCTAGCTGCTCAATCTGTGTGCCAAGTTGAAATGGTAGGTGAGAGGCCATACAT TGTCTTGCT GAAAGATAGGGATAAAGACAAAGCTAGGGAGAAAGAAAAGGATAAGGATAAAACATTGGA GAAAGA TAAAGTACAGAACAGTGATGGGAAGGTTGTTTTGGGAAATACAAACACAGCACCTACTGG CAATGGCC ATGGCAAAATTCAGGATTCAAATACCAAGAGTGCCAAAGGTCACAGAAAACCTAACCAAA GTTTTATTA ATGTAATAGAGCTTCTTCTTGAATCTATATGCACTTTTGTTCCTCCCTTGAAGGATGACA TTGCCTCAAAT GTTCTTCCTGGAACCCCAGCATCAACTGATATGGACATTGATGTCTCCGTGGTTAAGGGA AAAGGAAAA GCAGTTGCCACTGTGTCTGACGGCAACGAAACTGGTAGTCAGGTTGCTTCTGCATCACTT GCAAAGATT GTCTTCATTTTAAAGCTTCTGACAGAGATATTATTGCTGTATTCATCATCTGTTCATGTT CTACTTCGACG AGATGCTGAAATAAGCTGCATTAGAGGTTCTTATCAAAAGAGTCCTGCAGGTTTAAGCAT GGGTTGGA TATTTTCCCATATTCTTCATAATTTTCTTCCATATTCTCGAAACTCAAAAAAGGACAAGA AAGCTGATGGT GATTGGAGGCAGAAACTAGCAACCAGGGCCAACCAGTTTATAGTGGGTGCTTGTGTTCGA TCTACAGA GGCAAGGAAGAGGGTTTTTGGTGAGATTAGTTATATCATCAATGAATTTGTTGATTCATG TCATGACAT TAAGCGTCCAGGAAATGAAATTCAGGTTTTTGTTGATCTACTAAATGATGTTTTGGCTGC TCGTACACCT GCTGGTTCGTACATTTCAGCTGAGGCCTCTACCACTTTTATAGATGCTGGTTTGGTTAAA TCATTCACTT GCACTCTACAAGTTTTGGACCTTGACCATGCTGGTTCATCTGAAGTTGCTACTGGTATTA TTAAAGCTCT TGAGTTGGTAACCAATGAGCATGTCCATTCAGTTCATTCTAGTGCAGGGAAGGGTGATAA TTCAACAAA ACCTTCTGTTCTAAGTCAACCTGGAAGAACAAATAATATTGGTGAACTGTCTCAGTCCAT GGAGACATC ACAAGCCAATCCTGATTCCCTTCAAGTTGACCATGTTGGGTCTTATGCAGTTCACTCCTA TGGTGGGTCT GAAGCTGTTACTGATGATATGGAACATGATCAAGATCTTGATGGGAGCTTTGTTCCTGCT AATGAGGAT GATTACATGCATGAAAATTCTGAGGATGCAAGAAATCTTGAAAATGGAATGGAAAATGTG GGTCTACA ATTTGAAATCCAACCTCATGGCCAAGAAAATCTTGATGAGGATGACGATGAGGATGATGA TATGTCTG GAGATGAAGGTGAGGATGTAGATGAAGATGATGATGATGAGGAGGAACACAATGATTTGG AAGAAG TCCATCATTTGCCACATCCTGACACAGATCAAGACGAGCATGAGATTGATGATGAAGATT TTGATGATG AAGTGATGGAGGAAGACGATGAGGATGACGAGGAAGATGAAGATGGTGTTATACTGCGAC TTGAGG AGGGAATTAATGGAATTAATGTTTTTGACCATATTGAGGTTTTTGGCAGAGATAATAGTT TTGCAAATG AAGCTTTACATGTAATGCCAGTTGAGGTTTTTGGATCCAGACGTCCGGGGAGGACGACAT CTATTTATA GTCTTTTGGGCAGAACTGGTGATGCTGCTGTGCCTTCTCGTCACCCACTCTTGCTTGAAC CTTCTTCATTC CCTCCACCTACAGGGCAATCAGATAGTTCAATGGAGAACAACTCAGTGGGTTTGGATAAT ATATTTCGA TCGCTGAGGAGTGGGCGCCATGGACACCGTTTGCACTTGTGGACTGATAATAACCAGCAA AGTGGTGG GACAAACACTGCTGTTGTACCACAAGGCCTTGAGGAGTTGCTTGTCACTCAATTAAGGCG ACCAACCCC TGAAAAGTCATCCAATCAGAACATAGCAGAAGCAGGTTCTCATGGTAAAATTGGAACAAC CCAGGCAC AAGATGCAGGGGGTGCAAGGCCAGAAGTCCCCGTTGAAAGTAATGCTATTCTGGAAATTA GTACTATA ACTCCCTCAATTGATAACAGTAACAATGCGGATGTCAGACCAGCAGGGACTGGACCTTCA CATACAAAT GTTTCAAACACCCAATCACGGGCAGTTGAGATGCAATTTGAACATACTGATGGAGCTGTG AGGGATAT TGAAGCTGTCAGCCAGGAGAGTAGTGGTAGTGGAGCAACTTTCGGTGAAAGCCTTCGGAG CTTGGAA GTTGAGATTGGAAGTGCTGATGGCCATGATGATGGTGGTGAAAGGCTGGTTTCTGCTGAT AGGATGGC AGGTGATTCACAGGCTGCACGCACAAGAAGAGCAAATACACCTTTGAGTCACTTTTCTCC TGTGGTTGG AAGAGATGTGTCCCTTCATAGTGTTACTGAAGTTTCAGAAAATTCAAGCCGTGATGCAGA TCAACAAGG TCCTGCAGCAGAGCAGCAGGTGAACAGTGATGCGGGATCAGGAGCTATTGATCCTGCTTT TCTGGATG CTCTTCCTGAGGAGCTACGTGCTGAAGTCCTTTCAGCTCAGCAGGGTCAAGTGGCTCAGC CATCAAATG TTGAGTCTCAAAACACTGGGGATATTGACCCAGAGTTCCTAGCAGCTCTTCCAGCTGATA TTCGAGCAG AAGTTCTAGCTCAGCAGCAAGCACAGAGGTTGCATCAGTCTCAGGAGCTGGAAGGTCAAC CTGTGGAA ATGGATACAGTCTCAATAATTGCAACTTTTCCATCAGATTTACGAGAAGAGGTTCTCTTG ACATCACCAG ATACTATCCTTGCCAATCTTACACCTGCTCTTGTTGCTGAGGCAAATATGTTGCGGGAGA GGTTTGCACA CCGTTATAGTCGTACCCTCTTTGGTATGTATCCAAGAAGTCGTAGAGGGGAGACTTCAAG ACGTGAAG GTATTGGTTCTGGTCTGGATGGAGCAGGAGGAACCATTTCTTCTCGCCGCTCCAGTGGAG TTAAGGTTG TTGAAGCTGATGGAGCACCTTTAGTTGACACAGAAGCTTTGCATGCTATGATTCGGTTAT TTCGTGTAG TGCAGCCACTCTATAAAGGCCAACTCCAGAGGCTTCTATTAAATCTTTGTGCCCATAGTG AAACAAGAA CCTCTCTGGTGAAAATTCTCATGGACTTGCTAATGCTTGATGTAAAAAGGCCTGTCAGTT ATTTTAGTAA AGTTGAGCCACCATATAGATTGTATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCA ATCTTTTGAT GGAGTTCCCCCATTGCTGTCTCGTAGAATACTTGGAATTCTCACTTATCTTGCTCGCAAT CATCTGTATGT GGCAAAATTTTTGCTTCAGTGTAGGCTGTCTCATCCTGCAATAAAAGAACCAGATGATCC ACGGGGAAA AGCTGTGATGGTTGTTGAAGATGAAGTAAATATAAGTGAAAGTAATGATGGGTACATCGC CATTGCAA TGCTATTGGGTCTGTTGAACCAACCACTTTATTTGAGGAGCATAGCCCACCTTGAGCAGC TGCTAGATTT ACTGGATGTTATCATTGACAGTGCTGGAAACAAGTCATCTGGCAAATCCTTGATACCTAC TAACCCATCA TCAGCTCCACAAATTTCTGCTGCGGAAGCCGATGCGAATGCAGATTCTAACAATTTACCT TCTGCGGAT GATGCATCTAAAGTTGATGGTTCCTCCAAACCGACAGTCTCTGGCATTAATGTTGAATGT GAGTTACAT GGAGTGTTGAGTAATCTTCCAAAAGCAGAACTCCGGCTCCTGTGCTCACTGCTTGCTCAA GAAGGTTTG TCAGATAATGCGTATAATCTTGTAGCGGAAGTAATGAAGAAATTGGTGGCCATTGCTCCA ACACATTGT GAGCTTTTTGTCACTGAGCTGGCAGAAGCAGTTCAAAAGTTGACTTCATCTGCAATGAAT GAGTTACGT GTCTTTAGTGAAGCAATGAAAGCTCTGCTTAGTACCTCTTCTACTGATGGAGCTGCAATT TTGAGAGTCT TGCAAGCCTTGAGTTCCCTTGTCACCTTACTGACGGAGAAAGAGAATGATAGAGGTACTC CTGCTCTTT CTGAGGTTTGGGAAATCAATTCAGCATTAGAACCCTTGTGGCATGAGCTTAGTTGTTGCA TAAGCAAGA TAGAATCCTACTCAGAGTCTGCATCTGAGTTTTCGACATCTTCTAGTACCTTTGTGTCTA AACCGTCTGGT GTAATGCCTCCACTTCCAGCTGGCTCTCAAAATATCTTACCATACATTGAATCTTTCTTT GTGGTTTGTGA GAAATTGCATCCTGCTCAGCCAGGTGCTAGTCACGACTCAAGTATTCCTGTTATTTCGGA TGTTGAGTAT GCCACCACATCTGTAACTCCCCAGAAAGCATCTGGAACTGCTGTGAAAGTAGATGAGAAA CATATGCCT TTTGTCCGGTTCTCAGAGAAGCACAGGAAGCTACTAAATGCTTTCATAAGGCAAAACCCT GGTTTGCTT GAAAAATCTTTCTCACTCATGCTAAAGGTTCCAAGATTTATTGATTTTGATAACAAGCGT GCCCACTTCC GATCAAAAATTAAGCATCAGCATGACCATCACCATAGTCCCTTGAGAATATCAGTAAGAA GGGCATATG TTCTAGAAGATTCTTACAACCAGCTTCGCATGAGATCAACTCAAGATTTGAAGGGAAGGT TGACTGTCC ACTTCCAAGGGGAGGAGGGTATTGATGCAGGTGGGCTTACAAGGGAATGGTATCAATTAT TGTCCAGA GTTATTTTTGATAAAGGAGCACTGCTTTTTACTACAGTGGGCAATGAATCAACATTTCAG CCAAACCCTA ACTCTGTTTACCAAACAGAACATTTATCTTATTTCAAATTTGTTGGTAGAGTGGTCGGTA AAGCATTATT TGATGGTCAACTCTTGGATGTTCATTTTACTCGGTCATTCTACAAGCACATTCTTGGAGT CAAAGTTACA TATCATGATATTGAAGCCATTGATCCTGATTATTTCAAAAATTTGAAATGGATGCTTGAG AATGATATCA GTGATGTTCTGGATCTTACTTTTAGCATTGACGCAGATGAGGAAAAATTGATCTTATATG AACGAACAG AGGTGACTGATTATGAGTTGATTCCCGGGGGACGGAATATCAAAGTTACTGAGGAGAACA AGCATCAA TATGTTGATTTGGTTGCCGAGCATCGGTTGACAACTGCTATTCGACCTCAAATAAATTAT TTCTTAGAAG GGTTCATTGAATTGATTCCCAGGGAGTTGATATCGATATTCAATGACAAAGAGCTGGAAT TGTTGATCA GTGGACTTCCTGATATTGATTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATA GTGCTGCAT CGCCAGTTATCCAATGGTTTTGGGAGGTTGTTCAAGGTTTGAGCAAAGAAGACAAGGCTC GACTGTTG CAATTTGTGACAGGCACATCCAAGGAATTTCAGGCTCCCAGAAGTTTCAGATACACAAAG CATATGGAA GTCCTGATCACTTGCCTTCTGCTCATACTTGCTTCAATCAATTAG SEQ ID NO: 24 CDS UPL2 >KRH16870 cds:protein_coding ATGACAACCCTAAGATCGAGTTGGCCTTCGAGGCTGCGCCAACTTCTGTCGAGCGAGGGC GCCATTGG TCCTTCCGTCAAGGTGGACACCGAGCCCCCTCCTATGGTCAAAGCCTTCATTGAGAAGAT CATCCAGTG TCCATTACAAGATATTGCCATACCACTTTCTGGCTTTCGGTGGGAGTACAATAAGGGGAA TTTTCATCAC TGGAGACTGTTGTTGCTTCATTTTGATACATACTTCAAGACTTATTTGTCGTGTAGAAAT GATCTGACAT TGTTAGATAATCTAGAAGATGACAGCCCATTACCAAAACATGCAATTCTGCAAATATTGC GAGTGTTGC AAATAATTTTAGAGAACTGTCCAAACAAGAGTTCCTTTGATGGCTTAGAGCATTTCAAGC TTTTACTAGC ATCAACAGATCCTGAGATTCTTATTGCTACATTAGAAACTCTTTCTGCACTTGTAAAAAT TAATCCCTCTA AGCTTCATGGAAGTACAAAGATGATTTGCTGTGGTTCGGTGAACAGCTATCTTTTGTCCC TAGCACAAG GCTGGGGAAGCAAGGAGGAGGGCCTAGGATTGTACTCTTGTGTTATGGCAAATGAGAAAG TCCAAGA TGAAGCACTGTGCTTATTTCCTTCTGAAGAGATTGGTCATGACCAATCAAATTGCCGCAT GGGCACTAC CCTTTATTTTGAATTGCATGGTCCCAGTGCCCAAAGCAAGGAACATAGTGCAGATGCAGT TTCCCCTGG CTCAACAGTTATACATATGCCAGATTTGCATCTGCGCAAAGAAGATGATTTGTCCTTGAT GAAGCAGTG CATTGAACAATTTAGCGTTCCTTCTGAGCTCAGATTTTCATTGCTCACTAGAATCAGATA TGCTCGTGCC TTTCGTTCTCCTAGAATATGCAGGCTTTACAGCAGGATTTGCCTACTTTCTTTCATTGTT CTGGTGCAGTC TGGTGATGCTCAGGAAGAACTCGTCTCCTTTTTTGCCAATGAACCAGAATATACAAATGA ATTAATTAG AATTGTACGTTCAGAGGAAGTTATATCTGGATCTATCAGGACACTTGCAATGCTTGCTTT AGGAGCTCA ATTAGCCGCATATACATCATCGCATCATCGGGCACGAATACTCAGTGGATCTAGTTTAAC TTTTGCTGGT GGGAACCGCATGATACTCCTAAATGTGCTCCAGAGGGCTATTTTGTCATTGAAGAGTTCT AATGATCCA TCATCCCTTGCTTTTGTTGAAGCACTTCTTCAGTTCTATCTGCTCCATGTGGTTTCAACC TCAACTTCTGGT AATAATATTAGAGGTTCTGGCATGGTGCCTACATTCTTGCCGTTGCTGGAGGATTTTGAT CCTACACATA TTCATCTAGTCTGTTTTGCTGTGAAAACACTTCAGAAGCTTATGGATTATAGTAGCTCAG CTGTATCATT GTTTAAAGAATTGGGGGGCATTGAACTTTTGGCTCAGAGATTACAGAAAGAGGTACACAG AGTCATTG GTTTGGTTGGAGAAACTGATAACATTATGCTTACTGGTGAAAGCTTGAGATATAGTACTG ATCAATTGT ACTCCCAGAAGAGACTCATAAAGGTCTCCCTTAAGGCGCTTGGTTCTGCAACATACGCGC CTGCAAACT CTACCAGATCTCAACATTCTCAAGACAGTTCATTACCTGTAACTCTAAGATTGATTTTTC AGAATGTAGA TAAGTTTGGAGGTGACATTTATTATTCAGCTGTTACTGTTATGAGCGAAATAATCCACAA AGATCCAACC TGTTTTTCTGCTCTGCATGAAATGGGTCTTCCTGATGCTTTTTTATTGTCAGTTGGATCT GAAATACTTCC ATCATCAAAGGCTTTGACATGCATTCCAAATGGTCTTGGGGCAATTTGTCTTAATGCCAA AGGGTTAGA GGCTGTTAGAGAATCTTCATCGCTACGGTTCCTTATTGACATTTTCACTAGCAAGAAGTA TATCTTAGCC ATGAATGAGGCTATTGTTCCTTTGGCAAATGCTGTGGAGGAACTTCTACGTCATGTATCT ACATTGAGA AGCTCCAGTGTTGATATTATCATTGAAATCATCCACAAGATCGCATCTTTTGGGGATGGA AATGGTACT GGATTTTCTGGAAAAGCTGAGGGCACTGCCATGGAAACAGATTCTGAAAACAAAGAAAAA GAAGGCC ATTGTTGCATTGTAGGCACATCATATTCAGCCATAGAAGGGATAAGTGATGAGCAGTTTA TTCAGCTAT GTGTCTTTCATTTAATGGTATTGATTCATAGGACTATGGAAAATGCCGAGACATGCCGGT TGTTTGTGG AAAAATCAGGAATTGAAGCTTTATTGAATTTGTTGTTGCGGCCAACTATTGCACAATCCT CAGATGGCA TGTCTATTGCTTTACATAGCACGATGGTATTTAAAGGGTTTGCTCAACATCATTCCATTC CTCTGGCACAT GCCTTCTGTTCTTCTCTTAGAGAGCACTTGAAGAAAGCTTTAGCGGGGCTTGGTGCAGCA TCAGAACCT TTGTTGCTGGATCCAAGGATGACAACTGATGGTGCCATCTTTTCTTCACTTTTCCTGGTT GAGTTCCTTCT ATTTCTTGCTGCACCAAAAGACAATCGTTGGGTGACTGCCTTGCTTACAGAATTTGGAAA TGGAGGTAA GGATGTTCTTGAAGACATTGGACGTGTACACCGTGAAGTCCTGTGGCAAATTGCTCTACT TGAAAACAG AAAGCCTGAGATTGAGGAAGATGGTGCTTGTACTTCTGATTTACAACAGGCCGAAGGGGA TGCAAGTG AAACTGAAGAGCAAAGGTTGAATTCTTTCAGGCAGTTTCTTGACCCATTATTGAGAAGAA GAACATCAG GATGGAGCATTGAATCTCAGTTTTTTAACCTTATAAACCTGTATCGAGATTTGGGCCGTT CCACTGGTTC TCAACATAGATCAAATTTAGTTGGTCCGAGGTCAAGTTCTAGTAATCAGGTACAGCATTC TGGGTCAGA TGATAATTCTGGGACTGCTGATAAGAAGGAATCTGACAAGCAGAGACCATATTATACCTC TTGTTGTGA CATGGTCAGATCACTTTCATTTCACATTACCCATTTGTTCCAAGAGTTGGGAAAAGTAAT GTTGCTACCT TCACGTCGACGTGATGATGTTGTGAATGTAAGTCCTGCTTCAAAATCAGTGGCTTCTACT TTTGCATCCA TTGCTTTTGATCACATGAATTATGGTGGCCGTTGTGTAAATCTTTCGGGAACAGAAGAAT CCATATCAAC AAAATGTCGATATTTTGGGAAAGTGATTGATTTTATGGATAATGTTCTAATGGAGAGGCC AGATTCATG CAATCCTATTATGCTGAATTGCTTGTATGGACGTGGAGTTATTGAAACTGTATTAACTAC CTTTGAAGCT ACCAGTCAGCTGCTCTTTACAGTTAATCGGGCCCCTGCCTCGCCCATGGATACTGATGAT GCGAATGCA AAGCAAGATGACAAGGAAGATACAGATAATTCATGGATTTATGGTTCTTTAGCTAGTTAT GGGAAATTG ATGGACCATCTAGTGACCTCCTCTTTTATATTATCATCATTCACAAAGCATTTACTTGCA CAGCCCCTTAC TAATGGTAATACAGCTTTCCCAAGGGATGCTGAGACTTTTGTGAAGGTCCTTCAATCCAG AGTGTTGAA GACTGTGCTTCCTGTTTGGACTCATCCCCAGTTTGTTGACTGTAGTTATGAATTTATTTC TACAGTTATTT CTATCATTAGGCATGTCTATACAGGTGTTGAAGTAAAAAATGTGAACGGAAGTGGTGGTG CTCGCATT ACTGGGCCGCCTCCTAATGAAACAACTATTTCAACCATTGTAGAGATGGGGTTTTCCAGG TCTAGAGCA GAAGAAGCTTTGAGGCAAGTTGGGTCAAATAGTGTGGAGTTGGCAATGGAGTGGTTGTTC TCTCATCC AGAGGAGATACAAGAAGATGATGAACTTGCCCGTGCACTTGCCATGTCCCTTGGAAACTC AGAATCAG ATGCAAAGGATGCAGTTGCTAATGACAATGCCCTGCAGCTTGAAGAAGAGATGGTCCTAC TCCCTCCTG TTGATGAGTTGTTATCTACTTGCACAAAACTTTTGTCGAAGGAACCACTTGCTTTTCCTG TCCGTGACTT GCTTGTGATGATATGCTCTCATGATGATGGTCACCATAGATCTAATGTGGTCTCATTTAT TGTGGAACG GATCAAAGAATGTGGTTTGGTTCCTAGCAATGGAAATGTTGCCACGCTGGCTGCTCTTTT TCATGTTCTA GCCTTAATTCTTAATGAGGATGCTGTGGCTAGGGAAGCTGCTTCTACAAGTGGTTTGATC AAAATTGCC TCAGATCTACTCTACCAGTGGGATTCTAGTCTTGATAGCAGGGAGAAACAGCAGGTACCA AAATGGGT GACTGCTGCTTTCCTTGCATTAGACAGATTGTTGCAAGTAGATCAAAAATTGAATTCTGA AATCGCAGA GCAGTTGAAGAAGGAAGCTGTGAATAGCCAGCAGACATCGATTACCATTGATGAAGACAG GCAAAAC AAGTTGCAGTCTGCATTGGGACTCTCTATGAAGTATGCAGATATACATGAACAGAAGAGA CTTGTTGA GGTTGCTTGTAGTTGTATGAATAATCAACTTCCATCTGACACAATGCATGCTATTCTGCT ACTATGTTCC AATCTTACAAGGAATCATTCTGTAGCTCTTACATTTTTGGATGCTGGTGGTTTGAATCTA CTTCTTTCTTT GCCAACCAGCAGCCTCTTCCCTGGGTTTGACAATGTTGCTGCTAGTATTGTTCGTCATGT TCTTGAAGAT CCACAAACGCTCCAGCAAGCAATGGAATCTGAGATAAAACATAGTCTTGCAGTGGCATCT AATCGGCAT CCAAATGGAAGGGTCAATCCTCATAATTTCCTTTTAAATTTAGCTTCTGTTATTTATCGG GATCCAGTAAT CTTTATGCTAGCTGCTCAATCTGTGTGCCAAGTTGAAATGGTAGGTGAGAGGCCATACAT TGTCTTGCT GAAAGATAGGGATAAAGACAAAGCTAGGGAGAAAGAAAAGGATAAGGATAAAACATTGGA GAAAGA TAAAGTACAGAACAGTGATGGGAAGGTTGTTTTGGGAAATACAAACACAGCACCTACTGG CAATGGCC ATGGCAAAATTCAGGATTCAAATACCAAGAGTGCCAAAGGTCACAGAAAACCTAACCAAA GTTTTATTA ATGTAATAGAGCTTCTTCTTGAATCTATATGCACTTTTGTTCCTCCCTTGAAGGATGACA TTGCCTCAAAT GTTCTTCCTGGAACCCCAGCATCAACTGATATGGACATTGATGTCTCCGTGGTTAAGGGA AAAGGAAAA GCAGTTGCCACTGTGTCTGACGGCAACGAAACTGGTAGTCAGGTTGCTTCTGCATCACTT GCAAAGATT GTCTTCATTTTAAAGCTTCTGACAGAGATATTATTGCTGTATTCATCATCTGTTCATGTT CTACTTCGACG AGATGCTGAAATAAGCTGCATTAGAGGTTCTTATCAAAAGAGTCCTGCAGGTTTAAGCAT GGGTTGGA TATTTTCCCATATTCTTCATAATTTTCTTCCATATTCTCGAAACTCAAAAAAGGACAAGA AAGCTGATGGT GATTGGAGGCAGAAACTAGCAACCAGGGCCAACCAGTTTATAGTGGGTGCTTGTGTTCGA TCTACAGA GGCAAGGAAGAGGGTTTTTGGTGAGATTAGTTATATCATCAATGAATTTGTTGATTCATG TCATGACAT TAAGCGTCCAGGAAATGAAATTCAGGTTTTTGTTGATCTACTAAATGATGTTTTGGCTGC TCGTACACCT GCTGGTTCGTACATTTCAGCTGAGGCCTCTACCACTTTTATAGATGCTGGTTTGGTTAAA TCATTCACTT GCACTCTACAAGTTTTGGACCTTGACCATGCTGGTTCATCTGAAGTTGCTACTGGTATTA TTAAAGCTCT TGAGTTGGTAACCAATGAGCATGTCCATTCAGTTCATTCTAGTGCAGGGAAGGGTGATAA TTCAACAAA ACCTTCTGTTCTAAGTCAACCTGGAAGAACAAATAATATTGGTGAACTGTCTCAGTCCAT GGAGACATC ACAAGCCAATCCTGATTCCCTTCAAGTTGACCATGTTGGGTCTTATGCAGTTCACTCCTA TGGTGGGTCT GAAGCTGTTACTGATGATATGGAACATGATCAAGATCTTGATGGGAGCTTTGTTCCTGCT AATGAGGAT GATTACATGCATGAAAATTCTGAGGATGCAAGAAATCTTGAAAATGGAATGGAAAATGTG GGTCTACA ATTTGAAATCCAACCTCATGGCCAAGAAAATCTTGATGAGGATGACGATGAGGATGATGA TATGTCTG GAGATGAAGGTGAGGATGTAGATGAAGATGATGATGATGAGGAGGAACACAATGATTTGG AAGAAG TCCATCATTTGCCACATCCTGACACAGATCAAGACGAGCATGAGATTGATGATGAAGATT TTGATGATG AAGTGATGGAGGAAGACGATGAGGATGACGAGGAAGATGAAGATGGTGTTATACTGCGAC TTGAGG AGGGAATTAATGGAATTAATGTTTTTGACCATATTGAGGTTTTTGGCAGAGATAATAGTT TTGCAAATG AAGCTTTACATGTAATGCCAGTTGAGGTTTTTGGATCCAGACGTCCGGGGAGGACGACAT CTATTTATA GTCTTTTGGGCAGAACTGGTGATGCTGCTGTGCCTTCTCGTCACCCACTCTTGCTTGAAC CTTCTTCATTC CCTCCACCTACAGGGCAATCAGATAGTTCAATGGAGAACAACTCAGTGGGTTTGGATAAT ATATTTCGA TCGCTGAGGAGTGGGCGCCATGGACACCGTTTGCACTTGTGGACTGATAATAACCAGCAA AGTGGTGG GACAAACACTGCTGTTGTACCACAAGGCCTTGAGGAGTTGCTTGTCACTCAATTAAGGCG ACCAACCCC TGAAAAGTCATCCAATCAGAACATAGCAGAAGCAGGTTCTCATGGTAAAATTGGAACAAC CCAGGCAC AAGATGCAGGGGGTGCAAGGCCAGAAGTCCCCGTTGAAAGTAATGCTATTCTGGAAATTA GTACTATA ACTCCCTCAATTGATAACAGTAACAATGCGGATGTCAGACCAGCAGGGACTGGACCTTCA CATACAAAT GTTTCAAACACCCAATCACGGGCAGTTGAGATGCAATTTGAACATACTGATGGAGCTGTG AGGGATAT TGAAGCTGTCAGCCAGGAGAGTAGTGGTAGTGGAGCAACTTTCGGTGAAAGCCTTCGGAG CTTGGAA GTTGAGATTGGAAGTGCTGATGGCCATGATGATGGTGGTGAAAGGCTGGTTTCTGCTGAT AGGATGGC AGGTGATTCACAGGCTGCACGCACAAGAAGAGCAAATACACCTTTGAGTCACTTTTCTCC TGTGGTTGG AAGAGATGTGTCCCTTCATAGTGTTACTGAAGTTTCAGAAAATTCAAGCCGTGATGCAGA TCAACAAGG TCCTGCAGCAGAGCAGCAGGTGAACAGTGATGCGGGATCAGGAGCTATTGATCCTGCTTT TCTGGATG CTCTTCCTGAGGAGCTACGTGCTGAAGTCCTTTCAGCTCAGCAGGGTCAAGTGGCTCAGC CATCAAATG TTGAGTCTCAAAACACTGGGGATATTGACCCAGAGTTCCTAGCAGCTCTTCCAGCTGATA TTCGAGCAG AAGTTCTAGCTCAGCAGCAAGCACAGAGGTTGCATCAGTCTCAGGAGCTGGAAGGTCAAC CTGTGGAA ATGGATACAGTCTCAATAATTGCAACTTTTCCATCAGATTTACGAGAAGAGGTTCTCTTG ACATCACCAG ATACTATCCTTGCCAATCTTACACCTGCTCTTGTTGCTGAGGCAAATATGTTGCGGGAGA GGTTTGCACA CCGTTATAGTCGTACCCTCTTTGGTATGTATCCAAGAAGTCGTAGAGGGGAGACTTCAAG ACGTGAAG GTATTGGTTCTGGTCTGGATGGAGCAGGAGGAACCATTTCTTCTCGCCGCTCCAGTGGAG TTAAGGTTG TTGAAGCTGATGGAGCACCTTTAGTTGACACAGAAGCTTTGCATGCTATGATTCGGTTAT TTCGTGTAG TGCAGCCACTCTATAAAGGCCAACTCCAGAGGCTTCTATTAAATCTTTGTGCCCATAGTG AAACAAGAA CCTCTCTGGTGAAAATTCTCATGGACTTGCTAATGCTTGATGTAAAAAGGCCTGTCAGTT ATTTTAGTAA AGTTGAGCCACCATATAGATTGTATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCA ATCTTTTGAT GGAGTTCCCCCATTGCTGTCTCGTAGAATACTTGGAATTCTCACTTATCTTGCTCGCAAT CATCTGTATGT GGCAAAATTTTTGCTTCAGTGTAGGCTGTCTCATCCTGCAATAAAAGAACCAGATGATCC ACGGGGAAA AGCTGTGATGGTTGTTGAAGATGAAGTAAATATAAGTGAAAGTAATGATGGGTACATCGC CATTGCAA TGCTATTGGGTCTGTTGAACCAACCACTTTATTTGAGGAGCATAGCCCACCTTGAGCAGC TGCTAGATTT ACTGGATGTTATCATTGACAGTGCTGGAAACAAGTCATCTGGCAAATCCTTGATACCTAC TAACCCATCA TCAGCTCCACAAATTTCTGCTGCGGAAGCCGATGCGAATGCAGATTCTAACAATTTACCT TCTGCGGAT GATGCATCTAAAGTTGATGGTTCCTCCAAACCGACAGTCTCTGGCATTAATGTTGAATGT GAGTTACAT GGAGTGTTGAGTAATCTTCCAAAAGCAGAACTCCGGCTCCTGTGCTCACTGCTTGCTCAA GAAGGTTTG TCAGATAATGCGTATAATCTTGTAGCGGAAGTAATGAAGAAATTGGTGGCCATTGCTCCA ACACATTGT GAGCTTTTTGTCACTGAGCTGGCAGAAGCAGTTCAAAAGTTGACTTCATCTGCAATGAAT GAGTTACGT GTCTTTAGTGAAGCAATGAAAGCTCTGCTTAGTACCTCTTCTACTGATGGAGCTGCAATT TTGAGAGTCT TGCAAGCCTTGAGTTCCCTTGTCACCTTACTGACGGAGAAAGAGAATGATAGAGGTACTC CTGCTCTTT CTGAGGTTTGGGAAATCAATTCAGCATTAGAACCCTTGTGGCATGAGCTTAGTTGTTGCA TAAGCAAGA TAGAATCCTACTCAGAGTCTGCATCTGAGTTTTCGACATCTTCTAGTACCTTTGTGTCTA AACCGTCTGGT GTAATGCCTCCACTTCCAGCTGGCTCTCAAAATATCTTACCATACATTGAATCTTTCTTT GTGGTTTGTGA GAAATTGCATCCTGCTCAGCCAGGTGCTAGTCACGACTCAAGTATTCCTGTTATTTCGGA TGTTGAGTAT GCCACCACATCTGTAACTCCCCAGAAAGCATCTGGAACTGCTGTGAAAGTAGATGAGAAA CATATGCCT TTTGTCCGGTTCTCAGAGAAGCACAGGAAGCTACTAAATGCTTTCATAAGGCAAAACCCT GGTTTGCTT GAAAAATCTTTCTCACTCATGCTAAAGGTTCCAAGATTTATTGATTTTGATAACAAGCGT GCCCACTTCC GATCAAAAATTAAGCATCAGCATGACCATCACCATAGTCCCTTGAGAATATCAGTAAGAA GGGCATATG TTCTAGAAGATTCTTACAACCAGCTTCGCATGAGATCAACTCAAGATTTGAAGGGAAGGT TGACTGTCC ACTTCCAAGGGGAGGAGGGTATTGATGCAGGTGGGCTTACAAGGGAATGGTATCAATTAT TGTCCAGA GTTATTTTTGATAAAGGAGCACTGCTTTTTACTACAGTGGGCAATGAATCAACATTTCAG CCAAACCCTA ACTCTGTTTACCAAACAGAACATTTATCTTATTTCAAATTTGTTGGTAGAGTGGTCGGTA AAGCATTATT TGATGGTCAACTCTTGGATGTTCATTTTACTCGGTCATTCTACAAGCACATTCTTGGAGT CAAAGTTACA TATCATGATATTGAAGCCATTGATCCTGATTATTTCAAAAATTTGAAATGGATGCTTGAG AATGATATCA GTGATGTTCTGGATCTTACTTTTAGCATTGACGCAGATGAGGAAAAATTGATCTTATATG AACGAACAG AGGTGACTGATTATGAGTTGATTCCCGGGGGACGGAATATCAAAGTTACTGAGGAGAACA AGCATCAA TATGTTGATTTGGTTGCCGAGCATCGGTTGACAACTGCTATTCGACCTCAAATAAATTAT TTCTTAGAAG GGTTCATTGAATTGATTCCCAGGGAGTTGATATCGATATTCAATGACAAAGAGCTGGAAT TGTTGATCA GTGGACTTCCTGATATTGATTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATA GTGCTGCAT CGCCAGTTATCCAATGGTTTTGGGAGGTTGTTCAAGGTTTGAGCAAAGAAGACAAGGCTC GACTGTTG CAATTTGTGACAGGCACATCCAAGGTGCCTTTGGAGGGCTTTAGCGCTCTCCAAGGAATT TCAGGCTCC CAGAAGTTTCAGATACACAAAGCATATGGAAGTCCTGATCACTTGCCTTCTGCTCATACT TGCTTCAATC AATTAGATTTGCCGGAGTATCCATCTAAACAACATTTGGAAGAGAGGTTACTGCTGGCAA TTCACGAAG CAAGTGAGGGTTTTGGATTTGGTTGA SEQ ID NO: 25>KRH16869 cds:protein_coding ATGACAACCCTAAGATCGAGTTGGCCTTCGAGGCTGCGCCAACTTCTGTCGAGCGAGGGC GCCATTGG TCCTTCCGTCAAGGTGGACACCGAGCCCCCTCCTATGGTCAAAGCCTTCATTGAGAAGAT CATCCAGTG TCCATTACAAGATATTGCCATACCACTTTCTGGCTTTCGGTGGGAGTACAATAAGGGGAA TTTTCATCAC TGGAGACTGTTGTTGCTTCATTTTGATACATACTTCAAGACTTATTTGTCGTGTAGAAAT GATCTGACAT TGTTAGATAATCTAGAAGATGACAGCCCATTACCAAAACATGCAATTCTGCAAATATTGC GAGTGTTGC AAATAATTTTAGAGAACTGTCCAAACAAGAGTTCCTTTGATGGCTTAGAGCATTTCAAGC TTTTACTAGC ATCAACAGATCCTGAGATTCTTATTGCTACATTAGAAACTCTTTCTGCACTTGTAAAAAT TAATCCCTCTA AGCTTCATGGAAGTACAAAGATGATTTGCTGTGGTTCGGTGAACAGCTATCTTTTGTCCC TAGCACAAG GCTGGGGAAGCAAGGAGGAGGGCCTAGGATTGTACTCTTGTGTTATGGCAAATGAGAAAG TCCAAGA TGAAGCACTGTGCTTATTTCCTTCTGAAGAGATTGGTCATGACCAATCAAATTGCCGCAT GGGCACTAC CCTTTATTTTGAATTGCATGGTCCCAGTGCCCAAAGCAAGGAACATAGTGCAGATGCAGT TTCCCCTGG CTCAACAGTTATACATATGCCAGATTTGCATCTGCGCAAAGAAGATGATTTGTCCTTGAT GAAGCAGTG CATTGAACAATTTAGCGTTCCTTCTGAGCTCAGATTTTCATTGCTCACTAGAATCAGATA TGCTCGTGCC TTTCGTTCTCCTAGAATATGCAGGCTTTACAGCAGGATTTGCCTACTTTCTTTCATTGTT CTGGTGCAGTC TGGTGATGCTCAGGAAGAACTCGTCTCCTTTTTTGCCAATGAACCAGAATATACAAATGA ATTAATTAG AATTGTACGTTCAGAGGAAGTTATATCTGGATCTATCAGGACACTTGCAATGCTTGCTTT AGGAGCTCA ATTAGCCGCATATACATCATCGCATCATCGGGCACGAATACTCAGTGGATCTAGTTTAAC TTTTGCTGGT GGGAACCGCATGATACTCCTAAATGTGCTCCAGAGGGCTATTTTGTCATTGAAGAGTTCT AATGATCCA TCATCCCTTGCTTTTGTTGAAGCACTTCTTCAGTTCTATCTGCTCCATGTGGTTTCAACC TCAACTTCTGGT AATAATATTAGAGGTTCTGGCATGGTGCCTACATTCTTGCCGTTGCTGGAGGATTTTGAT CCTACACATA TTCATCTAGTCTGTTTTGCTGTGAAAACACTTCAGAAGCTTATGGATTATAGTAGCTCAG CTGTATCATT GTTTAAAGAATTGGGGGGCATTGAACTTTTGGCTCAGAGATTACAGAAAGAGGTACACAG AGTCATTG GTTTGGTTGGAGAAACTGATAACATTATGCTTACTGGTGAAAGCTTGAGATATAGTACTG ATCAATTGT ACTCCCAGAAGAGACTCATAAAGGTCTCCCTTAAGGCGCTTGGTTCTGCAACATACGCGC CTGCAAACT CTACCAGATCTCAACATTCTCAAGACAGTTCATTACCTGTAACTCTAAGATTGATTTTTC AGAATGTAGA TAAGTTTGGAGGTGACATTTATTATTCAGCTGTTACTGTTATGAGCGAAATAATCCACAA AGATCCAACC TGTTTTTCTGCTCTGCATGAAATGGGTCTTCCTGATGCTTTTTTATTGTCAGTTGGATCT GAAATACTTCC ATCATCAAAGGCTTTGACATGCATTCCAAATGGTCTTGGGGCAATTTGTCTTAATGCCAA AGGGTTAGA GGCTGTTAGAGAATCTTCATCGCTACGGTTCCTTATTGACATTTTCACTAGCAAGAAGTA TATCTTAGCC ATGAATGAGGCTATTGTTCCTTTGGCAAATGCTGTGGAGGAACTTCTACGTCATGTATCT ACATTGAGA AGCTCCAGTGTTGATATTATCATTGAAATCATCCACAAGATCGCATCTTTTGGGGATGGA AATGGTACT GGATTTTCTGGAAAAGCTGAGGGCACTGCCATGGAAACAGATTCTGAAAACAAAGAAAAA GAAGGCC ATTGTTGCATTGTAGGCACATCATATTCAGCCATAGAAGGGATAAGTGATGAGCAGTTTA TTCAGCTAT GTGTCTTTCATTTAATGGTATTGATTCATAGGACTATGGAAAATGCCGAGACATGCCGGT TGTTTGTGG AAAAATCAGGAATTGAAGCTTTATTGAATTTGTTGTTGCGGCCAACTATTGCACAATCCT CAGATGGCA TGTCTATTGCTTTACATAGCACGATGGTATTTAAAGGGTTTGCTCAACATCATTCCATTC CTCTGGCACAT GCCTTCTGTTCTTCTCTTAGAGAGCACTTGAAGAAAGCTTTAGCGGGGCTTGGTGCAGCA TCAGAACCT TTGTTGCTGGATCCAAGGATGACAACTGATGGTGCCATCTTTTCTTCACTTTTCCTGGTT GAGTTCCTTCT ATTTCTTGCTGCACCAAAAGACAATCGTTGGGTGACTGCCTTGCTTACAGAATTTGGAAA TGGAGGTAA GGATGTTCTTGAAGACATTGGACGTGTACACCGTGAAGTCCTGTGGCAAATTGCTCTACT TGAAAACAG AAAGCCTGAGATTGAGGAAGATGGTGCTTGTACTTCTGATTTACAACAGGCCGAAGGGGA TGCAAGTG AAACTGAAGAGCAAAGGTTGAATTCTTTCAGGCAGTTTCTTGACCCATTATTGAGAAGAA GAACATCAG GATGGAGCATTGAATCTCAGTTTTTTAACCTTATAAACCTGTATCGAGATTTGGGCCGTT CCACTGGTTC TCAACATAGATCAAATTTAGTTGGTCCGAGGTCAAGTTCTAGTAATCAGGTACAGCATTC TGGGTCAGA TGATAATTCTGGGACTGCTGATAAGAAGGAATCTGACAAGCAGAGACCATATTATACCTC TTGTTGTGA CATGGTCAGATCACTTTCATTTCACATTACCCATTTGTTCCAAGAGTTGGGAAAAGTAAT GTTGCTACCT TCACGTCGACGTGATGATGTTGTGAATGTAAGTCCTGCTTCAAAATCAGTGGCTTCTACT TTTGCATCCA TTGCTTTTGATCACATGAATTATGGTGGCCGTTGTGTAAATCTTTCGGGAACAGAAGAAT CCATATCAAC AAAATGTCGATATTTTGGGAAAGTGATTGATTTTATGGATAATGTTCTAATGGAGAGGCC AGATTCATG CAATCCTATTATGCTGAATTGCTTGTATGGACGTGGAGTTATTGAAACTGTATTAACTAC CTTTGAAGCT ACCAGTCAGCTGCTCTTTACAGTTAATCGGGCCCCTGCCTCGCCCATGGATACTGATGAT GCGAATGCA AAGCAAGATGACAAGGAAGATACAGATAATTCATGGATTTATGGTTCTTTAGCTAGTTAT GGGAAATTG ATGGACCATCTAGTGACCTCCTCTTTTATATTATCATCATTCACAAAGCATTTACTTGCA CAGCCCCTTAC TAATGGTAATACAGCTTTCCCAAGGGATGCTGAGACTTTTGTGAAGGTCCTTCAATCCAG AGTGTTGAA GACTGTGCTTCCTGTTTGGACTCATCCCCAGTTTGTTGACTGTAGTTATGAATTTATTTC TACAGTTATTT CTATCATTAGGCATGTCTATACAGGTGTTGAAGTAAAAAATGTGAACGGAAGTGGTGGTG CTCGCATT ACTGGGCCGCCTCCTAATGAAACAACTATTTCAACCATTGTAGAGATGGGGTTTTCCAGG TCTAGAGCA GAAGAAGCTTTGAGGCAAGTTGGGTCAAATAGTGTGGAGTTGGCAATGGAGTGGTTGTTC TCTCATCC AGAGGAGATACAAGAAGATGATGAACTTGCCCGTGCACTTGCCATGTCCCTTGGAAACTC AGAATCAG ATGCAAAGGATGCAGTTGCTAATGACAATGCCCTGCAGCTTGAAGAAGAGATGGTCCTAC TCCCTCCTG TTGATGAGTTGTTATCTACTTGCACAAAACTTTTGTCGAAGGAACCACTTGCTTTTCCTG TCCGTGACTT GCTTGTGATGATATGCTCTCATGATGATGGTCACCATAGATCTAATGTGGTCTCATTTAT TGTGGAACG GATCAAAGAATGTGGTTTGGTTCCTAGCAATGGAAATGTTGCCACGCTGGCTGCTCTTTT TCATGTTCTA GCCTTAATTCTTAATGAGGATGCTGTGGCTAGGGAAGCTGCTTCTACAAGTGGTTTGATC AAAATTGCC TCAGATCTACTCTACCAGTGGGATTCTAGTCTTGATAGCAGGGAGAAACAGCAGGTACCA AAATGGGT GACTGCTGCTTTCCTTGCATTAGACAGATTGTTGCAAGTAGATCAAAAATTGAATTCTGA AATCGCAGA GCAGTTGAAGAAGGAAGCTGTGAATAGCCAGCAGACATCGATTACCATTGATGAAGACAG GCAAAAC AAGTTGCAGTCTGCATTGGGACTCTCTATGAAGTATGCAGATATACATGAACAGAAGAGA CTTGTTGA GGTTGCTTGTAGTTGTATGAATAATCAACTTCCATCTGACACAATGCATGCTATTCTGCT ACTATGTTCC AATCTTACAAGGAATCATTCTGTAGCTCTTACATTTTTGGATGCTGGTGGTTTGAATCTA CTTCTTTCTTT GCCAACCAGCAGCCTCTTCCCTGGGTTTGACAATGTTGCTGCTAGTATTGTTCGTCATGT TCTTGAAGAT CCACAAACGCTCCAGCAAGCAATGGAATCTGAGATAAAACATAGTCTTGCAGTGGCATCT AATCGGCAT CCAAATGGAAGGGTCAATCCTCATAATTTCCTTTTAAATTTAGCTTCTGTTATTTATCGG GATCCAGTAAT CTTTATGCTAGCTGCTCAATCTGTGTGCCAAGTTGAAATGGTAGGTGAGAGGCCATACAT TGTCTTGCT GAAAGATAGGGATAAAGACAAAGCTAGGGAGAAAGAAAAGGATAAGGATAAAACATTGGA GAAAGA TAAAGTACAGAACAGTGATGGGAAGGTTGTTTTGGGAAATACAAACACAGCACCTACTGG CAATGGCC ATGGCAAAATTCAGGATTCAAATACCAAGAGTGCCAAAGGTCACAGAAAACCTAACCAAA GTTTTATTA ATGTAATAGAGCTTCTTCTTGAATCTATATGCACTTTTGTTCCTCCCTTGAAGGATGACA TTGCCTCAAAT GTTCTTCCTGGAACCCCAGCATCAACTGATATGGACATTGATGTCTCCGTGGTTAAGGGA AAAGGAAAA GCAGTTGCCACTGTGTCTGACGGCAACGAAACTGGTAGTCAGGTTGCTTCTGCATCACTT GCAAAGATT GTCTTCATTTTAAAGCTTCTGACAGAGATATTATTGCTGTATTCATCATCTGTTCATGTT CTACTTCGACG AGATGCTGAAATAAGCTGCATTAGAGGTTCTTATCAAAAGAGTCCTGCAGGTTTAAGCAT GGGTTGGA TATTTTCCCATATTCTTCATAATTTTCTTCCATATTCTCGAAACTCAAAAAAGGACAAGA AAGCTGATGGT GATTGGAGGCAGAAACTAGCAACCAGGGCCAACCAGTTTATAGTGGGTGCTTGTGTTCGA TCTACAGA GGCAAGGAAGAGGGTTTTTGGTGAGATTAGTTATATCATCAATGAATTTGTTGATTCATG TCATGACAT TAAGCGTCCAGGAAATGAAATTCAGGTTTTTGTTGATCTACTAAATGATGTTTTGGCTGC TCGTACACCT GCTGGTTCGTACATTTCAGCTGAGGCCTCTACCACTTTTATAGATGCTGGTTTGGTTAAA TCATTCACTT GCACTCTACAAGTTTTGGACCTTGACCATGCTGGTTCATCTGAAGTTGCTACTGGTATTA TTAAAGCTCT TGAGTTGGTAACCAATGAGCATGTCCATTCAGTTCATTCTAGTGCAGGGAAGGGTGATAA TTCAACAAA ACCTTCTGTTCTAAGTCAACCTGGAAGAACAAATAATATTGGTGAACTGTCTCAGTCCAT GGAGACATC ACAAGCCAATCCTGATTCCCTTCAAGTTGACCATGTTGGGTCTTATGCAGTTCACTCCTA TGGTGGGTCT GAAGCTGTTACTGATGATATGGAACATGATCAAGATCTTGATGGGAGCTTTGTTCCTGCT AATGAGGAT GATTACATGCATGAAAATTCTGAGGATGCAAGAAATCTTGAAAATGGAATGGAAAATGTG GGTCTACA ATTTGAAATCCAACCTCATGGCCAAGAAAATCTTGATGAGGATGACGATGAGGATGATGA TATGTCTG GAGATGAAGGTGAGGATGTAGATGAAGATGATGATGATGAGGAGGAACACAATGATTTGG AAGAAG TCCATCATTTGCCACATCCTGACACAGATCAAGACGAGCATGAGATTGATGATGAAGATT TTGATGATG AAGTGATGGAGGAAGACGATGAGGATGACGAGGAAGATGAAGATGGTGTTATACTGCGAC TTGAGG AGGGAATTAATGGAATTAATGTTTTTGACCATATTGAGGTTTTTGGCAGAGATAATAGTT TTGCAAATG AAGCTTTACATGTAATGCCAGTTGAGGTTTTTGGATCCAGACGTCCGGGGAGGACGACAT CTATTTATA GTCTTTTGGGCAGAACTGGTGATGCTGCTGTGCCTTCTCGTCACCCACTCTTGCTTGAAC CTTCTTCATTC CCTCCACCTACAGGGCAATCAGATAGTTCAATGGAGAACAACTCAGTGGGTTTGGATAAT ATATTTCGA TCGCTGAGGAGTGGGCGCCATGGACACCGTTTGCACTTGTGGACTGATAATAACCAGCAA AGTGGTGG GACAAACACTGCTGTTGTACCACAAGGCCTTGAGGAGTTGCTTGTCACTCAATTAAGGCG ACCAACCCC TGAAAAGTCATCCAATCAGAACATAGCAGAAGCAGGTTCTCATGGTAAAATTGGAACAAC CCAGGCAC AAGATGCAGGGGGTGCAAGGCCAGAAGTCCCCGTTGAAAGTAATGCTATTCTGGAAATTA GTACTATA ACTCCCTCAATTGATAACAGTAACAATGCGGATGTCAGACCAGCAGGGACTGGACCTTCA CATACAAAT GTTTCAAACACCCAATCACGGGCAGTTGAGATGCAATTTGAACATACTGATGGAGCTGTG AGGGATAT TGAAGCTGTCAGCCAGGAGAGTAGTGGTAGTGGAGCAACTTTCGGTGAAAGCCTTCGGAG CTTGGAA GTTGAGATTGGAAGTGCTGATGGCCATGATGATGGTGGTGAAAGGCTGGTTTCTGCTGAT AGGATGGC AGGTGATTCACAGGCTGCACGCACAAGAAGAGCAAATACACCTTTGAGTCACTTTTCTCC TGTGGTTGG AAGAGATGTGTCCCTTCATAGTGTTACTGAAGTTTCAGAAAATTCAAGCCGTGATGCAGA TCAACAAGG TCCTGCAGCAGAGCAGCAGGTGAACAGTGATGCGGGATCAGGAGCTATTGATCCTGCTTT TCTGGATG CTCTTCCTGAGGAGCTACGTGCTGAAGTCCTTTCAGCTCAGCAGGGTCAAGTGGCTCAGC CATCAAATG TTGAGTCTCAAAACACTGGGGATATTGACCCAGAGTTCCTAGCAGCTCTTCCAGCTGATA TTCGAGCAG AAGTTCTAGCTCAGCAGCAAGCACAGAGGTTGCATCAGTCTCAGGAGCTGGAAGGTCAAC CTGTGGAA ATGGATACAGTCTCAATAATTGCAACTTTTCCATCAGATTTACGAGAAGAGGTTCTCTTG ACATCACCAG ATACTATCCTTGCCAATCTTACACCTGCTCTTGTTGCTGAGGCAAATATGTTGCGGGAGA GGTTTGCACA CCGTTATAGTCGTACCCTCTTTGGTATGTATCCAAGAAGTCGTAGAGGGGAGACTTCAAG ACGTGAAG GTATTGGTTCTGGTCTGGATGGAGCAGGAGGAACCATTTCTTCTCGCCGCTCCAGTGGAG TTAAGGTTG TTGAAGCTGATGGAGCACCTTTAGTTGACACAGAAGCTTTGCATGCTATGATTCGGTTAT TTCGTGTAG TGCAGCCACTCTATAAAGGCCAACTCCAGAGGCTTCTATTAAATCTTTGTGCCCATAGTG AAACAAGAA CCTCTCTGGTGAAAATTCTCATGGACTTGCTAATGCTTGATGTAAAAAGGCCTGTCAGTT ATTTTAGTAA AGTTGAGCCACCATATAGATTGTATGGTTGTCAGAGCAATGTAATGTATTCACGTCCTCA ATCTTTTGAT GGAGTTCCCCCATTGCTGTCTCGTAGAATACTTGGAATTCTCACTTATCTTGCTCGCAAT CATCTGTATGT GGCAAAATTTTTGCTTCAGTGTAGGCTGTCTCATCCTGCAATAAAAGAACCAGATGATCC ACGGGGAAA AGCTGTGATGGTTGTTGAAGATGAAGTAAATATAAGTGAAAGTAATGATGGGTACATCGC CATTGCAA TGCTATTGGGTCTGTTGAACCAACCACTTTATTTGAGGAGCATAGCCCACCTTGAGCAGC TGCTAGATTT ACTGGATGTTATCATTGACAGTGCTGGAAACAAGTCATCTGGCAAATCCTTGATACCTAC TAACCCATCA TCAGCTCCACAAATTTCTGCTGCGGAAGCCGATGCGAATGCAGATTCTAACAATTTACCT TCTGCGGAT GATGCATCTAAAGTTGATGGTTCCTCCAAACCGACAGTCTCTGGCATTAATGTTGAATGT GAGTTACAT GGAGTGTTGAGTAATCTTCCAAAAGCAGAACTCCGGCTCCTGTGCTCACTGCTTGCTCAA GAAGGTTTG TCAGATAATGCGTATAATCTTGTAGCGGAAGTAATGAAGAAATTGGTGGCCATTGCTCCA ACACATTGT GAGCTTTTTGTCACTGAGCTGGCAGAAGCAGTTCAAAAGTTGACTTCATCTGCAATGAAT GAGTTACGT GTCTTTAGTGAAGCAATGAAAGCTCTGCTTAGTACCTCTTCTACTGATGGAGCTGCAATT TTGAGAGTCT TGCAAGCCTTGAGTTCCCTTGTCACCTTACTGACGGAGAAAGAGAATGATAGAGGTACTC CTGCTCTTT CTGAGGTTTGGGAAATCAATTCAGCATTAGAACCCTTGTGGCATGAGCTTAGTTGTTGCA TAAGCAAGA TAGAATCCTACTCAGAGTCTGCATCTGAGTTTTCGACATCTTCTAGTACCTTTGTGTCTA AACCGTCTGGT GTAATGCCTCCACTTCCAGCTGGCTCTCAAAATATCTTACCATACATTGAATCTTTCTTT GTGGTTTGTGA GAAATTGCATCCTGCTCAGCCAGGTGCTAGTCACGACTCAAGTATTCCTGTTATTTCGGA TGTTGAGTAT GCCACCACATCTGTAACTCCCCAGAAAGCATCTGGAACTGCTGTGAAAGTAGATGAGAAA CATATGCCT TTTGTCCGGTTCTCAGAGAAGCACAGGAAGCTACTAAATGCTTTCATAAGGCAAAACCCT GGTTTGCTT GAAAAATCTTTCTCACTCATGCTAAAGGTTCCAAGATTTATTGATTTTGATAACAAGCGT GCCCACTTCC GATCAAAAATTAAGCATCAGCATGACCATCACCATAGTCCCTTGAGAATATCAGTAAGAA GGGCATATG TTCTAGAAGATTCTTACAACCAGCTTCGCATGAGATCAACTCAAGATTTGAAGGGAAGGT TGACTGTCC ACTTCCAAGGGGAGGAGGGTATTGATGCAGGTGGGCTTACAAGGGAATGGTATCAATTAT TGTCCAGA GTTATTTTTGATAAAGGAGCACTGCTTTTTACTACAGTGGGCAATGAATCAACATTTCAG CCAAACCCTA ACTCTGTTTACCAAACAGAACATTTATCTTATTTCAAATTTGTTGGTAGAGTGGTCGGTA AAGCATTATT TGATGGTCAACTCTTGGATGTTCATTTTACTCGGTCATTCTACAAGCACATTCTTGGAGT CAAAGTTACA TATCATGATATTGAAGCCATTGATCCTGATTATTTCAAAAATTTGAAATGGATGCTTGAG AATGATATCA GTGATGTTCTGGATCTTACTTTTAGCATTGACGCAGATGAGGAAAAATTGATCTTATATG AACGAACAG AGGTGACTGATTATGAGTTGATTCCCGGGGGACGGAATATCAAAGTTACTGAGGAGAACA AGCATCAA TATGTTGATTTGGTTGCCGAGCATCGGTTGACAACTGCTATTCGACCTCAAATAAATTAT TTCTTAGAAG GGTTCATTGAATTGATTCCCAGGGAGTTGATATCGATATTCAATGACAAAGAGCTGGAAT TGTTGATCA GTGGACTTCCTGATATTGATTTGGATGACTTGAGAGCAAATACAGAATATTCTGGATATA GTGCTGCAT CGCCAGTTATCCAATGGTTTTGGGAGGTTGTTCAAGGTTTGAGCAAAGAAGACAAGGCTC GACTGTTG CAATTTGTGACAGGCACATCCAAGGTGCCTTTGGAGGGCTTTAGCGCTCTCCAAGGAATT TCAGGCTCC CAGAAGTTTCAGATACACAAAGCATATGGAAGTCCTGATCACTTGCCTTCTGCTCATACT TGCTTCAATC AATTAGATTTGCCGGAGTATCCATCTAAACAACATTTGGAAGAGAGGTTACTGCTGGCAA TTCACGAAG CAAGTGAGGGTTTTGGATTTGGTTGA - B. napus - SEQ ID NO: 26: Bra038022.1 ATGCCTTCCCAAGTCCAGCCTCCCAAGATCAAATCGTTCATCAATAGCGTCACTGCTGTT C CCCTCGACCAAATTCAAGAACCCCTTTCCTGTTTTCACTGGGATTTCGACGACAAGGGTG A CTTCCATCACTGGGTGGATCTCTTCAATCATTTCGACACATATTTTGAGAAGCACATTAA AG CTAGGAAGGATCTTCATGTTGAGCAACAAGACTCTGAGGACGAATCTACTCCTCCTCTCC C AAAGGATGCTCTTCTTCAGATTCTCCGTGTTATCCGAGTTGTGTTAGATAACTGCACAAA CA TTCATTTTTTTACTTCTTATGAGCAGCATCTTTCTCTCCTGCTTGCATCTACTGATACAG ATG TCGTTGAAGCCTGTCTGCAGACGTTGGCTTCCTTTTTCAAGAGGCAAAATGATATTTACT TC ATAAGAGATGCTTCTCTTAATTCAAAACTATTTTCTCTTGCCCAAGGCTGGGGTGGCAAA GA GGAAGGTCTTGGCTTGACATCATGTGCTACTACAGAAAACACTTGTGATCTGGTTTCTCA C CTCCTTGGTTCTACTCTTCATTTTGAGTTTTATGCTTCTGGTGAATCATCAACTGAGCTT CC GGGCGGTTTACAAGTTATCCATCTACCTGATGTCAGCTTGCGTGCAGAGTCTGATCTGGA A CTTCTCAACAAATTAGTCACTGACCATAACGTTCCTCCCAGTTTAAGGTTCGTGTTGTTG AC CAGGTTGAGATTTGCAAGGGCGTTTTCATCTTTGTCGACCCGGCTGCAGTACACACGCAT T CGCTTATATGCATTCATTCTTTTGGTTCAAGCTAGTGGCGACACCCAGAAAGTGGTTTCT TT CTTTAATGGAGAACCCGAGTTTGTAAATGAGTTAGTTACACTGCTGAGCTATGAGACTAC TG TCCCAGAGAAAATAAGGCTACTGTGCCTGCTTTCCTTGGTTGCATTATCGCAAGATCGAA C TCGGCAGACGACTGTGTTAACTGCAGTCACGTCTCGTGGTTTACTATCTGGCCTTATGCA G AAAGCTATTGATTCCGTTCTTTGTAATACTTCCAAGTCGTCTCTGGCTTTTGCGGAAGCC TT GTTATCCCTTGTTACTGTCTTGGTCTCATCATCGTCTGGATGTTCAGCCATGCAAGAAGC TG GTCTTATTCCAATTCTAGTGCCTCTCATCAAAGATACCGATCCCCAGCACTTGCATTTGG TC AGTACCGCTGTGCATATATTAGAAGCCTTCATGGATTACAGCAATCCAGCTGCTGCTTTG TT CAGAGATTTGGGTGGCTTAGATGATACTATCTTTCGGTTGAAACTGGAAGTCTCTCGTAC C GAAGACAATGTCAACGAAAAAGTTTGCGGTTCAGACAGTAATGGGAGGGCTTCACATGTC C TTGGTGATTCTCTTAATCGGCCTGATACTGAACAGCTTCCCTATTCTGAGGCATTAATTT CG TATTACAGGAGATTGTTGTTAAAAGCCTTGTTATCTGCAATCTCTCTTGGAACTTATTCT CCT GGTAATACTAACCTCTATGGTTCCGAGGAGAGCTTGCTGCCTGAATGCTTATGCATTATC TT CCGGAGAGCAAAATATTTCGGGGGTGGAGTATTCTCGCTTGCTACCACTGTCATGAGTGA T CTCATTCATAAAGATCCAACTTGTTTTAATACTTTAGACTCGTCTGGTGTAACTTCTGCC TTT CTTGATGCTATCTCTGATGAGGTCATCTGCTCTGCGCAAGCCATTACATGCATCCCGCAG T CTCTGGATGCTCTGTGTCTCAACAATAGCGGTCTTCAAGCTGTCAAGGACCGAAATGCAC T AAGGTGTTTTGTTAATATATTTACTTCTTCGTCTTATCTGCGAGCTCTTACTGGTGATAC ACC TAGTGCTTTGTCAAGTGGGCTTGATGAACTCCTAAGACACCAATCTTCGTTGCGCACTTA T GGAGTTGATATGTTCATTGAAATCCTGAACTCCATGTTGATTATTGGATCTGGGATGGAG G CCTCCACTTCTGTGTCAGCAGATGTGCCTACTGATGCTGCTACCGCTCCTATGGAAATTG A CGCTGATGAGAAGAGCTTGGCCATTTCGGATGAGGCGGAACCATCTTCTGCTGCTTCTCC AGCAAATACAGAGTTGTTTCTTCCAGATTGTGTGTGTAATGTTGCTCGTCTCTTTGAAAT AG TTCTTCAGAATGCAGAAGTATGTTCTCTATTTGTTGAGAAGAAAGGAATTGATGTTGTCT TG CAGCTACTCTCTTTACCCGTTATGCCTCTGTCAACCTCCTTTGGTCAAAACTTTTCTGTC GC TTTTAAGAACTTCTCCCCTCAGCATTCGGCTAGTCTATCTCGTACAGTGTGCTCCTACTT AC GAGAACGTCTGAAGGGAACAAATGAGCTTTTGGGTGCCATTAAAGGCACTCAGCTTCTTA A ACTAGAGTCTGCAGTCCAGATGACGATTTTGAGATCCCTTTTCTGCCTAGAAGGCATGTT G TCCCTCTCAAACTTTCTGTTGAAAGGAACATCTTCAGTTATCGCGGAATTAAGTGCTGCT GA TGCTGATGTACTAAAAGAACTTGGTCTAACATACAAGCAAATAATTTGGCAGATGGCTTT GT CTAGTGAGACCAAGGAAGATGAGAAAAAGAGTGTTGATGGAGGACCTGATAATTCAATTT T AGCCTCATCTAGTACTGTTGAAAGAGAGAGTGAAGAGGACTCAAGAAATGCTTCAGCAGT T AGATACACAAACCATGTATCCATTAGAAGAAGTACCTCTCAATCTATTTGGCGTGGTGGT C GTGATCTGTCTGTTATGCGTTCCATCGAGAGTATGCATGGTCGTACACGACAAGCGATTT C CCGAACGAGGGGTGGGAGAACTCGTCGACACCTGGAGGCTTTTAATTTTGATTCTGAAAT T CCACCTGATTTACCAGGTACATCATCTTCCCATGAGCTGAAAAAGAAAAGCACTGAAGTC C TGACTGTTGAAATTTTAGACAAGTTGAATTGTACTCTGCGTCTTTTTTTCACTGCCCTTG TGA AAGGAGGATTCACCTCTGCGAATCGTCGCAGAATTGATGGAGCACCACTGAGTTCCGCAT CTAAGAAGACGCTTGGTAATGCCATAGCTAAAGTATTTCTTGAAGCTCTTAACTTCGATG GG AATGGTGTTACTGCTGAGCATGATATATTTCTGTCCGTAAAGTGCCGATACCTTGGAAAA GT GGTAGATGACATGGCTTCCCTGACATTTGATACTCGAAGAAGGGTCTGTTTCACAGCTAT G ATTAATAGTTTTTATGTCCATGGAACATTTAAGCAACTTCTCACCACATTTGAAGCGACA AG CCAGTTGCTTTGGACAGTGCCGTTTTCTGTTACTGCATCTGATACTGAGAATGAGAAGCC A GGTGAAAGGAACATATGGTCTCGCAAGACGTGGCTGGTGGATACTCTGCAAATCTATTGC C GAGCACTGGACTATTTTGTTAACTCTACATTTCTGTTATCTCCAGCCTCCACTTCTCAAA CG CAGCTTCTTGTCCAGCAAGAGCAAGCTTCAATTGGTTTGTCGATCGAACTCCATCCTGTA C CAAGGGAACCTGAAACTTTCGTGCGAAATCTGCAGTCTCAGGTTCTGGATGTCATACTAC C TATATGGAACCACCCTATGTTTCCTGATTGCAATCCTAATTTTGTGGCTTCGGTTACCTC CC TTGTTACGCATATATACTCTGGTGTTGTGGATGCTACGCAAAATCAAGCCCGGGGTACAA A CCAAAGAGCCTTGCCTCTACAGCCTGACGAAACCATTGTTGGTATGATTGTTGAAATGGG A TTTTCAAGGTCAAGGGCAGAATACGCGTTACGAAGAGTTGGAACAAACAGTGTTGAAATA G CTATTGAGTGGTTGTTTGCCAATCCTGAGCATACTGTGCAGGAAGATGACGAGCTGGCCC A AGCACTTGCACTATCTCTTGGCAATGCATCCAAAACTCCAAAACCTGTAGATGTCCCTCT G GAAGAAGCGGATCCAAAAGAACCATCTGTTGATGAAGTTATTACTGCATCGGTGAAGTTA T TTGAAAGTGATGATTCTATGGCTTTCCCATTGATGGATTTGTTTGTAACACTTTGTAGCC GA AACAAAGGGGAAGATCGGCCGAAAATTGTGTCGTTTCTTATACAGCAACTGAAGCTAGTA C AAGTTGATTTCTCCAAGGATACTGGTGCTTTGACTATGCTACCACACATTCTAGCATTAG TT CTCTCAGAGGATGACAACACACGAGAAATTGCTGCACAGGATGGAATTGTGACCGTAGCA ATTGATATCTTGACGAATTTCAAGCTTAAGAGTGAATCTGAAAGTCAGATTCTGGCTCCA AA ATGCATTAGCGCTTTACTTCTTATCTTGAGCATGATGCTGCAGGCTCGGACAAGAATCTC G TCTGAATTTTTGGAAGGAAATCATGGTGGATCTTTGGAGCCGAGTGATTATCCGCAAGAC T CAGCAGCAGCGTTAAAGAAAGTGTTATCTTCAGATGTTGCTAAAGAGGAGTCGAAACCGG A TTTGGAATCAGTTTTTGGAAAATCTACAGGCTATCTGACCATGGAAGAGGGTCAAAAAGC T CTACTAATCGCATGTGGCCTCGTAAAGCAGTGTGTTCCAGAAATGATCATGCAGGCTGTT C TTCAGTTATGTGCACGTCTAACTAAAACTCATGCTTTAGCTATCCAGTTTCTGGAAAATG GA GCCTTATCCTCACTTTTTAATCTTCCCAAAAAATGTTTCTTCCCTGGGTATGATACTGTT GCA TCTGTTATTGTACGTCATCTGGTTGAAGATCCACAGACTCTCCAAATTGCTATGGAATCA GA AATACGACAGACCTTGAGTGGAAAGAGACATGTAGGTAGGGTATTACCTCAGACATTTCT G ACAACAATGGCACCTGTAATTTCGAGAGATCCTGTGGTTTTCATGAAAGCCGTGGCTTCT A CTTGTCAGCTGGAGTCATCAGGAGGGAGGGACTTTGTGATTCCGTCGAAGGAAAAAGAAA AGCCAAAAGTTTCCAGCAGTGAGCAGGGATTGCCTCTGAATGAACCCCTTCGAATATCCG A AAATAAGCTTCATGATGGGTCAGGGAAATGTTCGAAAAGCCACAGACGAGTCCCTGCTAA T TTCATCCAAGTTATCGATCAGCTTATTGATATTGTCTTAAGTTTTCCTAGGGTGAAGAGG CA GGAAGATGATGAAACCAATTTAATTGCAATGGAAGTTGATGTGCCGGCAACTAAAGTGAA G GGTAAGTCAAAAGTTGGTGATCCAGAGGAAGCAGAATTTGGATCTGAAGAATTGGCCAGG GTAACATTTATTTTGAAATTGTTGAGTGATATTGTTATCATGTACTTGCACGGTACCAGT GTC ATACTGAGGCGGGATACAGAAATATCTCAGCTTCGGGGATCCAATCTACCCGATAATTCA C CTGGCAATGGAGGGTTAATTTACCATATCATTCACCGATTACTTCCTATATCGCTCAAAA AT TCTGTTGGATCTGAAGTTTGGAAAGAGAAGTTGTCTGAAAAAGCTTCCTGGTTTCTGGTC G TTTTTTGCAGCCGTTCCAGTGAGGGACGTAGAAGAATAATCAGTGAGCTTTCGAGTGTTT T ATCTGTATTGGCTTCCTTGGGAAAGAGTTCTTCTAGTAAAAGTGTTCTGTTACCTGATAA AA GAGTTCTTGCTTTTGCTGGCCTGGTTTATTCGATATTAACAAAGAATTCATCTTCCAGCA AC TTACCTGGTTGTGGTTGCTCACCTGACGTTGCAAAGAGCATGATAGATGGGGGAATTATT A AGTGTCTGACCAGCATTCTTCACGTAATTGACCTCGACCACCCTGATGCTCCAAAGCTTG T CACTCTTATTCTCAAGTCTCTTGAGACACTGACGAGTGCTGCAAATACTGCTGAGCAGCT A AAATCAGCAGGGTCAAACGAGACGAAGGGCACAGATTCTAATGAGAGACATGACAGTCGT GGAACTTCAACTGAGGCTGAAGTTGATGAGTCAAACCGAAACAATAGCAGTCTACAACAA G TAACTGATGCCGCAGAGAATGGACAGGAGCACCCTCAAATTTCCTCTCAAAGCGAAGGTG GAAGGGGTTCGAGTCAAACCCAGGCTATGCCTCAAGAGATGAGGATAGAAGGCGAGGAG ACAATACTGCCTGAACCTATTCAGATGGATTTCATGGGAGAAGAAGATGACCAAATTGAA AT GAATTTTCATGTTGAAAATAGGGCCGGAGATGATGGAGATGATGCCATGGGAGACGAAGA GGATGATGATGAGGAAGGATTTGATGACATCGGACCCGAACTGGAGGATGATGAGGATGC AGATTTAGTGGCAGACGGAGCTCGGAGTGTTATGTCTCTTTCTGGAACTGATGCCGAAGA C CCTGAAGATACTGGCCTCGGAGATGAATATAATGATGACATGATTGACGAAGATGAGGAT G ATATCCACGAGAATCGTGTAATAGAGGTGCAGTGGAGGGAAGCTCTTGATGGGCTGGATC ATTTTCAGATTCTTGGGCGATCTGGTGGTGGAAATGAATTTATTGATGACTTTGAAGGAA TG AATATGGGCGATCTGGTTACTCTGCAGAGACCCGGCTTTGATCGTAGACGTCAAGCAGAC ATAAATTCTTTCCATCGATCTGGTTCCCAAGTACATGGCTTTCAGCATCCGCTCTTCTCG AG ACCTTTGCGAACTGGCAATACGGCCTCAGTTTCAGCAAGTGCTGGCAGGAATGATATATC A CAGTTTTACATGTTTGATATGCCGGTTATACCATTTGATCAAGTACCAAGTAATCCTTTC AGT GATCGCTTAGGAGGTAGTGGGGCACCTCCTCCTTTGACTGATTATTCTGTGGTGGATATG G ATTCATCAAGAAGAGGGGTTGGTAATAGTCGGTGGACTGATATAGGTCACCCTCAACCAA G TAGTCAATCTGCGTCGATTGCCCAACTGATAGAAGAACATTTTATTTCCAACCTTCGTGC TT CTGCGCTAGCAGATAGTGTTGTCGAAAGGGAAACTAATAGCACGGAAGTCCAAGAGCAGC AGCATCCATCTGTTGGAAGCGAAAGCGTTTTGGGGGATGGTAACGACGGTGGTCAACAAA GTGAAGCGCATGAAATGTTGAATAATAATGACAATGTTGATAACCCACCTGATGTAACGG C TGGAATTTTCTCCCAAGCTCGAGCAAATCTAGCTTCCCCTGTACTTCTGCAGCCTCTTCC TA TGAACAGTACACCAAATGAGATTGACAGAATGGAAGTTGGGGAAGGTGATGGAGTACCTA T TGAGCAAGCAGATGTCGTAGCTGTGGATCTTGTCTCCACTGCCCAGGGCCAACCTGATAC GTCCAGTAGTCAAAATGTCTCTGGTATGGGGACGCCAATTCCAGTAGATGATCCCATTTC C AATTGTCAACCAAGTGGGGATGTACATATGAGTAGTGATGGTGCAGAGGGAAATCAAAGT G TGGAACCTTCACTATTATCCCGTGATAACAATGAGCTCTCATCCAGGGAAGCTACCCAAG A TGCGAGTAATGATGAGCAACTTGCTGAAGGTAGCTTGGAGTTGGACGGTAGGGCACCCGA AGCGAATTCCATCGATCCTACATTTTTAGAGGCGCTCCCTGAAGAATTACGGGCAGAAGT T CTTGCTTCTCAGCAAGCTCAGTCCGTTCAGCCCCCAACTTATGAACCACCTTCGGTAGAA G ACATAGATCCTGAATTTTTGGCAGCGCTTCCCCCAGATATCCAAACAGAAGTTCTTGCTC AA CAAAGGGTACAAAGGATGGCACATCAGTCACAAGGACAGCCAACTGACATGGATAATGCT T CAATTATTGCTACCCTACCTGCCGATTTACGTGAAGAGGTTCTCTTAACTTCTTCAGAGG CA GTTTTGGCAGCGTTGCCTTCACCTTTACTTGCAGAAGCGCAGATGCTCAGAGACCGAGCA A TGAGTCACTATCAGGCTCGTAGCCATAGTAATCGAAGGAATGGTTTGGGTTACAATAGGC T GACGGGGATGAACAGGAACGTCGGAGTCACTATTGGTCAGAGGGATGTTTCATCTTTTGC AGATGGCTTGAAAGTAAAAGAGATGGAAGGAGACCGTCTTGTGGATGTCGAGGCCTTGAA ATCACTAATTAGGCTACTACGACTTGCACAGCCGTTGGGGAAAGGCCTTCTGCATAGGCT T CTCTTCAAGCTGTGTGCTCACCGTGGTACAAGAGCCAACTTGGTTCAACTTCTGTTGGAT T TGATTAGGCCAGAGATGGAAACATCACCGAGCGAGTTGGCAATAAGTAATCAGCAAAGAC T CTATGGCTGTCAGTCAAATGTTATTTATGGACGATCCCAGCTGTTGAATGGTCTTCCTCC TC TAGTGTTCCGTCGGGTGCTAGAGGTTCTGACGTATTTGGCTACGAATCATTCGGCTGTTG C TGACATGTTGTTCTACTTTGATTCGTCACTTGTGTCCCAATTGTCAAAGCCAAAACCCTC TG TATGTGAAGGCAAGGGTAAGGAGACTGTTACTCATGTGACAGACTCCCGGAATCTGGAGA TACCTCTCGTTGTCTTCCTAAAGCTGCTTAATCGGCCTCAGCTTTTGCAAAGTACATCCC AT CTAGCACTGGTCATTGGTTTACTGCAAGAAGTTGTCTACACCGCAGCATCCCGAATTGAG G GTTGGTCTCCGTTATCAAGTTTATCTGAGAAATCAGAAGAGAAACCGGTTGGTGAAGAAG C TTCAAGTGAAACACGAAAAGATGCGAAGTCTGAGCAAGTGGATGAAGCTGATAAGCAATC T GTTGCAAGAGTAAAGAATTGTGCTGATATATATAACATATTCTTGCAGTTGCCACAGTCC GA TCTCTGCAATCTTTGCCTACTTCTTGGATATGAAGGGTTATCGGATAAAATTTACCTTTT AGC AGGAAAGGTGATAAAAAAGCTGGCTGCCGTAGATGTGGCTCATCGGAGGTTTTTCGCAAA A GAACTCTCACAGTTGGCAAGCGGGTTGAGTGCCTCAACTGTCCGCGAGCTGGCAACACTG AGCAATACAGAGAAGATGAGTCACAGTACAGGTTCCATGGCAGGTGCTTCACTTCTCCGT G TTCTACAGGTTCTTAGCTCACTAACTTCCACTATTGATGATGGCAATCCTGGAACCGAAA AG GAAACAGAACAGGAGGAACAAAACATTATGGAGAGACTAAACATGGCATTAGAGCCCCTT T GGCAGGAACTTAGCCAGTGTATCAGCATGACTGAGGTGCAGCTGGATCATACTTCAGCCA CAACAACCGTGTCCAGTGTAAACCCCGGTGATCATGCCCTAGGGGTCACTGCTCCGTCCC CTATTTCTCCGGGAACTCAGAGGTTCCTACCTCTTATTGAGGCTTTCTTTGTTCTGTGTG AG AAAATTCAAACTCCGTCAATACTACATCAGGATCAGGCGAATGTGACAGCTGGAGAAGTA A AGGAGTCTGCTCTTAGTTTATCATCTAAGACCAGTGTAGATTCTCAGAAGAAAATTGATG GC TCCCTTACATTTGCAAAGTTTGCGGAGAAGCATAAGCGACTTTTGAATTCATTTGTTAGG AA AAACCCAAGTTTACTGGAGAAGTCCCTTTCAATGATGCTCAAGGCACCAAGGCTGATTGA T TTTGACAACAAGAAAGCTTACTTCAGGTCAAGGATAAAGCACCAGCATGATCAACACATT TC TGGTCCATTGCGTATCAGTGTCCGCCGAGCTTATATGTTGGAAGATTCATACAACCAGTT A CGTATGCGCTCCCTACAGGATCTGAGAGGACGTCTGAATGTGCAGTTTCAAGGTGAAGAA GGTGTTGATGCTGGTGGTCTTACAAGAGAATGGTATCAGTTAGTGTCAAGAGTTATATTT GA CAAAGGAGCGTTGCTTTTCACTACCGTTGGAAATGATGCCACCTTCCAGCCGAATCCCAA C TCTGTTTACCAAAATGAGCATCTGTCATACTTCAAATTTGTTGGTCGCATGGTGGCAAAG GC GTTGTTTGATGGGCAGCTTTTGGATGTTTATTTTACGCGCTCCTTCTATAAACACATACT TG GTGTGAAGGTAACCTATCATGACATTGAGGCGGTGGATCCTGATTACTACAAGAACTTGA A GTGGCTGTTAGAGAATGATGTGAGCGACATACTCGACCTCACATTTAGTATGGACGCAGA T GAGGAAAAACACATTCTATACGAAAAGACTGAGGTGACGGACTATGAGCTTAAACCTAGA G GAAGAAACATACGGGTAACAGAGGAAACAAAGCATGAATATGTTGACCTTGTGGCCGGAC ACATACTTACCAATGCTATTCGGCCTCAAATAAACGCCTTCCTGGAAGGCTTTAATGAGT TA ATACCTCGTGAGCTCGTATCCATTTTTAATGATAAAGAGCTCGAGCTCCTAATCAGCGGA TT GCCTGAGATTGATTTCGATGATCTTAAAGCCAATACCGAGTATACCAGCTACACGGCTGG A TCCCCTGTGATTCATTGGTTCTGGGAGGTCGTTAAAGCTTTTAGCAAGGAAGACATGGCT A GATTTCTTCAATTTGTCACCGGAACATCAAAGGTTCCTTTAGAAGGTTTCAAGGCACTGC AA GGTATTTCTGGACCTCAAAGATTACAAATCCACAAGGCATATGGAGGTCCGGAGCGGCTG CCATCAGCTCATACATGTTTTAACCAACTAGACCTTCCAGAGTATCCATCTAAGGAACAA CT TGAGGAACGTCTGCTACTTGCCATTCACGAAGCCAGTGAAGGTTTCGGGTTTGCTTGA CRISPR sequences Rice Promoter targets: SEQ ID NO: 27 (ProTarget 1): GGCAGTCTTCGTTCTCGTGT SEQ ID NO: 28 (Pro Target 2): GGCAGGTCCCGCCTCTAATC SEQ ID NO: 29 (Pro Target 3): GTGCCGGGCCGGTTAACAAT SEQ ID NO 30 (Pro Target 4): GGCGCGGCGGGTTACCTCTA SEQ ID NO: 31 (Pro Target 5): GGAGGGCCCCCGATCGCGGC SEQ ID NO: 32 (2.6 kb sequence deleted in most indica varieties) ggggatgcaggaactgcattctttcatttgaagataaaggcgagaagcaggaagcttctc attccaatccttgagcatgat ggcaggattgccaccacccagcatgacatgcaaagtttggcacgagaatactttgctgca gtgatgtgccctgagtgcag tgacacgaagttgctgcaatttcaccatattcagatggcaacaactgatctctccagcct cgacagtcctttcactgaagat gagatttggtcggctatccgtgctttgcctaatgaaaagtcgccagggccggatggttat acaggcttgttttaccaaagatg ttgggagataattaaacctgaattgatcagcgctcttgctaaattctgtaccggtaacag tcagaacttggagaaactgaat tcggcaattgtcacgctaataccgaagaaggacagtcctaccctcctcaaggattatagg ccaattagtttgattcatagttt ctctaagatagctgcgaagattatggcgcagcggttagcaccgaagctgaatgtcctcat tccatcctcccaaactgctttt atcaagggacgctgcatacacgagaactttgtcttcgtcaaaggattggtacaacaattt cacagacaaaggaaggctat gatgttgctgaaattagacatctcgaaagctttcgacactgtctcctggggttttcttat gtcgatgttacagttcagaggctttg gtccactttggagaagatggctctcggcggtttttctcactgcagaaacaagaatattga taaatggtgttctgtctgacaca atcaagccggcgagggggttgaggcagggtgacccactgtcgccgctgctctttgttcta gtaatggatgccttgcaagct attgtttcccaggcaaggatggcaagactgctctcgcccctcaacgtacgacagaatttg ccaccaatttcagtttatgccg acgatgcggttctgtttttccgccctacagctgaagaagctcgagtcatcaagggtatcc tggagttgttcggggctgccac aagtctcaaaaccaatttctccaaaagcgcaatcactccaatccaatgtgacgagcagca gtatgtgcaagttgaatcca ttctctcctgccgagtggaaaagttcccaatcacttatcttggactccctctctccacta ggaaaccaacgaaggccgagat ccagccgatccttgataggctggcaaagaaggtagccggttggaagccgaaaatgctgtc tattgatgggcgactgtgct tgatcaagtcggtcctaatggcgctgccggtgcactacatgacagtcctgcagctaccgc gatgggcgattaaggacatc gagcggaagtgccgtgggtttctttggaaaggacaggaagagatcagcggcgggcattgc ctagtctcgtggcgaaag gtttgctcacccatcgagaaagggggacttggtgtcaaagatcttaatttgttcggtcaa gctctccggttgaaatggcttgc aaaatccttggagcagaaggatagaccctggaccttagcaactttccgtcctggaagcga tgtggaagagatctttcgat ccgttgctgagcacatcattggtgacggggtgaacacacagttttggacagacaattgga cagggaaaggttgcttcgcc tggaggtggccggtgttgttttcccatgtgagccgtgccaagctgacagtagctgatgcc ctgattgctaacagatgggttc gccgattacaaggtgccttgtccaatgaagctctgggtgaattcttccaactttgggatg aagttcacgacgtgtcactgca gcagatggctaaaacgatcaaatggaagttgactgttgatggtaatttctcagtggcctc ggcgtatgatctatttttcatagc gacagaggactgttcctacggggacacgctgtggcactccagggtgccgtcgcgtgttcg cttcttcatgtggattgcactc aagggccgctgtctcacggcggacaacctggcaaagagaaactggccgcatgacgccatt tgctccctatgccaacac gagaacgaagactgccattatttgcttgtgtcctgtgattatacggcggcggtttggcgc aagctgagacgttggtgcaaca ttaacattgcaatccctgcggaagatggcatgccgcttgcagattggtggatcgcgacaa gacggcgttttcagaacacg tataggacggatttcgatagtctgttaatgctaatttgttggcttatctggaaagagcga aatacaaggatctttcaacacatc gccaagtcggttgaccggctagcggatgacatcaacgaggaaatcgcaatttggagggca gcagggattttctcccag gctagcgagtaatcccgattagaggcgggacctgccccattttttccttttctttccggg cttgagtttgcttgagaccggcgc gacatccttcatgtcgttgtaattaaaactttatttccctcaatcttaataaaattggcc ggcctacctttggccgtcccggcaa aaaagaatctagaatatat Wheat OsUPL2 has three homologs in Triticum aestivum, TraesCS5A02G121600, TraesCS5B02G112800 and TraesCS5D02G118000. We choose the following four target sites that can target all the three wheat UPL2 genes. Target sequences: SEQ ID NO: 33 (Target 1): GTGCTTATTCCCAGCAGACANGG SEQ ID NO: 34 (Target 2): GCCAGACCTGCACCTTCGGANGG SEQ ID NO: 35 (Target 3): GAGCGAGCTAGGATACTGAGNGG SEQ ID NO 36 (Target 4): GTCGCTTCTGTGAGTACAGANGG sgRNA sequences: SEQ ID NO: 37 (Target 1): GTGCTTATTCCCAGCAGACA SEQ ID NO: 38 (Target 2): GCCAGACCTGCACCTTCGGA SEQ ID NO: 39 (Target 3): GAGCGAGCTAGGATACTGAG SEQ ID NO: 40 (Target 4): GTCGCTTCTGTGAGTACAGA Maize OsUPL2 has two homologs in Zea mays, GRMZM2G331368/Zm00001d023795 and GRMZM2G411536/Zm00001d041105. We choose the following two target sites that can target both the two corn UPL2 genes. Target sequences: SEQ ID NO: 41 GGACTACGGTTAGAGGCTCANGG SEQ ID NO: 42 GTGCAATCCCTGAGAAGTATNGG sgRNA sequences: SEQ ID NO: 43 GGACTACGGTTAGAGGCTCA SEQ ID NO: 44 GTGCAATCCCTGAGAAGTAT Millet OsUPL2 has one homolog in millet, Seita.3G302600. We choose the following two target sites that can target the millet UPL2 gene SEQ ID NO: 45 GCCTGCAGCAGATCCTGGCCNGG SEQ ID NO: 46 GCACTGGCTATGCTAGCGCTNGG SEQ ID NO: 47 GCCTGCAGCAGATCCTGGCC SEQ ID NO: 48 GCACTGGCTATGCTAGCGCT Soybean ^ Target sites for GLYMA_02G216000 SEQ ID NO: 49 Target site 1: GCGCCAACTTCTGTCCAGCG SEQ ID NO: 50 Target site 2: CATTGGTCCTTCAGTCAAGG ^ Target sites for GLYMA_04G096900 SEQ ID NO: 51 Target site 1: CTATCTCCTGTCCCTAGCAC SEQ ID NO: 52 Target site 2: GAACGGGCACGGATACTGAG ^ Target sites for GLYMA_14G183000 SEQ ID NO: 53 Target site 1: CGCCAACTTCTGTCGAGCGA SEQ ID NO: 54 Target site 2: TCGAAGGCCAACTCGATCTT (reverse complement) B.napus SEQ ID NO: 55 Target site1: GGGTTCTTGAATTTGGTCGA SEQ ID NO: 56 Target site2: GCAAGCTGACATCAGGTAGA SEQ ID NO: 57 Target site3: GGTTCTTGAATTTGGTCGAG Os UPL2 genomic sequence SEQ ID NO: 81 Sequence features in order: Bold: most indica do not have this sequence atg: start codon aaag: large 2-4 deletion;frame-shift mutation g: large2-1: g converts to t, stop code (gaa to taa) g: large 2-5; g to a g: large 2-6: deletion, frame shift c: large 2-3: deletion, frame shift t; large2-7: deletion, frame shift aatggatgcttga: large 2-8; deletion, frame-shift a: large2-9: a to g, leading to two different mutated proteins. g: large2-2: g to a taaaagataaaagaaaaagtagagtaattgggccaccaaaactaatgattttcgctacta gatcgaagctctagccttttttttttttttgccataagcct gcttgacatgtatcttttacttgattttagatgatcctcatattcctttatttctaaact tcccaagcaatcaaaagaatagcaaatgttcatctttacacaaa tgaaaactaccattttagcttgattgtgttcttggcccattctaggaagctaaaattatg agaagtagccttttggtagctaaattttgagaatctagaata tatctgagggaaggggatgcaggaactgcattctttcatttgaagataaaggcgagaagc aggaagcttctcattccaatccttgagcat gatggcaggattgccaccacccagcatgacatgcaaagtttggcacgagaatactttgct gcagtgatgtgccctgagtgcagtgacac gaagttgctgcaatttcaccatattcagatggcaacaactgatctctccagcctcgacag tcctttcactgaagatgagatttggtcggcta tccgtgctttgcctaatgaaaagtcgccagggccggatggttatacaggcttgttttacc aaagatgttgggagataattaaacctgaatt gatcagcgctcttgctaaattctgtaccggtaacagtcagaacttggagaaactgaattc ggcaattgtcacgctaataccgaagaagga cagtcctaccctcctcaaggattataggccaattagtttgattcatagtttctctaagat agctgcgaagattatggcgcagcggttagcac cgaagctgaatgtcctcattccatcctcccaaactgcttttatcaagggacgctgcatac acgagaactttgtcttcgtcaaaggattggta caacaatttcacagacaaaggaaggctatgatgttgctgaaattagacatctcgaaagct ttcgacactgtctcctggggttttcttatgtc gatgttacagttcagaggctttggtccactttggagaagatggctctcggcggtttttct cactgcagaaacaagaatattgataaatggtg ttctgtctgacacaatcaagccggcgagggggttgaggcagggtgacccactgtcgccgc tgctctttgttctagtaatggatgccttgca agctattgtttcccaggcaaggatggcaagactgctctcgcccctcaacgtacgacagaa tttgccaccaatttcagtttatgccgacgat gcggttctgtttttccgccctacagctgaagaagctcgagtcatcaagggtatcctggag ttgttcggggctgccacaagtctcaaaacca atttctccaaaagcgcaatcactccaatccaatgtgacgagcagcagtatgtgcaagttg aatccattctctcctgccgagtggaaaagtt cccaatcacttatcttggactccctctctccactaggaaaccaacgaaggccgagatcca gccgatccttgataggctggcaaagaaggt agccggttggaagccgaaaatgctgtctattgatgggcgactgtgcttgatcaagtcggt cctaatggcgctgccggtgcactacatgac agtcctgcagctaccgcgatgggcgattaaggacatcgagcggaagtgccgtgggtttct ttggaaaggacaggaagagatcagcggc gggcattgcctagtctcgtggcgaaaggtttgctcacccatcgagaaagggggacttggt gtcaaagatcttaatttgttcggtcaagctc tccggttgaaatggcttgcaaaatccttggagcagaaggatagaccctggaccttagcaa ctttccgtcctggaagcgatgtggaagag atctttcgatccgttgctgagcacatcattggtgacggggtgaacacacagttttggaca gacaattggacagggaaaggttgcttcgcct ggaggtggccggtgttgttttcccatgtgagccgtgccaagctgacagtagctgatgccc tgattgctaacagatgggttcgccgattaca aggtgccttgtccaatgaagctctgggtgaattcttccaactttgggatgaagttcacga cgtgtcactgcagcagatggctaaaacgatc aaatggaagttgactgttgatggtaatttctcagtggcctcggcgtatgatctatttttc atagcgacagaggactgttcctacggggacac gctgtggcactccagggtgccgtcgcgtgttcgcttcttcatgtggattgcactcaaggg ccgctgtctcacggcggacaacctggcaaag agaaactggccgcatgacgccatttgctccctatgccaacacgagaacgaagactgccat tatttgcttgtgtcctgtgattatacggcgg cggtttggcgcaagctgagacgttggtgcaacattaacattgcaatccctgcggaagatg gcatgccgcttgcagattggtggatcgcga caagacggcgttttcagaacacgtataggacggatttcgatagtctgttaatgctaattt gttggcttatctggaaagagcgaaatacaag gatctttcaacacatcgccaagtcggttgaccggctagcggatgacatcaacgaggaaat cgcaatttggagggcagcagggattttctc ccaggctagcgagtaatcccgattagaggcgggacctgccccattttttccttttctttc cgggcttgagtttgcttgagaccggcgcgaca tccttcatgtcgttgtaattaaaactttatttccctcaatcttaataaaattggccggcc tacctttggccgtcccggcaaaaaagaatctag aatatatagctacatattctcaaaatcgaatctggactgttttggagagtagccgctaga aacttcctagaacaaaacccttatatttgttctttaagtc acatcatacttgctgatgaaatcactatccattagttactccatccgtcccaaaaatact taatctaggagaagatgtgactccttctgatacaataaatt tggataaagagctatcagatttgttaggatcacacatttatttgtaggttaagttttttt taacggaagtagtacgcataaaggattggcttacccaattgt taaccggcccggcactggaacagaaaggtcttgaacccaaacgggacgccgagaaggccc ttccctgacgaaagcaaagggcttaattagct agcaagaaacccaaaccgacccgagcccgtcacgcgccgcgcccgtgacctaccgtgcgc tgcgccgcctcctccctcccacctcccttcaca aaagcagcgacccctcctccctccccaagtttcctccccacaccgcaacccttctctctc tctctctctcccctctcgacttctctcctctccgccgcc tccgagtcccgccgcgccgcgcgcccgtcttccccggcggccgatgtgtctgcctcgtcg gcacgaaaccctagaggtaacccgccgcgccg ctccccgccgcttcccgccgcgatcgggggccctcccccctagggttttcgggggacttt tgagggtggatgatttgggggtgtggggggctttg ggggcggtctaacctgtttgtggtttctggtgcaggtgcggtgcagttgaggggtcccga tcggagatggcggcggcggcggccatggcggcg caccgggccagcttcccgctccggctgcagcagatcctgtccgggagccgcgccgtgtcg ccgtcgatcaaggtggagtccgagccggtgag tccctcgcgccgttcccctgtttcctcgccctagggttttgatcgtcggggttgaggggt tgtagatgcgaagttgagatggtatgtaggatcgaatc ctccctaggtgcttcctctagggttttgatcggctgcctgtgttgatgtggcgtgctgtt ggggtgaggtagttaggccgtaaggagtttgctccgttt atgatcggtgttgagcatggggaccagtggtgtggtgtgcagggtagttgttactgcttt aggccatctcaaatttgggtttccttggtcaggggtag aagagacaccggtttgaagtttctggttatcttgcttgtgctgttattgtactatattgt agtagggatacatgctcgtgttattctgttaccttgtttaagca tgtctatgcccctcaatgcttagttgccgctgcagccgtaatcttttaggcttagccgct taggtatccccattacatttgtattatcttgttattactacgg tgtcccattggacatttattagttcagactttcttgcacttgtaattccttctgcaaaac atacgagtcaatacagaatgccacatctagcaaattactatg ttatcattgatgcttaggtgcccatgatcagtacttatggacttgtactggccattttat aatgttattttttcattctgttattgctatagctttttaatcctttttt acgtatttttatttctgtgcacaactgcacttatgttgaccaatcctgtatcatgttttg gataatggcttactacataaatatatgacgttggatagtagcc tcaagattgatgcattgatttagttcacttgatattacagctcaagagttgagacatgtg gttttgtggatgatatacatttggtctttacagttattttaatta catctaagtttgttttgcacaatactggttgaatgtctcaacattttgcctgatctgtgg gtctaaatatataacaatgagaatttaattggaagatatattt ataattcacagattcattcatgagctttgaattttaatctcttaacaataatagtatttg cttttgagattttaaggaagatagacgagtgttaggaaccttg caccaggtagaatatgaagtggatttggatgctttatctctgatgacttgtttggtaact acttagacaaactattggtctgttcaccttttcaaggagat atggcatacagctaactatgttgattggattatcaatgtacgggttgtgttgcatttagt agacaatcatattctttgaataaataagtgcattatatttaaa gataaagtggttacatgttgcataagggcaatcatttgtaccattttagtatgcttgctg ttctctgaaagtttattctgtttcttgcaacaccagccaacat gattgatcaatcattttttttgtgtttgcagccagcaaaagttaaagcatttattgatcg tgtaatcagtattccactacatgacattgctataccattgtca ggcttccgttgggagttcaataaggtgacttctttattagagaagctcttacatgacttt ttcacatccttactttcctgtagtttcttacttcaaatatgtgg ccacagggaaatttccaccattggaagcctctttttatgcattttgatacatatttcaag acacaaatttcttcgaggaaggatcttcttttatctgatgata tggctgagggtgatcctttgcctaaaaataccatcctgcagattttgagagtaatgcaga ttgttttggaaaattgccagaacaaaacatcgtttgctg gtcttgaggtaatctggttttaatgttctttaacttgattttccaaatattagatgcaag agcccatgcttatttatatgttttaatttgctatctccttctatcag cattttaggcttctgctggcatcatcagatcctgagatagttgtggctgctttagagaca cttgctgcattggttaaaataaatccttcgaagttgcatat gaacggaaagctcataaattgtggagctataaacagtcatcttctatcattggcacaagg atggggtagcaaggaggaaggtttgggcttatattct tgtgttgtggcaaatgaaagaaaccagcaggagggtttgtgcttattcccagcagacatg gagaacaaatacgatggcacgcagcaccgtctcg gttcaactcttcattttgaatataatttggcacctgcccaagatcctgaccaatccagtg acaaggctaagccatctaatctgtgtgtgatacatatccc agacttgcaccttcagaaggaggatgacttgagcatattgaagcaatgtgttgataagtt taatgtgccttcagagcacagattttccttgtttacaag gataagatatgcccatgcctttaattcgccacggacatgtaggctatatagccgcataag tcttcttgctttcattgttcttgtgcaatccagcgatgcc catgatgaactcacatctttctttacaaatgagccagagtacataaatgagttaatcaga cttgtccgatcagaggaatttgttcctggacccatacga gcgctggctatgcttgcactgggagcacagttagcagcgtatgcatcatctcatgaacga gctcggatacttagtggctcaagtatcatatctgctg gtggaaaccgcatggtcttgctcagtgttttgcaaaaagctatatcatcactcagtagcc ctaatgatacatcatctccattaattgttgatgcccttctg cagttttttctgctccatgtgctatcttcttcgagttctgggaccactgttagaggttca gggatggttcccccgctcttgccccttttgcaagataatgat ccttcacacatgcatcttgtctgtctggcagtgaaaactcttcaaaagttgatggagtac agcagccctgctgtttctctatttaaagatttgggtggtgt agaacttttgtctcagaggttgcacgtggaggtgcagcgtgttattggtgttgacagtca taattcaatggttacaagtgatgcattgaaatcagaag aggatcatctctactctcagaagcgattgattaaggcgctgctaaaggcattggggtctg ctacatattctcctgcaaatcctgctcgttcacaaagct caaatgataattctttgcccatctcgctttcccttatatttcagaatgttgacaagtttg gtggtgacatttatttctcagcagttactgttatgagtgagata attcacaaggatccaacatgctttccttctttgaaggaacttggtcttccagatgctttt ctatcgtcagtgagtgctggggtaataccatcttgtaaagc tctcatctgtgtgcctaatggtctgggtgcaatatgccttaataaccaaggacttgaggc tgtcagggaaacttcagctctgcgttttcttgttgacaca ttcaccagcaggaagtacttgataccaatgaatgaaggtgttgtcctattagctaatgca gtggaagagcttctacgtcacgtgcagtccctaagaa gcactggggttgacatcattattgaaataattaataaactttcttcacctcgtgaagata agagcaatgaaccagcggccagttctgatgaaagaaca gaaatggaaactgacgcggaaggacgtgatttggtaagtgctatggattccagtgaggat ggcactaatgatgaacagttttctcatttgagcatttt ccatgtgatggtattggttcatcggacaatggagaactccgaaacctgccggttatttgt ggagaaaggaggcctgcaagcacttttgacactcctg ttgcgacctagcattacccaatcatctggaggaatgccgattgctttgcatagcaccatg gtattcaagggctttactcagcatcactctactccactt gcacgtgcattttgctcttccttaaaggagcatttaaagaatgccttgcaggaacttgat acagttgcaagctctggtgaagtggcaaagttagaaaa aggagcaattccatctctttttgttgttgagttcttactcttccttgcggcatccaaaga taatcgctggatgaatgctctactctcagaatttggagatag cagtagggatgtcctggaagatattggacgagtacaccgagaagtgctttggcaaatttc actttttgaagaaaagaaagttgagcctgaaacaag ttctcctttagcaaatgactcccagcaagacgcagctgtgggggatgttgatgatagcag atacacatcctttaggcaatatcttgatcctcttttgag gcgaaggggctctgggtggaatattgaatcacaggtgtctgacctcattaatatctaccg tgatattggccgtgcagctggtgactctcagaggtat cctagtgcagggttgccctcaagttcttctcaagaccagcctcccagttcatctgatgca agtgctagcacaaaatcagaagaggacaagaaaag atctgagcattcttcctgctgtgacatgatgaggtcactgtcttaccatatcaatcatct tttcatggagcttgggaaagcaatgcttcttacatctcgtc gggagaacagccctgtgaatttatctgcatctattgtatctgttgctagcaatattgctt ctattgtgttggagcacctcaattttgaggggcacacaatc agttctgaaagagagactactgtttccacaaaatgccgataccttgggaaggtggttgag ttcattgatggtatattgttggacaggccggaatcgtg caacccaatcatgctgaattcattttattgccgtggtgttattcaggctattttaaccac atttgaagctaccagtgagttgctcttttctatgaacaggctt ccgtcatcgcctatggagacagacagtaaaagtgttaaggaagacagggagacagattcg tcatggatatatggtccactctccagctatggtgc aattctggaccatctagtaacatcatcgtttattctttcttcctcaacaagacaattact tgagcagcctatttttagtggaaatatcaggtttccccaaga tgcagagaagttcatgaagctgcttcagtcaagagttctgaagactgttcttcccatctg gacccatcctcagtttccagaatgtaatgttgagttaatt agttcagtcacatctatcatgaggcatgtttactctggggttgaagtgaaaaacactgct atcaacactggtgctcgtttggctggtccaccccctgat gagaatgcaatttctctgattgtagagatgggcttttctcgcgccagagctgaggaagca ctcaggcaagttggaacgaacagtgttgaaattgca actgattggttattctcacacccagaggaaccacaagaggatgacgaacttgctcgagct cttgcaatgtctttaggcaattctgatacgtctgcaca agaggaagatggcaaatcgaatgatcttgaacttgaagaagaaactgttcagctgcctcc catagatgaagtattgtcttcatgtcttaggttgcttca gacaaaggaatcattagctttccctgttcgggacatgcttttgactatgagctcacagaa tgatggtcaaaaccgagtaaaggttcttacgtatttgatt gatcacctgaaaaattgtctgatgtcatctgatcctttaaagagcactgcattatcagct ctttttcatgtccttgctttgattctccatggagatactgctg ctcgggaagttgcttcaaaggctggtcttgtcaaggttgctttgaacctgctgtgcagct gggagttggagccgaggcaaggcgagataagtgat gttccaaattgggttccttcatgctttctttctattgataggatgctccagttggaccca aagttgccagatgttactgaactcgatgtccttaaaaagga taattcaaatacacaaacatcagtggtgattgatgatagcaagaaaaaggactcagaagc ttcatcgagcacagggttattggacttggaggacca gaagcaacttttgaagatttgctgtaaatgcattcagaagcagttgccttctgctaccat gcatgctattcttcagttatgtgccacgttgactaaacttc atgctgctgctatttgttttcttgagtctggtggtctgcatgcattgctaagtttgccca caagtagcttgttttctggattcaacagtgtggcttctacaat cattcgtcatattttggaagatccccacactcttcagcaagcaatggaattagagatacg ccacagtcttgtcaccgctgcaaatcgtcatgcaaatc caagggttacaccgcgcaattttgtccagaacttggcgtttgttgtatatagagacccag tgatatttatgaaagctgcccaagctgtgtgccagatt gagatggttggtgatagaccatatgttgttctgttgaaggatcgtgaaaaagaaaagaac aaggaaaaagagaaggacaagcctgctgataagg ataaaacatcaggtgcagccacaaagatgacatcaggggacatggctttaggatctcctg taagttctcaagggaagcagactgatctgaataca aagaatgtgaaatctaatcgcaaaccaccacaaagctttgtcactgttattgagtatctg ctagatctggttatgtccttcattccacctcctagagcag aagatcgacctgatggtgaatctagtactgcatcatctacagacatggatattgacagct cagcaaaaggcaaaggtaaagctgttgctgtcacac ctgaagagtccaagcatgcaattcaagaggctactgcatctctcgctaaaagtgcatttg ttctgaagctgctaacagatgttcttctgacttatgcat catctattcaagttgttcttcgacatgatgctgatttgagcaatgcacgtggtcctaacc ggattggtattagcagtggtggggttttcagtcatatactg cagcatttccttccgcattctacaaagcaaaagaaagagaggaaagctgatggagattgg aggtacaaattggcaacaagggctaatcaattcttg gtggcttcatctattcggtctgcagaaggtagaaaaaggatcttttctgaaatctgcagc atatttgttgacttcacagactcccctgctggttgcaaac ccccaatattaaggatgaatgcatatgttgatttgcttaatgatattctgtcagcccgtt cgccaactggttcctccttgtcagcagaatctgcagttact tttgttgaagttggtcttgttcagtatttatcaaaaacactgcaagttatagatttggat catcctgattcagcaaagattgtaactgctattgttaaggcc cttgaggttgtcacaaaggaacatgttcattcggcagatttgaatgccaaaggggagaac tcatcaaaggttgtgtctgaccagagcaatctagac ccgtcttcaaatagattccaagctcttgacacaactcaacccactgagatggttactgat catagggaagctttcaatgctgttcaaacttcacaaagt tcagattcagtggctgatgagatggaccatgaccgtgatctggatggaggatttgctcgt gatggtgaagatgactttatgcacgagattgctgaag atggaactccaaatgagtccacaatggaaatcagatttgaaattccacgaaatagagagg atgatatggctgatgatgacgaggacagtgatgag gacatgtcagccgatgatggtgaggaggttgatgaagatgaagacgaggatgaggatgaa gagaacaacaacctggaggaggatgatgccca tcaaatgtctcatcctgacacagatcaggaggaccgtgagatggatgaagaggagtttga cgaggatctgctagaagaagatgatgatgaggat gaggatgaggaaggagtcattcttcgcctcgaagagggtatcaatggaattaatgtgttt gaccatatcgaggtgtttgggggaagcaacaatttgt ctggggatacactgcgtgtaatgccgttggacatttttggaacaagacggcaaggtcgta gtacatctatatataaccttcttgggagagcaggcga tcatggtgtttttgaccacccgctcttggaggagccttcttcggtgctacaccttccaca gcaaagacaacaaggtatgccttctttccttccctgttca tgttgattctgttccatgtaatcatccattggcaaactagtaagcaactgtctgattatt tttttttgactttctaatatgttactgatatacctagatggtacc aattctggcatacatcactaattcaaattaccgtttgtttcagaaaatttagttgagatg gccttctctgatcggaatcatgataatagttcttcccgcttg gatgcaattttccggagcctgcgaagtggccggagtggacaccgttttaatatgtggcta gatgacagtccccaacgcactggatcagctgctcct gcagtacctgaaggcattgaggagctgctggtctctcagttgagacgacccacccctgaa caacctgatgagcagagtacacctgctggtggcg ctgaagaaaatgaccaatctaatcagcaacatttgcatcaatcagaaactgaggcaggag gagatgcaccaacagaacaaaatgaaaacaatga taatgcagttactccggcagcaaggtctgagttagatggttctgaaagtgctgatcctgc acctcccagcaatgcacttcaaagagaagtgtctggt gcaagtgagcatgccacggagatgcaatatgaacgtagtgatgctgtagtacgtgatgtg gaagcagtcagccaggcaagcagtggtagcggt gctactttaggggaaagccttagaagtttagaggtggagataggaagtgttgaagggcat gatgatggtgatcgccacggagcttcagacaggct tcctttgggtgatttgcaggcagcttcaagatcaaggaggccacctggaagtgttgtgct aggtagcagcagagatatatctctggagagtgtcag cgaggttcctcaaaatcaaaatcaagaatctgatcagaatgctgatgaaggggatcagga gcctaacagagctgctgacactgactcaattgatc ctacatttttggaggctcttccagaggatttacgggctgaagttctttcttcacgtcaaa atcaagtgacccagacttctaatgaacaacctcagaatg atggggatattgatcctgaattccttgctgcacttcctcctgatatacgtgaagaagttc tagctcaacaacgtgcgcaaaggttgcagcagtcacag gaattagaaggacaaccagttgaaatggatgctgtttcaattatcgcaacattcccttca gaaattcgggaggaggtatatagtttgttctgtaccagt cccatttttcatttctttgtcataatgtgatcttatggttgagttattttgcaggtgctt ttaacatctccagatacattactggctacacttacgcctgcacta gttgctgaagcaaacatgttaagggagagatttgctcatcggtatcacagtggctccctt tttggcatgaactccaggggcaggagaggtgagtcc tctcgacgtggtgacataattggttcaggtcttgatagaaatgctggtgattcttctcga caaccaactagcaagccaattgaaacggaaggatctcc tcttgttgacaaggatgctcttaaagctcttattaggctactccgggttgttcaggtaat ataccattaacttctgtgtgttcaactgtgtaaagttctctgg aaaaaaaatcttctactaactttacccattgtttacagcctctatacaaaggtcaattgc agaggcttctcttgaacctttgtgctcatagggaaagcag aaagtccttggttcaaattctagtggacatgcttatgcttgatctgcagggctcttctaa gaaatcaattgatgcaactgagccaccatttaggctatat gggtgccatgcaaatattacgtactcacgccctcaatcgacagatggtaacctaactacc cttgtttctgtgtttttaattagctgaatggtgctcttggt atctaggttaacatttgcctgttgagaattatagttgatattgattgattttctttattg tggttaataggcgtgcctccattagtttctcgtcgtgttcttgaaa ctttgacatacttggcaagaaatcatccaaatgtggctaaactcttgctatttcttgagt tcccttgccccccaacttgccatgctgaaacatctgatca gaggcgtggcaaggctgttcttatggaaggtgacagtgaacagaacgcttatgcacttgt cctacttttaaccttgttgaatcagccactttatatgag gagcgtagctcatcttgaacaggttaacattctttcttgttttttattttctgttgtggc tctttattaaaatttccagtcatatttttatcctaaccattggaactt gtgtagctactaaaccttctcgaagttgttatgctcaatgccgagaatgaaattacacaa gctaagctggaagcagcatctgaaaaaccatctggac ctgagaatgcaacgcaagatgcccaagagggtgcgaatgctgctggatcatctggatcga agtccaatgctgaggatagcagcaaactccctcc tgttgatggtgaaagtagcctgcaaaaagttctgcagagtcttccccaagcagagcttcg actgctatgttcactgcttgcacatgatgggtataaac tttcccaattttggtgaattgcttataattcatttttttctcctatttaattctattact ttcatagtgtaagcacattgaggaaatcataaatgcagctattgca acattacttctcttctctttagtacttgtgcatatggtgggtttcaacttacattgcaga tttgattaagtttgattattctctggttatgttgtttaggtcttcat caaatagatgataagaaactaggctgctagttgcatcagcattttcttgtccttggtttc gttctttgtgatctgtgtttccttttagaaacatagatggcag agctgtaactttttcatatatttgtttctgctattatttctgttacgactaataaaagaa atgcttgtgtttgtctttcaggttgtcagacaatgcgtatctcctg gtagcagaagttctgaaaaagattgtagctcttgctccttttttctgttgccatttcata aatgaacttgcacattcaatgcaaaatttgacgctttgtgca atgaaggagcttcacttgtatgaggattctgaaaaggctcttcttagcacatcatcagcc aatggcactgcaattcttagagttgtgcaggctttgagt tctcttgtcaccactctgcaagagaaaaaggatccagatcatcctgctgaaaaagatcat tctgatgcattgtcccagatttctgaaattaacactgca ttggatgcattatggttggagctgagtaattgcataagcaaaatagagagctcttcagaa tacgcatcgaatctaagtcctgcttctgcaaatgcagc cacattaacaacaggtgtagcacctccattgcctgccggaactcagaacatattaccgta catagaatcatttttcgtgacatgtgagaagttacgcc ctgggcaacctgatgctattcaagaagcttcaacatctgacatggaggatgcatcaactt ctagtggtgggcagaaatcatctggaagccatgcaa atcttgatgagaagcacaatgcgtttgttaaattctcagagaaacacagaagattgttga acgcatttatccgccaaaaccctgggctattggagaa gtcattctctctgatgttgaaaatccctcgcttgattgaatttgacaacaagcgtgcata tttccggtctaaaattaagcatcagcatgatcatcatcata gccctgttagaatttctgtgcgccgggcatatattttggaggattcatataaccagctta ggatgcgttcaccacaggatttgaagggtagactgact gttcatttccaaggtgaagaaggcattgatgctggtggactaacaagggaatggtatcag ctgctatcacgagtgatttttgataagggtgcccttct attcacaactgttggaaatgacttgacatttcaaccaaaccctaactcggtgtatcagac tgaacacctctcatatttcaaatttgttgggcgagtggtg agtgatattgctccttgtttttcactttcagctttgtgcaattgttgttggttctaaaag ttgtccctccaggttggtaaagctctatttgatggccaacttttg gatgtccattttacaagatctttctacaagcacatactaggtgtcaaggttacataccat gacattgaagctattgatcctgcatactataaaaatttgaa atggatgcttgaggtaaatatttttttcccagtacaatggttgattcagcttcttgatta ttaggtggtaattttcagttgtctttttagatgtgtaataatgta ttctcatttctgtgtacagaatgacataagcgatgttctggacctctccttcagcatgga tgcagatgaagagaagcggatattgtatgagaaggca gaggtataagcctatctctgtgtttgtctgtcttttcgctgttgcttgtctttgcttgaa acttagtcctgaacccatctatgcaggtgactgattatgagtt gattcctggaggccgaaacatcaaggtcaccgaggagaacaagcatgaatatgtgaaccg ggttgcagaacatcgtttaaccactgctattaggc ctcaaatcacctcttttatggagggatttaatgagctcattcctgaggagctgatatcaa tctttaatgacaaagaacttgaactgctaatcagtggact cccagacattgactgtgagtatcacccatgatttaggactgtttaattatctgttttttt atcttacagttaattaacttgttttgtatctctcgctttcagtgga cgatctaaaagcaaatacagaatattctgggtacagcatagcttctccagtcattcagtg gttctgggagattgtccaagggttcagcaaggaggac aaagcccggttccttcagtttgttactggcacctcaaaggtactttgctgatgatgcctt gtgaagtattttttatttagaagcgttagcccacatgattct atcttacttggtgattccccgcgctttgctacgggaattactaaacatttctcaatatat ttttttcaacaatcaagctagaagtgaaagggaaaaaataa taatgaaacattagggtttatccatacttatcatgaaacaaacaaatggtatttgcgctt tgatgtgaaacatattgataagtatatgtttaatattataaaa atgatagatttgtaaaaatattgtgcaaataatgtgaggggtgatgattggatatgcttg catgttgatttgtagaattaaataaattgtagataatgttga agttaaatatgtaattattgctcgtgggtgatgatgtggcatagttgcatgttgaacgac ttagtgggctataactttatagtaagataggattagtctgg tgttctccctcaaagctcactaatttttttaccccgcccatgtgataagctgagttattc agcatgatttgagtattggctggcacattcaattctttaatga taatcttttgcgtattatatttggtttcttattcttttgtgttaaactactgtaggtacc tctggaaggtttcagtgcactccaaggaatatctggaccacaac gattccagatacacaaggcctacggaagcaccaaccatctgccttcagcacatacttggt aatccatcttcactgcactcacttttgacactagaaaa aaaatcatttggcacaattaagggttcaaaatcctgctggtggttaccctttttgtccag ctataatgttgttttattttatttacttgagatcagtcctgaca actctactgcccttgctcactgcagctttaaccaactagaccttcctgagtacacatcga aagagcagctccaggagagattgctactggctattcat gaggcgaatgaaggtttcggatttggttaatcagtcactcctgcacctgtgtgcaagaaa tttcagggagtaatgtacagataccgtcggagttgca ataggcgaggggaatgtgcgcggactcttacataacctgctactagattcatttgttgcc tgcatcaaccatcggcgttggtccctgaagactgatg agatttgttgacaaagtaccggcctgcccacgatgctttataggactggttgctgcgaag gatgtgcagggaggtgtagcaggaagtgctagaag acagcaactatttggtgttcataatattttttttctttcccttttgggtcttttttggcc attgccccgttaatagatttcaccttctctatacattggacctgtat ggaatttttttccttttttattcaagtttgtttttggggggcatagaccggtggaatgca acattaagtagaatgcaagttttccatcgctattgcatattca atgcacattgactaaaagtgtctggagccacgggctgcggctataaattttactcctaag gtgatgtgtgttcgtcggtgacttgttcgtacggttatgt gtgtctgttttgagatgtgaaacttggcttggaccctaaatttggcataatagtgccgta ccaccagttcaccactatttgttaggccaacaccatctaa tattcgatttccgctacatagtacgctacattcagtaattaagatcaaatccttccgcta cataataacataatcaagcctcgtagggctccatactgca ccgttttttgtaaattttttttgctgcttccatgatttgtcacgtgggtgttcagtgcta tagctcctcgagtagccggttccccggttcctttggcagatgt gttttacttttttttttctacttgtttgatatacctgtcagcatgcagcatgctatctca gtcttttccattgctaacgtgttagcacgcatgtttgctttgtcttct tactttgcacctatcgccggcaggatgcacatgtccctgcaccgcctgatgcacagtctt ctccccttttgaaattttcaaaaaagtcctctgatttgtg tat REFERENCES Cermak, T et al. Efficient design and assembly of custom TALEN and other TAL effector- based constructs for DNA targeting. Nucleic acid Res.39 (2011). Kunkel TA. 1985. Rapid and efficient dite-specifc mutagenesis without phenotypic selection. PNAS.82(2): 488-92. Kunkel TA, Roberts JD, Zakour RA.1987. Rapid and efficient dite-specifc mutagenesis without phenotypic selection. Methods Enzmol.154.367-82. Henikoff S, Till BJ, Comai L.2004. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol.135(2): 630-6. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codoma CA, Enns LC, Johnson JE, Burtner C, Odden AR, Heinkoff.2004. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J.37(5):778-86. Clough SJ, Bent AF.1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16(6): 735-43. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y.2015. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.8(8): 1274-84. Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., Innan, H., Cano, L., Kamoun, S., and Terauchi, R. (2012). Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30, 174-178. Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H., and Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science 309, 741-745. Bates, P.W., and Vierstra, R.D. (1999). UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. Plant J 20, 183-195. Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 12, e0174. Chae, E., Tan, Q.K., Hill, T.A., and Irish, V.F. (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235- 1245. Cui, X., Jin, P., Cui, X., Gu, L., Lu, Z., Xue, Y., Wei, L., Qi, J., Song, X., Luo, M., An, G., and Cao, X. (2013). Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci U S A 110, 1953-1958. Downes, B.P., Stupar, R.M., Gingerich, D.J., and Vierstra, R.D. (2003). The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J 35, 729-742. Duan, P., Rao, Y., Zeng, D., Yang, Y., Xu, R., Zhang, B., Dong, G., Qian, Q., and Li, Y. (2014). SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J 77, 547-557. Fang, N., Xu, R., Huang, L., Zhang, B., Duan, P., Li, N., Luo, Y., and Li, Y. (2016). SMALL GRAIN 11 Controls Grain Size, Grain Number and Grain Yield in Rice. Rice (N Y) 9, 64. Guo, T., Chen, K., Dong, N.Q., Shi, C.L., Ye, W.W., Gao, J.P., Shan, J.X., and Lin, H.X. (2018). GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4- OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per panicle and Grain Size in Rice. Plant Cell 30, 871-888. Herr, J.M., Jr. (1982). An analysis of methods for permanently mounting ovules cleared in four-and-a-half type clearing fluids. Stain Technol 57, 161-169. Hershko, A., and Ciechanover, A. (1998). THE UBIQUITIN SYSTEM. Annu. Rev. Biochem.67, 425-479. Huang, K., Wang, D., Duan, P., Zhang, B., Xu, R., Li, N., and Li, Y. (2017). WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J 91, 849-860. Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., and Fu, X. (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41, 494-497. Huo, X., Wu, S., Zhu, Z., Liu, F., Fu, Y., Cai, H., Sun, X., Gu, P., Xie, D., Tan, L., and Sun, C. (2017). NOG1 increases grain production in rice. Nat Commun 8, 1497. Ikeda-Kawakatsu, K., Maekawa, M., Izawa, T., Itoh, J., and Nagato, Y. (2012). ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from panicle meristem to floral meristem through interaction with APO1. Plant J 69, 168-180. Ikeda-Kawakatsu, K., Yasuno, N., Oikawa, T., Iida, S., Nagato, Y., Maekawa, M., and Kyozuka, J. (2009). Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice panicle form through control of cell proliferation in the meristem. Plant Physiol 150, 736-747. Ikeda, K., Nagasawa, N., and Nagato, Y. (2005). ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282, 349-360. Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J., and Nagato, Y. (2007). Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51, 1030-1040. Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005). Rice plant development: from zygote to spikelet. Plant Cell Physiol 46, 23-47. Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q., and Li, J. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541-544. Komatsu, K., Maekawa, M., Ujiie, S., Satake, Y., Furutani, I., Okamoto, H., Shimamoto, K., and Kyozuka, J. (2003). LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci U S A 100, 11765-11770. Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652-655. Kyozuka, J., Konishi, S., Nemoto, K., Izawa, T., and Shimamoto, K. (1998). Down- regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci U S A 95, 1979-1982. Lee, Z.H., Hirakawa, T., Yamaguchi, N., and Ito, T. (2019). The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. Int J Mol Sci 20. Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33, 23-32. Li, N., Liu, Z., Wang, Z., Ru, L., Gonzalez, N., Baekelandt, A., Pauwels, L., Goossens, A., Xu, R., Zhu, Z., Inze, D., and Li, Y. (2018). STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet 14, e1007218. Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., Sun, J., Liu, Z., Feng, Y., Yuan, L., and Li, C. (2013). Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110, 3167-3172. Liu, X., Zhou, S., Wang, W., Ye, Y., Zhao, Y., Xu, Q., Zhou, C., Tan, F., Cheng, S., and Zhou, D.X. (2015). Regulation of histone methylation and reprogramming of gene expression in the rice panicle meristem. Plant Cell 27, 1428-1444. Miao, Y., and Zentgraf, U. (2010). A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J 63, 179-188. Miller, C., Wells, R., McKenzie, N., Trick, M., Ball, J., Fatihi, A., Dubreucq, B., Chardot, T., Lepiniec, L., and Bevan, M.W. (2019). Variation in Expression of the HECT E3 Ligase UPL3 Modulates LEC2 Levels, Seed Size, and Crop Yields in Brassica napus. Plant Cell 31, 2370-2385. Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., and Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545-549. Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., Ebitani, T., Ozaki, H., Angeles, E.R., Hirasawa, T., and Matsuoka, M. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1, 132. Patra, B., Pattanaik, S., and Yuan, L. (2013). Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74, 435-447. Rao, N.N., Prasad, K., Kumar, P.R., and Vijayraghavan, U. (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105, 3646-3651. Sakamoto, T., and Matsuoka, M. (2008). Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11, 209-214. Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55, 555-590. Souer, E., Rebocho, A.B., Bliek, M., Kusters, E., de Bruin, R.A., and Koes, R. (2008). Patterning of panicles and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033-2048. Tsuda, K., Ito, Y., Sato, Y., and Kurata, N. (2011). Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 23, 4368- 4381. Tsuda, K., Kurata, N., Ohyanagi, H., and Hake, S. (2014). Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell 26, 3488-3500. Vierstra, R.D. (2009). The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10, 385-397. Wang, B., Smith, S.M., and Li, J. (2018). Genetic Regulation of Shoot Architecture. Annu Rev Plant Biol 69, 437-468. Wang, J., Wang, R., Wang, Y., Zhang, L., Zhang, L., Xu, Y., and Yao, S. (2017). Short and Solid Culm/RFL/APO2 for culm development in rice. Plant J 91, 85-96. Wang, X., Lu, G., Li, L., Yi, J., Yan, K., Wang, Y., Zhu, B., Kuang, J., Lin, M., Zhang, S., and Shao, G. (2014). HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 444, 290-295. Wang, Z., Li, N., Jiang, S., Gonzalez, N., Huang, X., Wang, Y., Inze, D., and Li, Y. (2016). SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun 7, 11192. Werner, T., Motyka, V., Strnad, M., and Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98, 10487-10492. Wu, Y., Wang, Y., Mi, X., Shan, J., Li, X., Xu, J., and Lin, H. (2016). The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice panicle Meristems. PLoS Genet 12, e1006386. Xia, T., Li, N., Dumenil, J., Li, J., Kamenski, A., Bevan, M.W., Gao, F., and Li, Y. (2013). The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25, 3347-3359. Xu, R., Yu, H., Wang, J., Duan, P., Zhang, B., Li, J., Li, Y., Xu, J., Lyu, J., Li, N., Chai, T., and Li, Y. (2018a). A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. Xu, R., Duan, P., Yu, H., Zhou, Z., Zhang, B., Wang, R., Li, J., Zhang, G., Zhuang, S., Lyu, J., Li, N., Chai, T., Tian, Z., Yao, S., and Li, Y. (2018b). Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Mol Plant 11, 860-873. Yau, R., and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat Cell Biol 18, 579-586. Yoshida, A., Sasao, M., Yasuno, N., Takagi, K., Daimon, Y., Chen, R., Yamazaki, R., Tokunaga, H., Kitaguchi, Y., Sato, Y., Nagamura, Y., Ushijima, T., Kumamaru, T., Iida, S., Maekawa, M., and Kyozuka, J. (2013). TAWAWA1, a regulator of rice panicle architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci U S A 110, 767-772. Zhao, L., Tan, L., Zhu, Z., Xiao, L., Xie, D., and Sun, C. (2015). PAY1 improves plant architecture and enhances grain yield in rice. Plant J 83, 528-536. Zheng, N., and Shabek, N. (2017). Ubiquitin Ligases: Structure, Function, and Regulation. Annu Rev Biochem 86, 129-157. Zuo, J., and Li, J. (2014). Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48, 99-118.