Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PIPERIDINE DERIVATIVES USED AS OREXIN ANTAGONISTS
Document Type and Number:
WIPO Patent Application WO/2011/023585
Kind Code:
A1
Abstract:
This invention relates to he teroarylamine methyl substituted piperidine derivatives (I) and their use as antagonists of human orexin.

Inventors:
DI FABIO ROMANO (IT)
Application Number:
PCT/EP2010/061906
Publication Date:
March 03, 2011
Filing Date:
August 16, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GLAXO GROUP LTD (GB)
DI FABIO ROMANO (IT)
International Classes:
C07D401/14; A61K31/445; A61P3/04; A61P3/10; A61P25/00; A61P25/22; A61P25/24
Domestic Patent References:
WO2009124956A12009-10-15
WO2002090355A12002-11-14
WO2010063663A12010-06-10
WO2010063662A12010-06-10
WO1996034877A11996-11-07
WO1999009024A11999-02-25
WO1999058533A11999-11-18
WO2000047577A12000-08-17
WO2000047580A22000-08-17
WO2000047576A12000-08-17
WO2005118548A12005-12-15
WO2001096302A12001-12-20
WO2002044172A12002-06-06
WO2002089800A22002-11-14
WO2003002559A22003-01-09
WO2003002561A12003-01-09
WO2003032991A12003-04-24
WO2003037847A12003-05-08
WO2003041711A12003-05-22
WO2008038251A22008-04-03
WO2004026866A12004-04-01
WO1992001810A11992-02-06
Foreign References:
EP0875565A21998-11-04
EP0875566A21998-11-04
EP0893498A21999-01-27
EP0849361A21998-06-24
Other References:
SAKURAI, T ET AL., CELL, vol. 92, 1998, pages 573 - 585
SMART ET AL., BRITISH JOURNAL OF PHARMACOLOGY, vol. 128, 1999, pages 1 - 3
WILLIE ET AL., ANN. REV. NEUROSCIENCES, vol. 24, 2001, pages 429 - 458
SAKURAI, NATURE REVIEWS NEUROSCIENCE, vol. 8, 2007, pages 171 - 181
OHNO; SAKURAI, FRONT. NEUROENDOCRINOLOGY, vol. 29, 2008, pages 70 - 87
SAKURAI, T. ET AL., CELL, vol. 92, 1998, pages 573 - 585
PEYRON ET AL., J. NEUROSCIENCES, vol. 18, 1998, pages 9996 - 10015
WILLIE ET AL., ANN. REV. NEUROSCIENCES, vol. 24, 2001, pages 429 - 458
WHITE ET AL., PEPTIDES, vol. 26, 2005, pages 2231 - 2238
NAIR ET AL., BRITISH JOURNAL OF PHARMACOLOGY, 28 January 2008 (2008-01-28)
HAGAN ET AL., PROC.NATL.ACAD.SCI., vol. 96, 1999, pages 10911 - 10916
SAKURAI, NATURE REVIEWS NEUROSCIENCE, vol. 8, 2007, pages 171 - 181
OHNO; SAKURAI, FRONT. NEUROENDOCRINOLOGY, vol. 29, 2008, pages 70 - 87
CHEMELLI ET AL., CELL, vol. 98, 1999, pages 437 - 451
LEE ET AL., J. NEUROSCIENCE, vol. 25, 2005, pages 6716 - 6720
PIPER ET AL., EUROPEAN J NEUROSCIENCE, vol. 12, 2000, pages 726 - 730
SMART; JERMAN, PHARMACOLOGY AND THERAPEUTICS, vol. 94, 2002, pages 51 - 61
SMITH ET AL., EUROSCIENCE LETTERS, vol. 341, 2003, pages 256 - 258
BRISBARE-ROCH ET AL., NATURE MEDICINE, vol. 13, no. 2, 2007, pages 150 - 155
BORGLAND ET AL., NEURON, vol. 49, no. 4, 2006, pages 589 - 601
BOUTREL ET AL., PROC.NATL.ACAD.SCI., vol. 102, no. 52, 2005, pages 19168 - 19173
HARRIS ET AL., NATURE, vol. 437, 2005, pages 556 - 559
BERGE; BIGHLEY; MONKHOUSE, J.PHARM.SCI, vol. 66, 1977, pages 1 - 19
SAKURAI, T. ET AL., CELL, vol. 92, 1998, pages 573 - 585
BOWEN WP; JERMAN JC.: "Nonlinear regression using spreadsheets", TRENDS PHARMACOL. SCI., vol. 16, 1995, pages 413 - 417, XP004207565, DOI: doi:10.1016/S0165-6147(00)89091-4
CHENG YC; PRUSOFF WH: "Relationship between the inhibition constant (K;) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction", BIOCHEM. PHARMACOL., vol. 22, 1973, pages 3099 - 3108
Attorney, Agent or Firm:
LAWRENCE, Geoffrey, Mark, Prouse et al. (Global Patents CN925.1980 Great West Road,Brentford, Middlesex TW8 9GS, GB)
Download PDF:
Claims:
Claims

1. A compound of formula (I)

wherein:

Ar2 is phenyl, pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl substituted with a group selected from C1-4alkyl, halo, C^alkoxy, haloCi_4alkyl, haloCi_4alkoxy and cyano, and is additionally substituted with a group Y where Y is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxadiazolyl, phenyloxy, pyridinyloxy, pyrimidinyloxy,

pyridazinyloxy, pyrazinyloxy, oxadiazolyloxy or a 5 membered heterocyclic group containing 1, 2, 3 or 4 heteroatoms selected from N, O or S, which group Y is optionally substituted with a group selected from C1-4alkyl, haloC^alkyl, C^alkoxy, haloC^alkoxy, cyano or halo;

Ar1 is a heteroaryl group selected from the group consisting of pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl, which heteroaryl group is optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of: C1-4alkyl, halo, Ci_4alkoxy, haloCi_4alkyl, haloC^alkoxy and cyano; or ArI is an 8 to 10 membered bicyclic

heterocyclyl group which bicyclic heterocyclyl group is optionally substituted with C1.

4alkyl, haloC^alkyl or halo;

or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1 where Ar2 is phenyl, pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl substituted with a group selected from C1-4alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano, and is additionally substituted with a group Y where Y is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxadiazolyl, phenyloxy, pyridinyloxy, pyrimidinyloxy, pyridazinyloxy, pyrazinyloxy, oxadiazolyloxy or a 5 membered heterocyclic group containing 1, 2, 3 or 4 heteroatoms selected from N, O or S, which group Y is optionally substituted with a group selected from C1-4alkyl, haloCi_4alkyl, Ci_4alkoxy, haloC^alkoxy, cyano or halo; and Ar1 is a heteroaryl group selected from the group consisting of pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl, which heteroaryl group is optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of: C1-4alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano, or a pharmaceutically acceptable salt thereof. 3. A compound according to claim 1 or claim 2 where Ar2 is pyridinyl substituted with a group selected from C1-4alkyl, halo, C1-4alkoxy, haloC1-4alkyl, haloC1-4alkoxy and cyano, and is additionally substituted with a group Y where Y is pyrimidinyl which is optionally substituted with a group selected from C1-4alkyl, haloC^alkyl, C^alkoxy, haloC1_4alkoxy, cyano or halo, or a pharmaceutically acceptable salt thereof.

4. A compound according to claim 3 where Ar2 is pyridinyl substituted with C^alkyl and is additionally substituted with a group Y where Y is pyrimidinyl, or a pharmaceutically acceptable salt thereof.

5. A compound according to any one of claims 1 to 4 where Ar1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: C1. 4alkyl, halo and haloC1_4alkyl, or a pharmaceutically acceptable salt thereof.

6. A compound according to any one of claims 1 to 5 where Ar2 is pyridinyl substituted with methyl and is additionally substituted with a group Y where Y is pyrimidinyl; and Ar1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: methyl, fluoro and trifluoromethyl, or a

pharmaceutically acceptable salt thereof.

7. A compound of formula (I) which is selected from the group consisting of:

N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyridinamine;

5-fiuoro-3-methyl-N-[((2lSf,55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2- pyridinyl]carbonyl}-2-piperidinyl)methyl]-2-pyridinamine;

5-fluoro-Λ/-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-2-pyridinamine;

3 ,5-difluoro-iV-[((25,5iS)-5-methyl- 1 - { [6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl} -2- piperidinyl)methyl]-2-pyridinamine;

N-[((2lS',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-4-(trifluoromethyl)-2-pyridinamine;

N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyrimidinamine;

N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-6-(trifluoromethyl)-3-pyridazinamine;

4,6-dimethyl-N-[((2lSf,55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-

2-piperidinyl)methyl]-2-pyrimidinamine;

N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-3-(trifluoromethyl)-2-pyridinamine;

3-fiuoro-N-[((2lS',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyridinamine; and

N-[((2lSf,55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl] -6-(trifluoromethyl)-2-pyridinamine.

or a pharmaceutically acceptable salt thereof.

8. The compound as defined in any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, for use in therapy.

9. The compound as defined in any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, for use in the treatment of a disease or disorder where an antagonist of a human orexin receptor is required.

10. The compound according to claim 9, or a pharmaceutically acceptable salt thereof, wherein the disease or disorder is a sleep disorder, a depression or mood disorder, an anxiety disorder, a substance-related disorder or a feeding disorder.

11. The compound according to claim 10, or a pharmaceutically acceptable salt thereof, wherein the disease or disorder is a sleep disorder. 12. The compound according to claim 11 , or a pharmaceutically acceptable salt thereof, wherein the sleep disorder is selected from the group consisting of Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing- Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and

Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition, in particular sleep disturbances associated with such diseases as neurological disorders, neuropathic pain, restless leg syndrome, heart and lung diseases; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type; Sleep Apnea and Jet-Lag

Syndrome. 13. Use of a compound as defined in any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of a disease or disorder where an antagonist of a human orexin receptor is required.

14. Use according to claim 13 where the disease or disorder is a sleep disorder, a depression or mood disorder, an anxiety disorder, a substance-related disorder or a feeding disorder.

15. Use according to claim 14 wherein the disease or disorder is a sleep disorder. 16. Use according to claim 15 where the sleep disorder is selected from the group consisting of Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition, in particular sleep disturbances associated with such diseases as neurological disorders, neuropathic pain, restless leg syndrome, heart and lung diseases; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type; Sleep Apnea and Jet-Lag Syndrome.

17. A method for the treatment of a disease or disorder where an antagonist of a human orexin receptor is required, in a subject in need thereof, comprising administering to said subject an effective amount of a compound as defined in any one claims 1 to 7, or a pharmaceutically acceptable salt thereof.

18. A method according to claim 17 where the disease or disorder is a sleep disorder, a depression or mood disorder, an anxiety disorder, a substance-related disorder or a feeding disorder. 19. A method according to claim 18 where the disease or disorder is a sleep disorder.

20. A method according to claim 19 where the sleep disorder is selected from the group consisting of Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition, in particular sleep disturbances associated with such diseases as neurological disorders, neuropathic pain, restless leg syndrome, heart and lung diseases; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type; Sleep Apnea and Jet-Lag Syndrome.

21. A pharmaceutical composition comprising a) the compound as defined in any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, and b) one or more

pharmaceutically acceptable carriers.

Description:
PIPERIDINE DERIVATIVES USED AS OREXIN ANTAGONISTS

This invention relates to heteroarylamine 5 -methyl substituted piperidine derivatives and their use as pharmaceuticals.

Many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers.

Polypeptides and polynucleotides encoding the human 7-transmembrane G-protein coupled neuropeptide receptor, orexin-1 (HFGAN72), have been identified and are disclosed in EP875565, EP875566 and WO 96/34877. Polypeptides and polynucleotides encoding a second human orexin receptor, orexin-2 (HFGANP), have been identified and are disclosed in EP893498.

Polypeptides and polynucleotides encoding polypeptides which are ligands for the orexin-1 receptor, e.g. orexin-A (Lig72A) are disclosed in EP849361.

The orexin ligand and receptor system has been well characterised since its discovery (see for example Sakurai, T. et al (1998) Cell, 92 pp 573 to 585; Smart et al (1999) British Journal of Pharmacology 128 pp 1 to 3; Willie et al (2001) Ann. Rev.

Neurosciences 24 pp 429 to 458; Sakurai (2007) Nature Reviews Neuroscience 8 pp 171 to 181; Ohno and Sakurai (2008) Front. Neuroendocrine logy 29 pp 70 to 87). From these studies it has become clear that orexins and orexin receptors play a number of important physiological roles in mammals and open up the possibility of the development of new therapeutic treatments for a variety of diseases and disorders as described hereinbelow.

Experiments have shown that central administration of the ligand orexin-A stimulated food intake in freely-feeding rats during a 4 hour time period. This increase was approximately four-fold over control rats receiving vehicle. These data suggest that orexin- A may be an endogenous regulator of appetite (Sakurai, T. et al (1998) Cell, 92 pp 573 to 585; Peyron et al (1998) J. Neurosciences 18 pp 9996 to 10015; Willie et al (2001) Ann. Rev. Neurosciences 24 pp 429 to 458). Therefore, antagonists of the orexin-A receptor(s) may be useful in the treatment of obesity and diabetes. In support of this it has been shown that orexin receptor antagonist SB334867 potently reduced hedonic eating in rats (White et al (2005) Peptides 26 pp 2231 to 2238) and also attenuated high-fat pellet self- administration in rats (Nair et al (2008) British Journal of Pharmacology, published online 28 January 2008). The search for new therapies to treat obesity and other eating disorders is an important challenge. According to WHO definitions a mean of 35% of subjects in 39 studies were overweight and a further 22% clinically obese in westernised societies. It has been estimated that 5.7% of all healthcare costs in the USA are a consequence of obesity. About 85% of Type 2 diabetics are obese. Diet and exercise are of value in all diabetics. The incidence of diagnosed diabetes in westernised countries is typically 5% and there are estimated to be an equal number undiagnosed. The incidence of both diseases is rising, demonstrating the inadequacy of current treatments which may be either ineffective or have toxicity risks including cardiovascular effects. Treatment of diabetes with sulfonylureas or insulin can cause hypoglycaemia, whilst metformin causes GI side-effects. No drug treatment for Type 2 diabetes has been shown to reduce the long-term complications of the disease. Insulin sensitisers will be useful for many diabetics, however they do not have an anti-obesity effect.

As well as having a role in food intake, the orexin system is also involved in sleep and wakefulness. Rat sleep/EEG studies have shown that central administration of orexin- A, an agonist of the orexin receptors, causes a dose-related increase in arousal, largely at the expense of a reduction in paradoxical sleep and slow wave sleep 2, when administered at the onset of the normal sleep period (Hagan et al (1999) Proc.Natl.Acad.Sci. 96 pp 10911 to 10916). The role of the orexin system in sleep and wakefulness is now well established (Sakurai (2007) Nature Reviews Neuroscience 8 pp 171 to 181; Ohno and Sakurai (2008) Front. Neuroendocrinology 29 pp 70 to 87; Chemelli et al (1999) Cell 98 pp 437 to 451; Lee et al (2005) J. Neuroscience 25 pp 6716 to 6720; Piper et al (2000) European J

Neuroscience 12 pp 726-730 and Smart and Jerman (2002) Pharmacology and Therapeutics 94 pp 51 to 61). Antagonists of the orexin receptors may therefore be useful in the treatment of sleep disorders including insomnia. Studies with orexin receptor antagonists, for example SB334867, in rats (see for example Smith et al (2003) Neuroscience Letters 341 pp 256 to 258) and more recently dogs and humans (Brisbare-Roch et al (2007) Nature Medicine 13(2) pp 150 to 155) further support this.

In addition, recent studies have suggested a role for orexin antagonists in the treatment of motivational disorders, such as disorders related to reward seeking behaviours for example drug addiction and substance abuse (Borgland et al (2006) Neuron 49(4) pp 589-601; Boutrel et al (2005) Proc.Natl.Acad.Sci. 102(52) pp 19168 to 19173; Harris et al (2005) Nature 437 pp 556 to 559).

International Patent Applications WO99/09024, WO99/58533, WO00/47577 and WO00/47580 disclose phenyl urea derivatives and WO00/47576 discloses quinolinyl cinnamide derivatives as orexin receptor antagonists. WO05/118548 discloses substituted 1,2,3,4-tetrahydroisoquinoline derivatives as orexin antagonists.

WO01/96302, WO02/44172, WO02/89800, WO03/002559, WO03/002561, WO03/032991, WO03/037847, WO03/041711 and WO08/038251 all disclose cyclic amine derivatives.

WO04/026866 discloses dialkyl N-aroyl cyclic amines. We have now found that certain heteroarylamine 5 -methyl substituted piperidine derivatives have beneficial properties including, for example, increased potency compared to the prior art compounds. The compounds of the present invention have good bioavailability and brain penetration such properties make these heteroarylamine 5 -methyl substituted piperidine derivatives very attractive as potential pharmaceutical agents which may be useful in the prevention or treatment of obesity, including obesity observed in Type 2 (non-insulin-dependent) diabetes patients, sleep disorders, anxiety, depression, schizophrenia, drug dependency or compulsive behaviour. Additionally these compounds may be useful in the treatment of stroke, particularly ischemic or haemorrhagic stroke, and/or blocking the emetic response, i.e. useful in the treatment of nausea and vomiting.

Accordingly the present invention provides a compound of formula (I)

wherein:

Ar 2 is phenyl, pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl substituted with a group selected from C 1-4 alkyl, halo, Ci_ 4 alkoxy, haloC^alkyl, haloCi_ 4 alkoxy and cyano, and is additionally substituted with a group Y where Y is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxadiazolyl, phenyloxy, pyridinyloxy, pyrimidinyloxy,

pyridazinyloxy, pyrazinyloxy, oxadiazolyloxy or a 5 membered heterocyclic group containing 1, 2, 3 or 4 heteroatoms selected from N, O or S, which group Y is optionally substituted with a group selected from C 1-4 alkyl, haloC^alkyl, C^alkoxy, haloC^alkoxy, cyano or halo;

Ar 1 is a heteroaryl group selected from the group consisting of pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl, which heteroaryl group is optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of: C 1-4 alkyl, halo, Ci_4alkoxy, haloCi_ 4 alkyl, haloC^alkoxy and cyano; or ArI is an 8 to 10 membered bicyclic

heterocyclyl group which bicyclic heterocyclyl group is optionally substituted with C 1 .

4alkyl, haloC^alkyl or halo;

or a pharmaceutically acceptable salt thereof.

In one embodiment Ar 2 is phenyl, pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl substituted with a group selected from C 1-4 alkyl, halo, C^alkoxy, haloCi_ 4 alkyl, ImIoC 1 . 4 alkoxy and cyano, and is additionally substituted with a group Y where Y is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, oxadiazolyl, phenyloxy, pyridinyloxy, pyrimidinyloxy, pyridazinyloxy, pyrazinyloxy, oxadiazolyloxy or a 5 membered

heterocyclic group containing 1, 2, 3 or 4 heteroatoms selected from N, O or S, which group Y is optionally substituted with a group selected from C 1-4 alkyl, haloC^alkyl, C^alkoxy, haloC^alkoxy, cyano or halo; and Ar 1 is a heteroaryl group selected from the group consisting of pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl, which heteroaryl group is optionally substituted with 1 , 2 or 3 substituents independently selected from the group consisting of: C 1-4 alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano.

In one embodiment Ar 2 is pyridinyl substituted with a group selected from C 1-4 alkyl, halo, Ci_ 4 alkoxy, haloC 1-4 alkyl, haloC^alkoxy and cyano, and is additionally substituted with a group Y where Y is pyrimidinyl which is optionally substituted with a group selected from C 1-4 alkyl, haloC 1-4 alkyl, C 1-4 alkoxy, haloC 1-4 alkoxy, cyano or halo.

In another embodiment Ar 2 is pyridinyl substituted with C 1-4 alkyl and is additionally substituted with a group Y where Y is pyrimidinyl. In a further embodiment Ar 2 is pyridinyl substituted with methyl and is additionally substituted with a group Y where Y is pyrimidinyl.

In one embodiment Ar 1 is a heteroaryl group selected from the group consisting of pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl, which heteroaryl group is optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of:

Ci_ 4 alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano.

In another embodiment Ar 1 is pyridinyl which is optionally substituted with 1 , 2 or 3 substituents independently selected from the group consisting of: C 1-4 alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano.

In a further embodiment Ar 1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: C 1-4 alkyl, halo and haloC^alkyl.

In a still further embodiment Ar 1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: methyl, fluoro and trifluoromethyl.

In one embodiment Ar 2 is pyridinyl substituted with a group selected from C 1-4 alkyl, halo, Ci_ 4 alkoxy, haloC^alkyl, haloC^alkoxy and cyano, and is additionally substituted with a group Y where Y is pyrimidinyl which is optionally substituted with a group selected from Ci_ 4 alkyl, haloC^alkyl, C^alkoxy, haloC^alkoxy, cyano or halo; and Ar 1 is pyridinyl which is optionally substituted with 1 , 2 or 3 substituents independently selected from the group consisting of: C 1-4 alkyl, halo, C^alkoxy, haloC^alkyl, haloC^alkoxy and cyano.

In another embodiment Ar 2 is pyridinyl substituted with C^alkyl and is additionally substituted with a group Y where Y is pyrimidinyl; and Ar 1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: C 1-4 alkyl, halo and haloC 1 _ 4 alkyl.

In a further embodiment Ar 2 is pyridinyl substituted with methyl and is additionally substituted with a group Y where Y is pyrimidinyl; and Ar 1 is pyridinyl which is substituted with 1 or 2 substituents independently selected from the group consisting of: methyl, fluoro and trifluoromethyl.

In one embodiment the methyl at the 5 position on the piperidine ring is in the 5 S configuration.

In one embodiment the invention provides the compound of formula (I) selected from the group consisting of:

N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyrid inyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyridinamine;

5-fluoro-3-methyl-N-[((25',55)-5-methyl-l-{[6-methyl-3-(2 -pyrimidinyl)-2- pyridinyl]carbonyl}-2-piperidinyl)methyl]-2-pyridinamine;

5-fluoro-Λ/-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidin yl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-2-pyridinamine;

3 ,5 -difluoro-N-[((25 f ,55)-5 -methyl- 1 - { [6-methyl-3 -(2-pyrimidinyl)-2-pyridinyl]carbonyl} -2- piperidinyl)methyl] -2-pyridinamine;

N-[((2 l S f ,55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridin yl]carbonyl}-2- piperidinyl)methyl]-4-(trifluoromethyl)-2-pyridinamine; N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridi nyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyrimidinamine;

N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyridi nyl]carbonyl}-2- piperidinyl)methyl]-6-(trifluoromethyl)-3-pyridazinamine;

4,6-dimethyl-N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyri midinyl)-2-pyridinyl]carbonyl}-

2-piperidinyl)methyl]-2-pyrimidinamine;

N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyrid inyl]carbonyl}-2- piperidinyl)methyl]-3-(trifluoromethyl)-2-pyridinamine;

3-fluoro-Λ/-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidin yl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2-pyridinamine; and

N-[((25',55)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2-pyrid inyl]carbonyl}-2- piperidinyl)methyl]-6-(trifluoromethyl)-2-pyridinamine.

or a pharmaceutically acceptable salt thereof.

The Ar 1 group may be attached to the aminomethyl linker by means of a bond between the nitrogen atom in said linker and any carbon or nitrogen atom in said Ar 1 ring.

Preferably the Ar 1 group is attached to the linker by means of a bond between the nitrogen atom in the linker and a carbon atom in the Ar 1 group ring.

Examples of a 5 membered heterocyclyl group containing 1, 2, 3 or 4 atoms selected from N, O or S include furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, triazinyl, tetrazolyl, isothiazolyl, isoxazolyl or pyrazolyl.

When the compound contains a Ci_ 4 alkyl group, whether alone or forming part of a larger group, e.g. C^alkoxy, the alkyl group maybe straight chain, branched or cyclic, or combinations thereof. Examples of C^alkyl are methyl or ethyl. An example OfC 1 .

4 alkoxy is methoxy.

Examples of haloCi_ 4 alkyl include trifluoromethyl (i.e. -CF 3 ).

Examples of Ci_ 4 alkoxy include methoxy and ethoxy.

Examples of haloCi_ 4 alkoxy include trifluoromethoxy (i.e. - OCF 3 ).

Halogen or "halo" (when used, for example, in haloC 1 _ 4 )alkyl means fluoro, chloro, bromo or iodo.

It is to be understood that the present invention covers all combinations of particularised groups and substituents described herein above.

It will be appreciated that for use in medicine the salts of the compounds of formula

(I) should be pharmaceutically acceptable. Suitable pharmaceutically acceptable salts will be apparent to those skilled in the art. Pharmaceutically acceptable salts include those described by Berge, Bighley and Monkhouse J.Pharm.Sci (1977) 66, pp 1-19. Such pharmaceutically acceptable salts include acid addition salts formed with inorganic acids e.g. hydrochloric, hydrobromic, sulphuric, nitric or phosphoric acid and organic acids e.g. succinic, maleic, acetic, fumaric, citric, tartaric, benzoic, p-toluenesulfonic, methanesulfonic or naphthalenesulfonic acid. Other salts e.g. oxalates or formates, may be used, for example in the isolation of compounds of formula (I) and are included within the scope of this invention. Certain of the compounds of formula (I) may form acid addition salts with one or more equivalents of the acid. The present invention includes within its scope all possible stoichiometric and non-stoichiometric forms.

The compounds of formula (I) may be prepared in crystalline or non-crystalline form and, if crystalline, may optionally be solvated, eg. as the hydrate. This invention includes within its scope stoichiometric solvates (eg. hydrates) as well as compounds containing variable amounts of solvent (eg. water).

It will be understood that the invention includes pharmaceutically acceptable derivatives of compounds of formula (I) and that these are included within the scope of the invention.

As used herein "pharmaceutically acceptable derivative" includes any

pharmaceutically acceptable ester or salt of such ester of a compound of formula (I) which, upon administration to the recipient is capable of providing (directly or indirectly) a compound of formula (I) or an active metabolite or residue thereof.

The compounds of formula (I) are 2S enantiomers. Where additional chiral centres are present in compounds of formula (I), the present invention includes within its scope all possible enantiomers and diastereoisomers, including mixtures thereof. The different isomeric forms may be separated or resolved one from the other by conventional methods, or any given isomer may be obtained by conventional synthetic methods or by stereospecifϊc or asymmetric syntheses. The invention also extends to any tautomeric forms or mixtures thereof.

The subject invention also includes isotopically-labeled compounds which are identical to those recited in formula (I) but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number most commonly found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, fluorine, iodine and chlorine such as 3 H, 11 C, 14 C, 18 F, 123 I or 125 I.

Compounds of the present invention and pharmaceutically acceptable salts of said compounds that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of the present invention. Isotopically labeled compounds of the present invention, for example those into which radioactive isotopes such as 3 H or 14 C have been incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, ie. 3 H, and carbon-14, ie. 14 C, isotopes are particularly preferred for their ease of preparation and detectability. 11 C and 18 F isotopes are particularly useful in PET (positron emission tomography).

Since the compounds of formula (I) are intended for use in pharmaceutical compositions it will readily be understood that they are each preferably provided in substantially pure form, for example at least 60% pure, more suitably at least 75% pure and preferably at least 85%, especially at least 98% pure (% are on a weight for weight basis). Impure preparations of the compounds may be used for preparing the more pure forms used in the pharmaceutical compositions.

According to a further aspect of the present invention there is provided a process for the preparation of compounds of formula (I) and derivatives thereof. The following schemes detail some synthetic routes to compounds of the invention. In the following schemes reactive groups can be protected with protecting groups and deprotected according to well established techniques. Schemes

According to a further feature of the invention there is provided a process for the preparation of compounds of formula (I) or salts thereof. The following is an example of a synthetic scheme that may be used to synthesise the compounds of the invention.

2 O

TBTU . TBTU DIPEA A Jrr OH Nt f OH DIPEA

(I)

It will be understood by those skilled in the art that certain compounds of the invention can be converted into other compounds of the invention according to standard chemical methods.

The starting materials for use in the scheme are commercially available, known in the literature or can be prepared by known methods. For example (S)-(+)-mandelic acid [(S)-(a)-Hydroxyphenylacetic acid, Aldrich M2004] and 3 methyl piperidine (Aldrich M73001).

Pharmaceutically acceptable salts may be prepared conventionally by reaction with the appropriate acid or acid derivative.

The present invention provides compounds of formula (I) or a pharmaceutically acceptable salt thereof for use in human or veterinary medicine.

The compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as sleep disorders selected from the group consisting of Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44),

Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and DyssomniaNot Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition, in particular sleep disturbances associated with such diseases as neurological disorders, neuropathic pain, restless leg syndrome, heart and lung diseases; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type; Sleep Apnea and Jet-Lag Syndrome.

In addition the compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as depression and mood disorders including Major Depressive Episode, Manic Episode, Mixed Episode and Hypomanic Episode;

Depressive Disorders including Major Depressive Disorder, Dysthymic Disorder (300.4), Depressive Disorder Not Otherwise Specified (311); Bipolar Disorders including Bipolar I Disorder, Bipolar II Disorder (Recurrent Major Depressive Episodes with Hypomanic Episodes) (296.89), Cyclothymic Disorder (301.13) and Bipolar Disorder Not Otherwise Specified (296.80); Other Mood Disorders including Mood Disorder Due to a General

Medical Condition (293.83) which includes the subtypes With Depressive Features, With Major Depressive-like Episode, With Manic Features and With Mixed Features),

Substance-Induced Mood Disorder (including the subtypes With Depressive Features, With Manic Features and With Mixed Features) and Mood Disorder Not Otherwise Specified (296.90).

Further, the compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as anxiety disorders including Panic Attack; Panic Disorder including Panic Disorder without Agoraphobia (300.01) and Panic Disorder with Agoraphobia (300.21); Agoraphobia; Agoraphobia Without History of Panic Disorder (300.22), Specific Phobia (300.29, formerly Simple Phobia) including the subtypes Animal Type, Natural Environment Type, Blood-Injection-Injury Type, Situational Type and Other Type), Social Phobia (Social Anxiety Disorder, 300.23), Obsessive-Compulsive Disorder (300.3), Posttraumatic Stress Disorder (309.81), Acute Stress Disorder (308.3), Generalized Anxiety Disorder (300.02), Anxiety Disorder Due to a General Medical Condition (293.84), Substance-Induced Anxiety Disorder, Separation Anxiety Disorder (309.21), Adjustment Disorders with Anxiety (309.24) and Anxiety Disorder Not Otherwise Specified (300.00).

In addition the compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as substance-related disorders including Substance Use Disorders such as Substance Dependence, Substance Craving and Substance Abuse; Substance-Induced Disorders such as Substance Intoxication, Substance

Withdrawal, Substance-Induced Delirium, Substance-Induced Persisting Dementia,

Substance-Induced Persisting Amnestic Disorder, Substance-Induced Psychotic Disorder, Substance-Induced Mood Disorder, Substance-Induced Anxiety Disorder, Substance- Induced Sexual Dysfunction, Substance-Induced Sleep Disorder and Hallucinogen

Persisting Perception Disorder (Flashbacks); Alcohol-Related Disorders such as Alcohol Dependence (303.90), Alcohol Abuse (305.00), Alcohol Intoxication (303.00), Alcohol Withdrawal (291.81), Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol-Induced Persisting Amnestic Disorder, Alcohol-Induced Psychotic Disorder, Alcohol-Induced Mood Disorder, Alcohol-Induced Anxiety Disorder, Alcohol-Induced Sexual Dysfunction, Alcohol-Induced Sleep Disorder and Alcohol-Related Disorder Not Otherwise Specified (291.9); Amphetamine (or

Amphetamine-Like)-Related Disorders such as Amphetamine Dependence (304.40), Amphetamine Abuse (305.70), Amphetamine Intoxication (292.89), Amphetamine

Withdrawal (292.0), Amphetamine Intoxication Delirium, Amphetamine Induced Psychotic Disorder, Amphetamine-Induced Mood Disorder, Amphetamine-Induced Anxiety Disorder, Amphetamine-Induced Sexual Dysfunction, Amphetamine-Induced Sleep Disorder and Amphetamine-Related Disorder Not Otherwise Specified (292.9); Caffeine Related

Disorders such as Caffeine Intoxication (305.90), Caffeine-Induced Anxiety Disorder, Caffeine-Induced Sleep Disorder and Caffeine-Related Disorder Not Otherwise Specified (292.9); Cannabis-Related Disorders such as Cannabis Dependence (304.30), Cannabis Abuse (305.20), Cannabis Intoxication (292.89), Cannabis Intoxication Delirium, Cannabis- Induced Psychotic Disorder, Cannabis-Induced Anxiety Disorder and Cannabis-Related Disorder Not Otherwise Specified (292.9); Cocaine-Related Disorders such as Cocaine Dependence (304.20), Cocaine Abuse (305.60), Cocaine Intoxication (292.89), Cocaine Withdrawal (292.0), Cocaine Intoxication Delirium, Cocaine-Induced Psychotic Disorder, Cocaine-Induced Mood Disorder, Cocaine-Induced Anxiety Disorder, Cocaine-Induced Sexual Dysfunction, Cocaine-Induced Sleep Disorder and Cocaine-Related Disorder Not Otherwise Specified (292.9); Hallucinogen-Related Disorders such as Hallucinogen Dependence (304.50), Hallucinogen Abuse (305.30), Hallucinogen Intoxication (292.89), Hallucinogen Persisting Perception Disorder (Flashbacks) (292.89), Hallucinogen

Intoxication Delirium, Hallucinogen-Induced Psychotic Disorder, Hallucinogen-Induced Mood Disorder, Hallucinogen-Induced Anxiety Disorder and Hallucinogen-Related Disorder Not Otherwise Specified (292.9); Inhalant-Related Disorders such as Inhalant Dependence (304.60), Inhalant Abuse (305.90), Inhalant Intoxication (292.89), Inhalant Intoxication Delirium, Inhalant-Induced Persisting Dementia, Inhalant-Induced Psychotic Disorder, Inhalant-Induced Mood Disorder, Inhalant-Induced Anxiety Disorder and

Inhalant-Related Disorder Not Otherwise Specified (292.9); Nicotine-Related Disorders such as Nicotine Dependence (305.1), Nicotine Withdrawal (292.0) and Nicotine-Related Disorder Not Otherwise Specified (292.9); Opioid-Related Disorders such as Opioid Dependence (304.00), Opioid Abuse (305.50), Opioid Intoxication (292.89), Opioid Withdrawal (292.0), Opioid Intoxication Delirium, Opioid-Induced Psychotic Disorder, Opioid-Induced Mood Disorder, Opioid-Induced Sexual Dysfunction, Opioid-Induced Sleep Disorder and Opioid-Related Disorder Not Otherwise Specified (292.9); Phencyclidine (or Phencyclidine-Like)-Related Disorders such as Phencyclidine Dependence (304.60), Phencyclidine Abuse (305.90), Phencyclidine Intoxication (292.89), Phencyclidine

Intoxication Delirium, Phencyclidine-Induced Psychotic Disorder, Phencyclidine-Induced Mood Disorder, Phencyclidine-Induced Anxiety Disorder and Phencyclidine-Related Disorder Not Otherwise Specified (292.9); Sedative-, Hypnotic-, or Anxiolytic-Related Disorders such as Sedative, Hypnotic, or Anxiolytic Dependence (304.10), Sedative,

Hypnotic, or Anxiolytic Abuse (305.40), Sedative, Hypnotic, or Anxiolytic Intoxication (292.89), Sedative, Hypnotic, or Anxiolytic Withdrawal (292.0), Sedative, Hypnotic, or Anxiolytic Intoxication Delirium, Sedative, Hypnotic, or Anxiolytic Withdrawal Delirium, Sedative-, Hypnotic-, or Anxiolytic-Persisting Dementia, Sedative-, Hypnotic-, or

Anxiolytic- Persisting Amnestic Disorder, Sedative-, Hypnotic-, or Anxiolytic-Induced

Psychotic Disorder, Sedative-, Hypnotic-, or Anxiolytic-Induced Mood Disorder, Sedative-, Hypnotic-, or Anxiolytic-Induced Anxiety Disorder Sedative-, Hypnotic-, or Anxiolytic- Induced Sexual Dysfunction, Sedative-, Hypnotic-, or Anxiolytic-Induced Sleep Disorder and Sedative-, Hypnotic-, or Anxiolytic-Related Disorder Not Otherwise Specified (292.9); Polysubstance-Related Disorder such as Polysubstance Dependence (304.80); and Other (or Unknown) Substance-Related Disorders such as Anabolic Steroids, Nitrate Inhalants and Nitrous Oxide.

In addition the compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as feeding disorders such as bulimia nervosa, binge eating, obesity, including obesity observed in Type 2 (non-insulin-dependent) diabetes patients. Further, the compounds of formula (I) or their pharmaceutically acceptable salts may be of use for the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required such as stroke, particularly ischemic or haemorrhagic and/or in blocking an emetic response i.e. nausea and vomiting.

The numbers in brackets after the listed diseases refer to the classification code in DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, published by the American Psychiatric Association. The various subtypes of the disorders mentioned herein are contemplated as part of the present invention.

The invention also provides a method for the treatment of a disease or disorder where an antagonist of a human orexin receptor is required, for example those diseases and disorders mentioned hereinabove, in a subject in need thereof, comprising administering to said subject an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof.

The invention also provides a compound of formula (I), or a pharmaceutically acceptable salt thereof, for use in the treatment or prophylaxis of a disease or disorder where an antagonist of a human orexin receptor is required, for example those diseases and disorders mentioned hereinabove.

The invention also provides the use of a compound of formula (I), or a

pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment or prophylaxis of a disease or disorder where an antagonist of a human Orexin receptor is required, for example those diseases and disorders mentioned hereinabove.

For use in therapy the compounds of the invention are usually administered as a pharmaceutical composition. The invention also provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The compounds of formula (I) or their pharmaceutically acceptable salts may be administered by any convenient method, e.g. by oral, parenteral, buccal, sublingual, nasal, rectal or transdermal administration, and the pharmaceutical compositions adapted accordingly.

The compounds of formula (I) or their pharmaceutically acceptable salts which are active when given orally can be formulated as liquids or solids, e.g. as syrups, suspensions, emulsions, tablets, capsules or lozenges.

A liquid formulation will generally consist of a suspension or solution of the active ingredient in a suitable liquid carrier(s) e.g. an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring and/or colouring agent.

A composition in the form of a tablet can be prepared using any suitable

pharmaceutical carrier(s) routinely used for preparing solid formulations, such as magnesium stearate, starch, lactose, sucrose and cellulose.

A composition in the form of a capsule can be prepared using routine encapsulation procedures, e.g. pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), e.g. aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule.

Typical parenteral compositions consist of a solution or suspension of the active ingredient in a sterile aqueous carrier or parenterally acceptable oil, e.g. polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration. Compositions for nasal administration may conveniently be formulated as aerosols, drops, gels and powders. Aerosol formulations typically comprise a solution or fine suspension of the active ingredient in a pharmaceutically acceptable aqueous or nonaqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container which can take the form of a cartridge or refill for use with an atomising device. Alternatively the sealed container may be a disposable dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve. Where the dosage form comprises an aerosol dispenser, it will contain a propellant which can be a compressed gas e.g. air, or an organic propellant such as a fluorochlorohydrocarbon or hydrofluorocarbon. Aerosol dosage forms can also take the form of pump-atomisers.

Compositions suitable for buccal or sublingual administration include tablets, lozenges and pastilles where the active ingredient is formulated with a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.

Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base such as cocoa butter.

Compositions suitable for transdermal administration include ointments, gels and patches.

In one embodiment the composition is in unit dose form such as a tablet, capsule or ampoule.

The composition may contain from 0.1 % to 100% by weight, for example from 10 to 60% by weight, of the active material, depending on the method of administration. The composition may contain from 0% to 99% by weight, for example 40% to 90% by weight, of the carrier, depending on the method of administration. The composition may contain from 0.05mg to lOOOmg, for example from l.Omg to 500mg, of the active material, depending on the method of administration. The composition may contain from 50 mg to 1000 mg, for example from lOOmg to 400mg of the carrier, depending on the method of administration. The dose of the compound used in the treatment of the aforementioned disorders will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and other similar factors. However, as a general guide suitable unit doses may be 0.05 to 1000 mg, more suitably 1.0 to 500mg, and such unit doses may be administered more than once a day, for example two or three a day. Such therapy may extend for a number of weeks or months.

Orexin-A (Sakurai, T. et al (1998) Cell, 92 pp 573-585) can be employed in screening procedures for compounds which inhibit the ligand's activation of the orexin-1 or orexin-2 receptors.

In general, such screening procedures involve providing appropriate cells which express the orexin-1 or orexin-2 receptor on their surface. Such cells include cells from mammals, yeast, Drosophila or E. coli. In particular, a polynucleotide encoding the orexin- 1 or orexin-2 receptor is used to transfect cells to express the receptor. The expressed receptor is then contacted with a test compound and an orexin-1 or orexin-2 receptor ligand, as appropriate, to observe inhibition of a functional response. One such screening procedure involves the use of melanophores which are transfected to express the orexin-1 or orexin-2 receptor, as described in WO 92/01810. Another screening procedure involves introducing RNA encoding the orexin-1 or orexin-2 receptor into Xenopus oocytes to transiently express the receptor. The receptor oocytes are then contacted with a receptor ligand and a test compound, followed by detection of inhibition of a signal in the case of screening for compounds which are thought to inhibit activation of the receptor by the ligand.

Another method involves screening for compounds which inhibit activation of the receptor by determining inhibition of binding of a labelled orexin-1 or orexin-2 receptor ligand to cells which have the orexin-1 or orexin-2 receptor (as appropriate) on their surface. This method involves transfecting a eukaryotic cell with DNA encoding the orexin-1 or orexin-2 receptor such that the cell expresses the receptor on its surface and contacting the cell or cell membrane preparation with a compound in the presence of a labelled form of an orexin-1 or orexin-2 receptor ligand. The ligand may contain a radioactive label. The amount of labelled ligand bound to the receptors is measured, e.g. by measuring

radioactivity.

Yet another screening technique involves the use of FLIPR equipment for high throughput screening of test compounds that inhibit mobilisation of intracellular calcium ions, or other ions, by affecting the interaction of an orexin-1 or orexin-2 receptor ligand with the orexin-1 or orexin-2 receptor as appropriate.

Throughout the specification and claims which follow, unless the context requires otherwise, the word 'comprise', and variations such as 'comprises' and 'comprising' will be understood to imply the inclusion of a stated integer or step or group of integers but not to the exclusion of any other integer or step or group of integers or steps.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

The following Examples illustrate the preparation of certain compounds of formula (I) or salts thereof. The Descriptions 1 to 26 illustrate the preparation of intermediates used to make compounds of formula (I) or salts thereof.

In the procedures that follow, after each starting material, reference to a description is typically provided. This is provided merely for assistance to the skilled chemist. The starting material may not necessarily have been prepared from the Description referred to.

The yields were calculated assuming that products were 100 % pure if not stated otherwise.

The stereochemistry of the compounds of the Descriptions and Examples have been assigned on the assumption that the absolute configuration is maintained from the

Description in which the chiral intermediate 1,1-dimethylethyl (25',55)-2-formyl-5-methyl- 1-piperidinecarboxylate D3 is synthesized.

Compounds are named using ACD/Name PRO 6.02 chemical naming software (Advanced Chemistry Development Inc., Toronto, Ontario, M5H2L3, Canada).

Proton Magnetic Resonance (NMR) spectra were recorded either on Varian instruments at 400, 500 or 600 MHz, or on a Bruker instrument at 400 MHz. Chemical shifts are reported in ppm (δ) using the residual solvent line as internal standard. Splitting patterns are designed as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad. The NMR spectra were recorded at a temperature ranging from 25 to 90 0 C. When more than one conformer was detected the chemical shifts for the most abundant one is usually reported.

Unless otherwise specified, HPLC analyses indicated by HPLC (walk-up): rt (retention time) = x min, were performed on a Agilent 1100 series instrument using a Luna 3u C 18(2) IOOA column (50 x 2.0 mm, 3 μm particle size) [Mobile phase and Gradient: 100% (water + 0.05% TFA) to 95% (acetonitrile + 0.05% TFA) in 8 min. Column T = 40 0 C. Flow rate = 1 mL/min. UV detection wavelength = 220 nm]. Other HPLC analyses, indicated by HPLC (walk-up, 3 min method), were performed using an Agilent Zorbax SB- Cl 8 column (50 x 3.0 mm, 1.8 μm particle size) [Mobile phase and Gradient: 100% (water + 0.05% TFA) to 95% (acetonitrile + 0.05% TFA) in 2.5 min, hold 0.5 min. Column T = 60 0 C. Flow rate = 1.5 mL/min. UV detection wavelength = 220 nm].

In the analytical characterization of the described compounds "MS" refers to Mass

Spectra taken by Direct infusion Mass or to Mass Spectra associated with peaks taken by UPLC/MS or HPLC/MS analysis, where the Mass Spectrometer used is as mentioned below.

Direct infusion Mass spectra (MS) were run on a Agilent MSD 1100 Mass

Spectrometer, operating in ES (+) and ES (-) ionization mode [ES (+): Mass range: 100- 1000 amu. Infusion solvent: water + 0.1% HCO 2 H / CH 3 CN 50/50. ES (-): Mass range: 100-1000 amu. Infusion solvent: water + 0.05% NH 4 OH / CH 3 CN 50/50]

MS and UV spectra associated with the peaks were taken on an Agilent LC/MSD 1100 Mass Spectrometer coupled with HPLC instrument Agilent 1100 Series, operating in positive or negative electrospray ionization mode and in both acidic and basic gradient conditions [Acidic gradient LC/MS - ES (+ or -): analyses performed on a Supelcosil ABZ + Plus column (33 x 4.6 mm, 3 μm). Mobile phase: A - water + 0.1% HCO 2 H / B - CH 3 CN. Gradient (standard method): t=0 min 0% (B), from 0% (B) to 95% (B) in 5 min lasting for

1.5 min, from 95% (B) to 0%(B) in 0.1 min, stop time 8.5 min. Column T = room temperature. Flow rate = 1 mL/min. Gradient (fast method): t=0 min 0% (B), from 0% (B) to 95% (B) in 3 min lasting for 1 min, from 95% (B) to 0% (B) in 0.1 min, stop time 4.5 min. Column T = room temperature. Flow rate = 2 mL/min.

Basic gradient LC/MS - ES (+ or -): analyses performed on a XTerra MS Cl 8 column (30 x

4.6 mm, 2.5 μm). Mobile phase: A - 5 mM aq. NH 4 HCO 3 + ammonia (pH 10) / B - CH 3 CN. Gradient: t = 0 min 0% (B), from 0% (B) to 50% (B) in 0.4 min, from 50% (B) to 95% (B) in 3.6 min lasting for 1 min, from 95% (B) to 0% (B) in 0.1 min, stop time 5.8 min. column temperature = room temperature. Flow rate = 1.5 mL/min].

Mass range ES (+ or -): 100-1000 amu. UV detection range: 220-350 nm. The usage of this methodology is indicated by "LC-MS" in the analytic characterization of the described compounds.

Total ion current (TIC) and DAD UV chromatographic traces together with MS and UV spectra associated with the peaks were taken on a UPLC/MS Acquity™ system equipped with 2996 PDA detector and coupled to a Waters Micromass ZQ™ mass spectrometer operating in positive or negative electrospray ionisation mode [LC/MS - ES (+ or -): analyses performed using an AcquityTM UPLC BEH C18 column (50 x 21 mm, 1.7 μm particle size), column temperature 40 0 C]. Mobile phase: A- water + 0.1% HCOOH / B - CH 3 CN + 0.075% HCOOH, Flow rate: 1.0 niL/min, Gradient: t=0 min 3% B, t=0.05 min 6% B, t= 0.57 min 70% B, t=1.4 min 99% B, t=1.45 min 3% B)]. The usage of this methodology is indicated by "UPLC" in the analytic characterization of the described compounds.

[LC/MS - ES (+ or -): analyses performed using an Acquity™ UPLC BEH Cl 8 column (50 x 2.1 mm, 1.7 μm particle size) column temperature 40 0 C. Mobile phase: A - water + 0.1% HCO 2 H / B - CH 3 CN + 0.06% or 0.1% HCO 2 H. Gradient: t = 0 min 3% B, t =1.5 min 100% B, t = 1.9 min 100% B, t = 2 min 3% B stop time 2 min. Column T = 40 0 C. Flow rate = 1.0 niL/min. Mass range: ES (+): 100-1000 amu or ES(+): 50-800 amu. ES (-): 100- 800 amu. UV detection range: 210-350 nm. The usage of this methodology is indicated by "UPLC (Acid IPQC)" in the analytic characterization of the described compounds.

[LC/MS - ES (+ or -): analyses performed using an Acquity™ UPLC BEH Cl 8 column (50 x 2.1 mm, 1.7 μm particle size) column temperature 40 0 C. Mobile phase: A - water + 0.1% HCO 2 H / B - CH 3 CN + 0.06% or 0.1% HCO 2 H. Gradient: t = 0 min 3% B, t = 0.05 min 6% B, t = 0.57 min 70% B, t = 1.06 min 99% B lasting for 0.389 min, t = 1.45 min 3% B, stop time 1.5 min. Column T = 40 0 C. Flow rate = 1.0 niL/min. Mass range: ES (+): 100-1000 amu or ES(+): 50-800 amu, ES (-): 100-800 amu. UV detection range: 210-350 nm. The usage of this methodology is indicated by "UPLC (Acid QC POS 50-800 or GEN QC or FINAL QC)" in the analytic characterization of the described compounds.

[LC/MS - ES (+ or -): analyses performed using an Acquity™ UPLC BEH Cl 8 column (50 x 2.1 mm, 1.7 μm particle size) column temperature 40 0 C. Mobile phase: A - water + 0.1% HCO 2 H / B - CH 3 CN + 0.06% or 0.1% HCO 2 H. Gradient: t = 0 min 3% B, t = 1.06 min 99% B, t = 1.45 min 99% B, t = 1.46 min 3% B, stop time 1.5 min. Column T = 40 0 C. Flow rate = 1.0 niL/min. Mass range: ES (+): 100-1000 amu. ES (-): 100-800 amu. UV detection range: 210-350 nm. The usage of this methodology is indicated by "UPLC (Acid GEN QC SS)" in the analytic characterization of the described compounds.

Total ion current (TIC) and DAD UV chromatographic traces together with MS and UV spectra associated with the peaks were taken on a UPLC/MS Acquity™ system equipped with PDA detector and coupled to a Waters SQD mass spectrometer operating in positive and negative alternate electrospray ionisation mode [LC/MS - ES (+ or -): analyses performed using an Acquity™ UPLC BEH C 18 column (50 x 2.1 mm, 1.7 μm particle size) column temperature 40 0 C. Mobile phase: A - 10 mM aqueous solution OfNH 4 HCO 3 (adjusted to pH 10 with ammonia) / B - CH 3 CN. Gradient: t = 0 min 3% B, t = 1.06 min 99% B lasting for 0.39 min, t = 1.46 min 3% B, stop time 1.5 min. Column T = 40 0 C. Flow rate = 1.0 niL/min. Mass range: ES (+): 100-1000 amu or ES (+): 50-800 amu. ES (-): 100- 1000 amu. UV detection range: 220-350 nm. The usage of this methodology is indicated by "UPLC (Basic GEN QC or QC POS 50-800)" in the analytic characterization of the described compounds. Unless otherwise specified, Preparative LC-MS purifications were run on a MDAP (Mass Detector Auto Purification) Waters instrument (MDAP FractionLynx). [LC/MS - ES (+): analyses performed using a Gemini C18 AXIA column (50 x 21 mm, 5 μm particle size). Mobile phase: A - NH 4 HCO 3 sol. 10 mM, pH 10; B - CH 3 CN. Flow rate: 17 mL/min. The gradient will be specified each time].

Preparative LC-MS purifications were also run on a MDAP (Mass Detector Auto Purification) Waters instrument. The usage of this methodology is indicated by "Fraction Lynx" in the analytic characterization of the described compounds.

For reactions involving microwave irradiation, a Personal Chemistry EmrysTM Optimizer was used.

In a number of preparations, purification was performed using Biotage manual flash chromatography (Flash+), Biotage automatic flash chromatography (Horizon, SPl and SP4), Companion CombiFlash (ISCO) automatic flash chromatography, Flash Master Personal or Vac Master systems.

Flash chromatography was carried out on silica gel 230-400 mesh (supplied by

Merck AG Darmstadt, Germany), Varian Mega Be-Si pre-packed cartridges, pre-packed Biotage silica cartridges (e.g. Biotage SNAP cartridge), KP-NH prepacked flash cartridges or ISCO RediSep Silica cartridges.

SPE-SCX cartridges are ion exchange solid phase extraction columns supplied by Varian. The eluent used with SPE-SCX cartridges is DCM and MeOH or only MeOH followed by 2 N ammonia solution in MeOH. The collected fractions are those eluted with the ammonia solution in MeOH.

SPE-Si cartridges are silica solid phase extraction columns supplied by Varian.

The following table lists the used abbreviations:

AcCl Acetyl chloride

ACN Acetonitrile

AcOH Acetic acid

arm Atmosphere

bs broad signal

Boc t-Butoxycarbonyl

BnNH 2 Benzylamine

n-BuLi n-Butyl Lithium

5-BuLi 5-Butyl Lithium

CV Column volume

Cy Cyclohexanes

DCE 1 ,2-Dichloroethane

DCM Dichloromethane

DIPEA Λ/,Λ/-diisopropyl-Λ/-ethylamine

DMF Λ/,Λ/-Dimethylformamide

DMSO Dimethylsulfoxide

Et 2 O Diethylether

EtOAc Ethylacetate eq. equivalent

MeOH Methanol

OAc Acetoxy

TBTU 0-(benzotriazol- 1 -yϊ)-N,N,N W-tetramethyluronium

tetrafluoroborate

TEA Triethylamine

TFA Trifluoroacetic acid

THF Tetrahydrofuran

TMEDA ΛWΛ^ΛT-Tetramethylethylendiamine

DESCRIPTIONS

Description 1: (2S)-hydroxy(phenyl)ethanoic acid - (3S)-3-methylpiperidine (1:1) (Dl)

In a 10 L reactor, under nitrogen atmosphere, a solution of racemic 3-methylpiperidine (270 g, 2.72 mol) and (S)-(+)-mandelic acid (394 g, 2.59 mol) in MeOH (1 L) was cooled to 0 0 C. Without stirring, Et 2 O (6.21 L) was added in several portions: (10 x 540 ml) every 20 minutes and 810 ml after 30 minutes from the last addition. After each addition OfEt 2 O, a short and slow stirring was applied in order to obtain a homogeneous phase. The final slurry was left standing overnight at 0 0 C. The precipitated solid was recovered by filtration, washed with cold Et 2 O (2 x 540 ml) and dried under vacuum to afford the title compound Dl (150 g, 0.60 mol, 23 % yield) [optical purity (94 %) was determined by preparation of the Mosher amide derivative. The diastereomeric excess of the Mosher amide, determined via NMR spectroscopy, is representative of the enantiomeric excess of the precursor]. 1 H-NMR (400 MHz, CDCl 3 ) δ (ppm): 7.43 - 7.50 (m, 2 H), 7.20 - 7.34 (m, 3 H), 4.89 (s, 1 H), 2.89 - 3.05 (m, 2H), 2.17 (dt, 1 H), 2.06 (t, 1 H), 1.39 - 1.73 (m, 4 H), 0.83 - 0.98 (m, IH), 0.80 (d, 3 H).

Description 2: 1,1-dimethylethyl (3S)-3-methyl-l-piperidinecarboxylate (D2)

To a mixture of (25)-hydroxy(phenyl)ethanoic acid - (35)-3-methylpiperidine (1:1) Dl (150 g, 0.60 mol) in a 2.5 M NaOH aqueous solution (600 ml, 1.50 mol) cooled at 0 0 C, a solution ofBoc 2 O (130 g, 0.60 mol) in THF (1.2 L) was added dropwise over 1 hour (internal temperature kept below 9 0 C) under vigorous stirring. Once the addition was completed, the mixture was allowed to reach room temperature and left under stirring overnight. Volatiles were evaporated and the aqueous phase extracted with Et 2 O (3 x 500 ml). The collected organic phases were dried (Na 2 SO 4 ), filtered and concentrated to dryness. The resulting crude material was eluted (Cy/EtOAc 90/10) through a silica gel pad to give the title compound D2 (103 g, 0.52 mol, 87% yield). MS: (ES/+) m/z: 200 (M+l).

C 11 H 21 NO 2 requires 199.

1 H NMR (400 MHz, CDCl 3 ) δ (ppm): 3.95 (bd, 2H), 2.70 (dt, 1 H), 2.21 - 2.55 (m, 1 H), 1.73 - 1.86 (m, 1 H), 1.51 - 1.68 (m, 3 H), 1.47 (s, 9 H), 0.96 - 1.12 (m, 1 H), 0.88 (d, 3 H).

Description 3: 1,1-dimethylethyl (2S,5S)-2-formyl-5-methyl-l-piperidinecarboxylate (D3):

To a solution of 1,1-dimethylethyl (35)-3 -methyl- 1-piperidinecarboxylate (D2) (25 g, 0.13 mol) in anhydrous Et 2 O (250 ml) cooled at -78 0 C under nitrogen atmosphere, TMEDA (22.6 ml, 0.15 mol) was added followed by dropwise addition of 5-BuLi (108 ml of a 1.4 M solution in Cy, 0.15 mol) over 40 min (exothermic addition: internal temperature kept below -70 0 C). The pale yellow reaction mixture was left under stirring at -78 0 C for 30 min then it was gradually warmed to -50 0 C and stirred at this temperature for 30 min. The reaction was cooled again to -78 0 C, then TMEDA (further 0.3 eq) was added followed by dropwise addition of of 5-BuLi (further 0.3 eq.). The mixture was stirred for 30 min at -78 0 C, gradually warmed up to -50 0 C, stirred at this temperature for 30 min, then cooled to -78 0 C. Dry DMF (29.1 ml, 0.38 mol) was added dropwise (internal temperature kept below -70 0 C). The resulting mixture was stirred for 30 minutes at -78 0 C and then allowed to warm up to 0 0 C. The reaction mixture was quenched with a saturated NH 4 Cl aqueous solution (200 ml) and water (100 ml). The layers were separated and the aqueous one back extracted with Et 2 O (3 x 200 ml). The organic phases were collected, dried (Na 2 SO 4 ), filtered and concentrated under vacuum to give a crude yellow oil. The material was purified by flash chromatography on silica gel (Biotage 75 L column, Cy/EtOAc 90/10). Collected fractions gave the title compound D3 (15 g, 0.066 mol, 53% yield).

1H NMR [the relative stereochemistry of the compound was measured via NMR

spectroscopy. The IH spectrum shows that the compound gives rise to a mixture of two slowly exchanging conformers due to hindered rotation of the C=O group. 1H,1H scalar couplings [ 3 J(H3,H2)~5Hz and 3 J(H6ax,H5ax)~12Hz] and 1H,1H dipole dipole correlation between H7 and H4ax determine that the six member ring bears a chair conformation with H2 in equatorial position and H5 in axial position. The relative stereochemistry is therefore SYN. The ANTI stereoisomer is present at ca. 25%. The ratio between the two

diastereoisomers was determined on the ratio between integrals of proton signals H7 of each diastereoisomer. The absolute configuration is 2S, 5 S on the assumption that the absolute configuration of D2 is retained. The assignment refers to the SYN isomer] (400 MHz,

DMSO-J 6 ) δ (ppm): 9.53 (d, 1 H), 4.53 - 4.72 (m, 1 H), 3.73 - 3.91 (m, 1 H), 2.39 (t, 1 H), 2.16 - 2.27 (m, 1 H), 1.52 - 1.72 (m, 3 H), 1.40 (s, 9 H), 0.80 (d, 3 H), 0.68 - 0.77 (m, 1 H).

Description 4: 1,1-dimethylethyl (2S,5S)-5-methyl-2-{[(phenylmethyl)amino]methyl}- 1-piperidinecarboxylate (D4)

A solution of 1,1-dimethylethyl (2S,5S)-2-formyl-5-methyl- 1-piperidinecarboxylate D3 (0.45 g, 1.98 mmol) and benzylamine (0.24 ml, 2.18 mmol) in DCM (5 ml) was left under stirring at room temperature under nitrogen for 2 hours. Sodium triacetoxyborohydride (0.84 g, 3.96 mmol) was added and the resulting solution left under stirring at room temperature overnight. The mixture was diluted with water and DCM. The two layers were separated and the aqueous one extracted several times with DCM. The combined organic layers were filtered through a phase separator tube and the solvent removed under vacuum. The crude was purified by flash chromatography on silica gel (Biotage SP4 4OM, from Cy/EtOAc from 80/20 to 20/80) to give the title compound D4 (0.37 g, 1.16 mmol, 59% yield). HPLC (walk-up): rt = 3.86 min.

1 H NMR [the SYN relative stereochemistry is derived from IH, IH scalar coupling network. A mixture of conformers due to hindered rotation of the C=O group slowly exchange in solution] (400 MHz, CDCl 3 ) δ (ppm): 7.31 - 7.36 (m, 4 H), 7.23 - 7.27 (m, 1 H), 4.23 - 4.49 (m, 1 H), 3.70 - 4.09 (m, 1 H), 3.87 (d, 1 H), 3.79 (d, 1 H), 2.89 (dd, 1 H), 2.62 (dd, 1 H), 2.21 - 2.39 (m, 1 H), 1.53 - 1.75 (m, 4 H), 1.47 (s, 9 H), 1.06 - 1.18 (m, 1 H), 0.87 (d, 3 H).

Description 5: 1,1-dimethylethyl (2S,5S)-2-(aminomethyl)-5-methyl-l- piperidinecarboxylate (D5):

A mixture of 1,1-dimethylethyl (2S,5S)-5-methyl-2-{[(phenylmethyl)amino]methyl}-l- piperidinecarboxylate D4 (0.37 g, 1.16 mmol) and Pd(OH) 2 on carbon (0.011 g) in MeOH (5 ml) was stirred under hydrogen atmosphere (1 atm) for 27 hours. Further Pd(OH) 2 on carbon (0.011 g) was added and the resulting mixture left under stirring under hydrogen atmosphere (1 atm) for 7 hours. The mixture was filtered through a celite pad and the solvent evaporated under vacuum to afford the title compound D5 (0.24 g, 1.05 mmol, 91% yield) as a yellow oil. MS: (ES/+) m/z: 229 (M+l). C 12 H 24 N 2 O 2 requires 228. 1 H NMR [the SYN relative stereochemistry is derived from IH, IH scalar coupling network. A mixture of conformers due to hindered rotation of the C=O group slowly exchange in solution] (400 MHz, CDCl 3 ) δ (ppm): 3.75-4.31 (m, 2 H), 2.84 - 2.99 (m, 1 H), 2.61 - 2.71 (m, 1 H), 2.24 - 2.42 (m, 1 H), 1.50 - 1.72 (m, 4 H), 1.48 (s, 9 H), 1.07 - 1.22 (m, 1 H), 0.89 (d, 3 H).

Description 6: 2,2,2-trifluoro-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}ac etamide (D6)

To a stirring solution of 1,1-dimethylethyl (2S, 5 S)-2-(aminomethyl)-5 -methyl- 1- piperidinecarboxylate D5 (1 g, 4.38 mmol) and TEA (1.526 ml, 10.95 mmol) in dry DCM (15 ml) at 0 0 C, a solution of trifluoroacetic anhydride (0.619 ml, 4.38 mmol) in DCM (5 ml) was added dropwise, then mixture was stirred at room temperature for 3 hours. The mixture was cooled to 0 0 C and TFA (3 ml, 38.9 mmol) was added dropwise, then the mixture was left stirring for 1.5 hours. 3 ml of TFA were added and stirring was continued for 2 hours. The mixture was concentrated under reduced pressure and the crude passed through an SCX cartridge (25 g) affording the title compound D6 (750 mg, 3.34 mmol, 76 % yield) N12015-11-2 as yellow oil. UPLC (Acid GEN_QC_SS): rt = 0.33 min, peak observed: 225 (M+l). C 9 H 15 F 3 N 2 O requires 224.

Description 7: 2,2,2-trifluoro-N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrim idinyl)-2- pyridinyl] carbonyl}-2-piperidinyl)methyl] acetamide (D7)

To a suspension of 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarboxylic acid Dl 1 (1.96 g, 2.73 mmol) in dry DMF (10 ml) DIPEA (0.716 ml, 4.10 mmol) and TBTU (1.053 g, 3.28 mmol) were added and the mixture was stirred at room temperature for 20 min. A solution of 2,2,2- trifluoro-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}acetamid e D 6 (0.613 g, 2.73 mmol) Nl 2015-11-2 in DMF (4 ml) was then added and the black mixture was stirred at room temperature overnight. The mixture was diluted with AcOEt and washed with water; the organic phase was dried and evaporated, and the crude was purified by flash

chromatography (KP-SiI SNAP 50 g column, eluting with DCM/MeOH 95:5) affording the title compound D 7 (356 mg, 0.845 mmol, 30.9 % yield) N12015-16-1 as purple oil. UPLC (Acid GEN_QC_SS): rt = 0.76 min, peak observed: 422 (M+l). C 20 H 22 F 3 N 5 O 2 requires 421.

Description 8: [((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2- pyridinyl] carbonyl}-2-piperidinyl)methyl] amine (D8)

To a solution of 2,2,2-trifluoro-N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrim idinyl)-2- pyridinyl]carbonyl}-2-piperidinyl)methyl]acetamide D7 (350 mg, 0.831 mmol) in a mixture of MeOH (12 ml) and water (2.400 ml), potassium carbonate (230 mg, 1.661 mmol) was added and the yellow solution was stirred at 60 0 C for 1.5 hours. MeOH was evaporated under reduced pressure, and the aqueous residue was acidified till pH~5 and charged on an inverse phase cartridge (C 18 50 g column, washing with H 2 O and eluting with MeOH) affording the title compound D8 (260 mg, 0.799 mmol, 96 % yield) N12015-18-1 as yellow oil which was used for next step without further purification. UPLC (Acid GEN QC SS): rtl = 0.42 minutes and rt2 = 0.49 minutes (rotamers present), peak observed 326 (M+l). C 18 H 23 N 5 O requires 325. 1 H NMR (400 MHz, DMSO-d6) δ ppm 0.95 (d, 3 H) 1.17 - 2.07 (m, 5 H) 2.46 - 2.63 (m, 1 H) 2.57 (s, 3 H) 2.90 - 3.53 (m, 3 H) 3.90 - 4.04 (m, 1 H) 4.27 - 4.38 (m, 1 H) 7.44 - 7.58 (m, 2 H) 7.77 - 8.34 (m, 2 H) 8.90 (d, 2 H).

Description 9: 3-(5,5-dimethyl-l,3,2-dioxaborinan-2-yl)-6-methyl-2- pyridinecarbonitrile (D9)

2,2,6,6-tetramethylpiperidine (3.49 ml, 20.52 mmol) was dissolved in dry THF (25ml) under argon and stirred at -30 0 C; BuLi (13.33 ml, 21.33 mmol) 1.6 M in hexane was added over 5 min (the temperature never exceeded -25 0 C). The yellow solution was stirred at -30 0 C for 20 min, then chilled at -78 0 C and tris(l-methylethyl) borate (4.38 ml, 18.96 mmol) was added over 5 min (the temperature never exceeded -73 0 C).

After 10 min at -78 0 C, 6-methyl-2 -pyridinecarbonitrile (2.0 g, 16.93 mmol) dissolved in dry THF (14 ml) was added dropwise (over 20 min) maintaining internal temperature below -73 0 C and the mixture became dark-brown. The mixture was stirred at -73 0 C for 2 hours. The mixture was quenched with AcOH (2.374 ml, 41.5 mmol) dropwise at -73 0 C (the temperature never exceeded -60 0 C and the mixture became brilliant orange). The cooling bath was removed and the mixture left to reach the room temperature: during this period the mixture became thick and new THF (8 ml) had to be added in order to have a better stirring. The mixture was stirred 10 min at room temperature then 2,2-dimethyl-l,3-propanediol

(2.409 g, 23.13 mmol) was added in one portion and the mixture stirred at room temperature overnight.

The solvent was evaporated and the orange residue taken-up with DCM (100 ml) and 10 % water solution OfKH 2 PO 4 (100 ml). The phases were separated and the water phase was back-extracted with DCM (50 ml). The combined organic phases were washed with 10 % water solution OfKH 2 PO 4 (50 ml). The DCM was evaporated. The residue was dissolved in Et 2 O (100 ml) and extracted with NaOH 0.05 M (5 x 50ml, boronic ester in water phase). The aqueous phases were joined together and the pH was adjusted between pH = 4 and pH = 5 with 10 % water solution OfKH 2 PO 4 (50 ml). The so obtained yellow solution was extracted with AcOEt. All the organics joined together were dried (Na 2 SO 4 ) and evaporated the title compound D9 2.29 g of Nl 1741-1-1 as yellow oil, that solidified on standing. C 12 H 15 BN 2 O 2 requires 230. 1 H NMR (400 MHz, CDCl 3 ) δ ppm 7.97 - 8.15 (m, 1 H), 7.31 - 7.36 (m, 1 H), 3.85 (m, 4 H), 2.52 - 2.73 (s, 3 H), 0.97 - 1.10 (m, 6 H). Description 10: 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarbonitrile (DlO)

A) Isopropylmagnesium chloride-LiCl (37.9 ml, 36.5 mmol) was added portion wise (in overall 10 min) to a solution of 3-bromo-6-methyl-2-pyridinecarbonitrile (4 g, 20.30 mmol) in THF (150 ml) cooled to -70 0 C (internal temperature). The reaction was kept to that temperature for 15 min. Then it was allowed to gently warm up to -40 0 C in overall 1 hour. Then, it was cooled to -78 0 C and zinc chloride (3.32 g, 24.36 mmol) was added. The resulting mixture was allowed to warm up to room temperature in 1 hour. Pd(Ph 3 P) 4 (2.346 g, 2.030 mmol), 2-chloropyrimidine (3 g, 26.2 mmol) were added and the mixture was refluxed (external temperature 100 0 C) until complete consumption of starting

chloropyrimidine (3 hours). The reaction mixture was cooled to room temperature and poured into water (200 ml) cooled to 10 0 C. It was then extracted with EtOAc. The collected organic phases, containing large amount of colloid material and water, were washed with brine (200 ml). The water phase was filtered over a gouch, and the solid material was washed with further EtOAc. The collected organic phases were dried overnight over Na 2 SO 4 , filtered and concentrated to give (7 g) the crude material which was purified (Biotage SpI over a 240 g Silica Anolgix column, with a 25 g pre-column) to give the title compound DlO Nl 1358-28-1 as yellow solid (1.8 g). UPLC (Acid GEN_QC_SS): rt = 0.58 minutes, peak observed: 197 (M+l). C 11 HsN 4 requires 196. B) 3-(5,5-dimethyl-l,3,2-dioxaborinan-2-yl)-6-methyl-2-pyridine carbonitrile D9 (50.6 mg, 0.220 mmol) was dissolved 1,4-Dioxane (1 ml) under nitrogen in a vial, then 2- bromopyrimidine (42.0 mg, 0.264 mmol), CsF (67 mg, 0.441 mmol), Pd(Ph 3 P) 4 (12 mg, 10.38 μmol) and CuI (7 mg, 0.037 mmol) were added in sequence. The vial was then capped and stirred at 65 0 C, after 1 hour the solvent was removed at reduced pressure and the residue partitioned between AcOEt and NaHCO 3 (saturated solution, 10 ml). The phases were separated and the water was extracted with AcOEt. The organic fraction were joined together, dried over Na 2 SO 4 and evaporated at reduced pressure, obtaining an orange oily residue which was purified (Biotage, Snap 25 g silica gel column, from Cy to AcOEt/Cy 50:50) to obtain the title compound DlO Nl 1462-16-1 as pail yellow solid (27.6 mg).

Description 11: 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarboxylic acid (DIl)

A) 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarbonitrile DlO (0.8 g, 4.08 mmol) was reacted in 6 M aqueous HCl (40 ml, 240 mmol) at 80 0 C for 3 hours, then solvent was removed under vacuum, and the resulting crude was purified (70 g Varian C18 column conditioning with MeOH, then water, loading in water, washing with water, product eluted with 100 % MeOH) to give the title compound DIl (0.6 g) Nl 1358-34-1 as yellow solid. UPLC (Acid GEN_QC_SS): rt = 0.30 minutes, peak observed: 216 (M+l). C 11 H 9 N 3 O 2 requires 217. 1 H NMR (400 MHz, DMSO-d 6 ) δ ppm 13.07 (bs, 1 H), 8.78 - 9.01 (m, 2 H), 8.39 (m, 1 H), 7.39 - 7.67 (m, 2 H), 2.56 - 2.67 (s, 3 H).

B) 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarbonitrile DlO (0.481 g, 2.451 mmol) was suspended in EtOH (5 ml) and a solution of NaOH (0.490 g, 12.26 mmol) in water (5 ml) was added. The yellow mixture was stirred at 100 0 C overnight. The yellow solution was cooled to 25 0 C and HCl 6 M (1.0 ml) was added dropwise till pH = 4.5. The solvent was removed to give the title compound DIl a yellow powder that was dried at 50 °C/vacuum for 1.5 hours to give 1.242 g of Nl 1741-4-1.

Description 12: 1,1-dimethylethyl (2S,55)-5-methyl-2-({[5-(trifluoromethyl)-2- py ridinyl] amino} methyl)- 1 -piperidinecarboxylate (D 12) :

A mixture of 1,1-dimethylethyl (25',55)-2-(aminomethyl)-5-methyl-l-piperidinecarboxylate D5 (0.13 g, 0.57 mmol), 2-chloro-5-(trifluoromethyl)pyridine (0.10 g, 0.57 mmol) and potassium carbonate (0.16 g, 1.14 mmol) in DMF (2 ml) was stirred at 80 0 C for 5 hours. DMF was removed under reduced pressure.The residue was taken-up in DCM and washed with H 2 O. The organic phase was dried (Na 2 SO 4 ), filtered and concentrated. The crude material was purified by flash chromatography on silica gel (Biotage SP 25M column, Cy/EtOAc from 80/20 to 60/40) to afford the title compound D12 (0.11 g, 0.29 mmol, 52% yield). UPLC: rt = 0.92 min, peak observed: 374 (M+l). C 18 H 26 F 3 N 3 O 2 requires 373. Description 13: iV-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-5-(trifluorometh yl)-2- pyridinamine (D13):

To a solution of 1,1-dimethylethyl (2S,5ιS)-5-methyl-2-({[5-(trifluoromethyl)-2- pyridinyl] amino} methyl)- 1-piperidinecarboxylate D12 (0.11 g, 0.29 mmol) in DCM (2 ml), TFA (1 ml) was added and the reaction mixture left under stirring for 2 hours at room temperature. Volatiles were removed under reduced pressure and the residue eluted through a SCX column. Collected fractions gave the title compound D13 (0.068 g, 0.25 mmol, 86 % yield). UPLC: rt = 0.52 min, peak observed: 274 (M+l). C 13 H 18 F 3 N 3 requires 273. 1 H-NMR (400 MHz, CDCl 3 ) δ(ppm): 8.33 (s, 1 H), 7.55 (dd, 1 H), 6.44 (d, 1 H), 5.35 - 5.55 (bs, 1 H), 3.24 - 3.50 (m, 2 H), 2.85 - 3.00 (m, 1 H), 2.83 (dd, 1 H), 2.65 (dd, 1 H), 1.40 - 1.78 (m, 5 H), 0.99 (d, 3 H).

Description 14: 1,1-dimethylethyl (2S,5S)-2-{[(5-fluoro-3-methyl-2- pyridinyl)amino] methyl}-5-methyl-l-piperidinecarboxylate (D14)

To a solution of 1 , 1 -dimethylethyl (2S ,5 S)-2-formyl-5 -methyl- 1 -piperidinecarboxylate D3 (975 mg, 3.65 mmol) in DCE (20 ml) were added 5-fluoro-3-methyl-2-pyridinamine (552 mg, 4.38 mmol) and AcOH (1.044 ml, 18.23 mmol). The resulting mixture was stirred for 1 hour at room temperature, then was added Sodium triacetoxyborohydride (1273 mg, 6.01 mmol) and stirred for 4 hours at room temperature. DCM and aqueous saturated NaHCO 3 were added and the resulting mixture was made basic with NaHCO 3 until pH~8. The aqueous phase was extracted with DCM. The organic layers were dried (Na 2 SO 4 ), filtered and evaporated under reduced pressure to obtain a brown oil which was purified with (biotage SP4 40 M column, Cy/EtOAc from 100/0 to 90/10) to afford the title compound D14 (950 mg, 2.82 mmol, 77 % yield), N2738-22-1. UPLC: rt = 0.80 min, peak observed: 338 (M+l). C 18 H 28 FN 3 O 2 requires 337.

Description 15: 5-fluoro-3-methyl-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl} -2- pyridinamine (D 15)

To an ice cooled solution of 1,1-dimethylethyl (2S,5S)-2-{[(5-fluoro-3-methyl-2- pyridinyl)amino]methyl}-5-methyl-l-piperidinecarboxylate D14 (950 mg, 2.82 mmol) in DCM (20 ml) was added TFA (5 ml, 64.9 mmol) and the resulting mixture was warmed to room temperature and stirred for 1 hour. The solvent was evaporated under reduced pressure. The crude was purified via SCX (20 g) to afford the title compound D15 (600 mg, 2.275 mmol, 81 % yield), N2738-23-1, used without any further purification. HPLC (walk up): rt = 3.18 min. C 13 H 20 FN 3 requires 237. 1 H NMR (400 MHz, DMSO-d 6 ) δ ppm 7.90 - 8.06 (m, 1 H), 7.30 - 7.47 (m, 1 H), 6.48 - 6.60 (m, 1 H), 5.70-5.75 (m, 1 H) 3.15 - 3.5 (m, 2 H), 2.65 - 2.80 (m, 1 H), 2.50 - 2.65 (m, 2 H), 2.07 (s, 3 H), 1.30-1.75 (m, 5 H), 0.97 (m, 3 H).

Description 16: 1,1-dimethylethyl (2S,5S)-2-{[(5-fluoro-2-pyridinyl)amino]methyl}-5- methyl- 1 -piperidinecarboxylate (D 16)

To a mixture of 1,1-dimethylethyl (2S, 5 S)-2-formyl-5 -methyl- 1 -piperidinecarboxylate D3 (122 mg, 0.537 mmol) and 5-fluoro-2-pyridinamine (72.2 mg, 0.644 mmol) in dry DCE under Nitrogen, a drop of AcOH was added and then was stirred at room temperature for 30 min. Sodium triacetoxyborohydride (228 mg, 1.073 mmol) was then added and the resulting reaction mixture was stirred for 3 hours, quenched with NaHCO 3 (saturated aqueous solution) and extracted with DCM. The organic layers were combined, dried (Na 2 SO 4 ) and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (20 g column, eluting with a gradient from DCM/MeOH 99.5:0.5 to 99:1) affording the title compound D16 (61 mg, 0.189 mmol, 35.1 % yield). UPLC (Acid FINAL QC): rt = 0.72 min, peak observed: 324 (M+l). C 17 H 26 FN 3 O 2 requires 323.

Description 17: 5-fluoro-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-2-pyridi namine (D17)

To a solution of 1,1-dimethylethyl (2S,5S)-2-{[(5-fluoro-2-pyridinyl)amino]methyl}-5- methyl-1-piperidinecarboxylate D16 (61 mg, 0.189 mmol) in DCM (2 ml), TFA (0.145 ml, 1.886 mmol) was added and the resulting mixture was stirred at room temperature. After 2 hours the volatiles were removed under vacuum and the residue was purified by SCX to give the title compound D17 (40 mg, 0.179 mmol, 95 % yield).

UPLC (Acid FINAL_QC): rt = 0.40 min, peak observed: 224 (M+l). C 12 H 18 FN 3 requires 223. 1 H NMR (400 MHz, DMSO-d 6 ) δ ppm 7.90 - 8.06 (m, 1 H), 7.30 - 7.47 (m, 1 H), 6.48 - 6.60 (m, 1 H), 3.15 - 3.26 (m, 3 H), 2.65 - 2.80 (m, 2 H), 2.55 - 2.64 (m, 1 H), 1.61 - 1.75 (m, 1 H), 1.30 - 1.59 (m, 4 H), 0.97 (m, 3 H).

Description 18: 1,1-dimethylethyl (2S,5S)-2-{[(3,5-difluoro-2-pyridinyl)amino]methyl}- 5-methyl-l-piperidinecarboxylate (D18)

To a solution of 1,1-dimethylethyl (2S,5S)-2-formyl-5-methyl-l-piperidinecarboxylate (250 mg, 1.100 mmol) and 3,5-difluoro-2-pyridinamine D3 (172 mg, 1.320 mmol) in DCM (4 ml) was added AcOH (0.315 ml, 5.50 mmol) and the resulting mixture was stirred 1 hour at room temperature. Sodium triacetoxyborohydride (466 mg, 2.200 mmol) was added portionwise and stirred overnight. DCM and Na 2 CO 3 aqueous saturated solution were added and then Na 2 CO 3 granular until pH>8. The aqueous phase was extracted with DCM and the collected organic layers were filtered through a phase separator cartridge. The crude obtained was purified (Biotage SP4, silica, column size 25+M; eluted with Cy/EtOAc from 1 :0 to 9: 1). The title compound D18 (136 mg, 0.398 mmol, 36.2 % yield), N2738-51-1, GSK2119147 A was obtained as colorless oil. HPLC (walk up): rt = 6.22 min.

C 17 H 25 F 2 N 3 O 2 requires 341. (ES/+) m/z: 342 (M+l).

Description 19: 3,5-difluoro-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-2- pyridinamine (D 19)

To a solution of 1,1-dimethylethyl (2S,5S)-2-{[(3,5-difluoro-2-pyridinyl)amino]methyl}-5- methyl-1-piperidinecarboxylate D18 (136 mg, 0.398 mmol) in DCM (4 ml) was added TFA (1 ml, 12.98 mmol) and the resulting mixture was stirred for 1 hour at room temperature. The solvent was removed under reduced pressure and the crude obtained was purified via SCX (5 g) to afford the title compound D19 (85.5 mg, 0.312 mmol, 78 % yield), N2738-54- 1 , as yellow oil and used with no further purification. HPLC (walk up): rt = 2.83 min.

C 12 H n F 2 N 3 requires 241. (ES/+) m/z: 242 (M+ 1)

Description 20: 3,5-difluoro-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-2- pyridinamine (D20)

A suspension of 1,1-dimethylethyl (2S,5S)-2-(aminomethyl)-5-methyl-l- piperidinecarboxylate D5 (150 mg, 0.657 mmol) N7751 -58-2, potassium carbonate (182 mg, 1.314 mmol) and 2-fluoro-4-(trifluoromethyl)pyridine (119 mg, 0.723 mmol) in dry DMF (3 ml) was shacken at 80 0 C overnight. After cooling mixture was diluted with Et 2 O and washed with water. Organics were dried over Na 2 SO 4 and evaporated, and the crude was purified by silica flash chromatography (KP-SiI SNAP 1O g column eluting with Cy/AcOEt from 10:0 to 1 : 1) affording 1,1-dimethylethyl (2S,5S)-5-methyl-2-({[4-

(trifluoromethyl)-2-pyridinyl] amino } methyl)- 1 -piperidinecarboxylate (Boc- intermediate) (240 mg) which was dissolved in dry DCM (4 ml) and TFA (1 ml, 12.98 mmol) was added, then mixture was stirred at room temperature for 1 hour.

Mixture was concentrated and the crude passed through a SCX cartridge (2 g) affording the title compound D20 (150 mg, 0.549 mmol, 84 % yield) N12015-12-2 as light yellow oil.

UPLC (Acid GEN_QC_SS): rt = 0.56 min, peak observed: 274 (M+l). Ci 3 Hi 8 F 3 N 3 requires 273. 1 H NMR (400 MHz, CDCl 3 ) δ ppm 1.00 (d, 3 H) 1.39 - 1.78 (m, 5 H) 2.65 (dd, 1 H) 2.83 (dd, 1 H) 2.89 - 3.00 (m, 1 H) 3.22 - 3.48 (m, 2 H) 5.27 - 5.44 (m, 1 H) 6.60 (s, 1 H) 6.72 (d, 1 H) 8.21 (d, 1 H).

Description 21: 1,1-dimethylethyl (2S,5S)-5-methyl-2-({[5-(trifluoromethyl)-2- pyrimidinyl]amino}methyl)-l-piperidinecarboxylate (D21)

A suspension of 1,1-dimethylethyl (2S,5S)-2-(aminomethyl)-5-methyl-l- piperidinecarboxylate D5 (100 mg, 0.438 mmol) N10902-100-1, potassium carbonate (121 mg, 0.876 mmol) and 2-chloro-5-(trifluoromethyl)pyrimidine (96 mg, 0.526 mmol) in dry DMF (3 ml) was shacken at 80 0 C for 1 hour. After cooling mixture was diluted with Et 2 O and washed with water. Organic phase was dried and evaporated, and the crude was purified by silica flash chromatography (SNAP 1O g column, eluting with Cy/AcOEt 7:3) affording the title compound D21 (120 mg, 0.321 mmol, 73.2 % yield) N12015-4-1. UPLC (Basic GEN_QC): rt = 1.03 min, peak observed: 375 (M+l). Ci 7 H 25 F 3 N 4 O 2 requires 374. Description 22: N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-5-(trifluoromethy l)-2- pyrimidinamine (D22)

To a stirring solution of 1,1-dimethylethyl (2S,5S)-5-methyl-2-({[5-(trifluoromethyl)-2- pyrimidinyl] amino} methyl)- 1-piperidinecarboxylate D21 (120 mg, 0.321 mmol) in dry DCM (4 ml) at 0 0 C TFA (1 ml, 12.98 mmol) was added dropwise, then the mixture was stirred at room temperature for 1 hour. Volatiles were evaporated under reduced pressure and the crude was passed through a SCX cartridge (5 g) affording the title compound D22 (80 mg, 0.292 mmol, 91 % yield) N12015-6-1 as white solid.

1H NMR (400 MHz, CDCl 3 ) δ ppm 1.00 (d, 3 H) 1.39 - 1.83 (m, 5 H) 2.59 - 2.70 (m, 1 H) 2.82 (dd, 1 H) 2.89 - 3.00 (m, 1 H) 3.35 - 3.65 (m, 2 H) 5.84 - 6.47 (m, 1 H) 8.16 - 8.81 (m, 2 H).

Description 23: 1,1-dimethylethyl (2S,5S)-5-methyl-2-({[6-(trifluoromethyl)-3- pyridazinyl]amino}methyl)-l-piperidinecarboxylate (D23)

A suspension of 1,1-dimethylethyl (2S,5S)-2-(aminomethyl)-5-methyl-l- piperidinecarboxylate D5 (100 mg, 0.438 mmol) N 10902- 100-1, potassium carbonate (121 mg, 0.876 mmol) and 3-chloro-6-(trifluoromethyl)pyridazine (96 mg, 0.526 mmol) in dry DMF (3 ml) was shacken at 80 0 C for 2 hours. 0.5 equivalents of 3-chloro-6-

(trifluoromethyl)pyridazine were added and mixture was shaken for 1 hour. After cooling mixture was diluted with Et 2 O and washed with water. Organic layer was dried and evaporated, and the crude purified by silica flash chromatography (SNAP 1O g column, eluting with Cy/ AcOEt 7:3) recovering the title compound D23 (50 mg, 0.134 mmol, 30.5 % yield) N12015-5-1. UPLC (Basic GEN_QC): rt = 0.92 min, peak observed: 375 (M+l). C 17 H 25 F 3 N 4 O 2 requires 374.

Description 24: N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-6-(trifluoromethy l)-3- pyridazinamine (D24)

To a stirring solution of 1,1-dimethylethyl (2S,5S)-5-methyl-2-({[6-(trifluoromethyl)-3- pyridazinyl]amino}methyl)-l-piperidinecarboxylate D23 (50 mg, 0.134 mmol) in dry DCM (2 ml) at 0 0 C TFA (0.5 ml, 6.49 mmol) was added dropwise, then the mixture was stirred at room temperature for 2 hours. Volatiles were evaporated under reduced pressure, resulting crude was passed through a SCX cartridge (5 g) affording the title compound D24 (32 mg, 0.117 mmol, 87 % yield) N12015-9-1 as yellow oil.

UPLC (Basic GEN_QC): rt = 0.56 min, peak observed: 275 (M+l). C 13 Hi 8 F 3 N 3 requires 274. 1 H NMR (400 MHz, CDCl 3 ) δ ppm 0.98 (d, 3 H) 1.37 - 1.77 (m, 5 H) 2.62 (dd, 1 H) 2.81 (dd, 1 H) 2.91 - 3.06 (m, 1 H) 3.35 - 3.68 (m, 2 H) 5.88 - 6.05 (m, 1 H) 6.72 (d, 1 H) 7.40 (d, 1 H)

Description 25: 1,1-dimethylethyl (2S,5S)-2-{[(4,6-dimethyl-2- pyrimidinyl)amino]methyl}-5-methyl-l-piperidinecarboxylate (D25)

In a 50 round-bottomed flask at room temperature under nitrogen, 1,1-dimethylethyl

(2S, 5 S)-2-(aminomethyl)-5 -methyl- 1-piperidinecarboxylate D5 (200 mg, 0.876 mmol) and 2-chloro-4,6-dimethylpyrimidine (125 mg, 0.876 mmol) were dissolved in dry DMSO (3 ml) to give a pale-yellow solution. DIPEA (0.153 ml, 0.876 mmol) was then added and the resulting mixture was then heated at 120 0 C for 7 hours: the solution became dark yellow. The mixture was allowed to cool down to room temperature. Saturated solution OfNH 4 Cl was carefully added keeping the internal temperature below 25 0 C. The mixture was then diluted with Et 2 O and phases were separated. The aqueous phase was backextracted with Et 2 O (3 times) and collected organic phases were concentrated in vacuum. Purification by flash chromatography gave the title compound D25 (177 mg, 0.529 mmol, 60.4 % yield). UPLC (Acid GEN_QC): rt = 0.64 min, peak observed: 335 (M+l). Ci 8 H 30 N 4 O 2 requires 334.

Description 26: 4,6-dimethyl-N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-2- pyrimidinamine (D26)

To a solution of 1,1-dimethylethyl (2S,5S)-2-{[(4,6-dimethyl-2-pyrimidinyl)amino]methyl}- 5-methyl- 1-piperidinecarboxylate D25 (177 mg, 0.529 mmol) in DCM (5 ml), TFA (0.408 ml, 5.29 mmol) was added and the resulting mixture was stirred at room temperature. After 1 hour the volatiles were removed under vacuum and the residue was purified by SCX to give the title compound D26 (120 mg, 0.512 mmol, 97 % yield). Nii425-30-iUPLC (Acid GEN_QC): rt = 0.37 min, peak observed: 235 (M+l). C 13 H 22 N 4 requires 234. 1 H NMR (400 MHz, DMSO-d6) δ ppm 0.94 (d, 3 H) 1.25 - 1.68 (m, 5 H) 2.17 (s, 6 H) 2.52 - 2.76 (m, 3 H) 3.21 - 3.35 (m, 2 H) 6.32 (s, 1 H) 6.71 (t, 1 H).

EXAMPLES Example 1: iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2- pyridinyl]carbonyl}-2-piperidinyl)methyl]-5-(trifluoromethyl )-2-pyridinamine (El)

To a solution of 6-methyl-3-(2-pyrimidinyl)-2-pyridinecarboxylic acid DIl (10.39 mg, 0.048 mmol) in DMF (2 ml), under nitrogen and at room temperature, DIPEA (0.015 ml, 0.088 mmol) and TBTU (15.51 mg, 0.048 mmol) were added. The reaction mixture was stirred for 30 min before the addition of N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-5- (trifluoromethyl)-2-pyridinamine D13 (12 mg, 0.044 mmol). After 2.5 hours the reaction was quenched with NaHCO 3 aqueous saturated solution, extracted with DCM, the combined organic layers were dried (Na 2 SO 4 ) and concentrated in vacuo. The crude product was purified by flash chromatography to give the title compound El (8.8 mg, 0.019 mmol, 42.6 % yield). UPLC (method: Acid FINAL QC): rtl = 0.72 minutes and rt2 = 0.76 minutes (rotamers present), peaks observed: 471 (M+l). C 24 H 2 SF 3 N 6 O requires 470. 1 H NMR (500 MHz, DMSO-d 6 ) δ ppm 8.87 - 8.91 (m, 2 H), 8.40 (d, 1 H), 8.00 - 8.12 (m, 1 H), 7.53 - 7.61 (m, 1 H), 7.32 - 7.51 (m, 3 H), 6.39 - 6.52 (m, 1 H), 4.33 - 4.42 (m, 1 H), 3.78 - 3.91 (m, 1 H), 3.64 - 3.76 (m, 1 H), 3.36 - 3.45 (m, 1 H), 2.45 - 2.51 (m, 4 H), 1.30 - 1.72 (m, 5 H), 0.96 (d, 3 H).

The following compounds were prepared using a similar procedure to that described for Example 1 (in some examples the order of addition of the reagents was changed and the solvent used was DCM instead of DMF). Each compound was obtained by amide coupling of the appropriate N-{[(2S,5S)-5-methyl-2-piperidinyl]methyl}-heteroarylamine with 6- methyl-3-(2-pyrimidinyl)-2-pyridinecarboxylic acid DIl. This is provided merely for assistance to the skilled chemist. The starting material may not necessarily have been prepared from the batch referred to. Amide coupling Characterising data

Reactants

DlS and Dll 5-fluoro-3-methyWV-[((2S,5S)-5-methyl-l-{[6- methyl-3-(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2 piperidinyl)methyl]-2-pyridinamine

UPLC (Acid GEN QC SS): rtl = 0.64 minutes and rt2 = 0.68 min (rotamers present), peaks observed: 43 (M+l). C 24 H 27 FN 6 O requires 434.

1 H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.68 (d, 3 1

0.93 (d, 4 H) 1.36 (br. s., 4 H) 1.55 (br. s., 7 H) 1.! (br. s., 1 H) 1.98 (d, 4 H) 2.04 (s, 4 H) 2.30 - 2.35 (i 1 H) 2.46 (s, 6 H) 2.54 (s, 2 H) 3.11 (br. s., 1 H) 3.: (s, 5 H) 3.60 (d, 1 H) 3.75 (br. s., 2 H) 3.89 (br. s., H) 4.36 (br. s., 1 H) 4.88 (br. s., 1 H) 5.74 (br. s., 1 1 5.92 (s, 1 H) 7.16 - 7.31 (m, 2 H) 7.36 - 7.52 (m, 6 1 7.86 (d, 1 H) 8.45 (d, 1 H) 8.40 (d, 1 H) 8.79 (d, 2 1 8.88 (d, 2 H).

D17 and Dll 5-fluoro-iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2- pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-2-pyridinamine

UPLC (Acid FINAL QC): rtl = 0.56 minutes and rt2 = 0.60 min (rotamers present), peaks observed: 421 (M+l). C 23 H 25 FN 6 O requires 420.

1H NMR (400 MHz, DMSO-J 6 ) δ ppm 8.89 (m, 2 H^ 8.41 (d, 1 H), 7.72 (m, 1 H), 7.45 (m, 2 H), 7.27 (m, H), 6.67 (m, 1 H), 6.34 (m, 1 H), 4.36 (m, 1 H), 3.81 (m, 1 H), 3.61 (m, 1 H), 3.30 (m, 1 H), 2.54 (s, 3 H), 2.43 (m, 5 H), 0.94 (m, 3 H).

D19 and Dll 3,5-difluoro-iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-

(2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-2-pyridinamine

C 24 H 27 FN 6 O requires 438.

1 H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.69 (d, 1 1 0.94 (d, 3 H) 1.38 (br. s., 2 H) 1.58 (br. s., 5 H) 2.3(

2.37 (m, 1 H) 2.52 - 2.55 (m, 1 H) 3.20 - 3.32 (m, 5 1 3.79 (br. s., 1 H) 3.91 (br. s., 1 H) 4.34 (br. s., 1 1 6.79 (br. s., 1 H) 7.38 - 7.50 (m, 3 H) 7.51 - 7.68 (m, H) 8.36 - 8.48 (m, 1 H) 8.82 - 8.92 (m, 2 H) Amide coupling Characterising data

Reactants

D20 and Dll iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-

Hs Yi pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-4-(trifluoromethyl)-2- pyridinamine

UPLC (Acid GEN QC SS): rtl = 0.78 minutes and rt2 = 0.87 minutes (rotamers present), peaks observec 471 (M+l). C 24 H 27 FN 6 O requires 470.

1H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.70 (d, 1 1 0.95 (d, 3 H) 1.40 (br. s., 2 H) 1.62 (br. s., 5 H) 1.! (br. s., 1 H) 2.28 - 2.37 (m, 1 H) 3.61 - 3.76 (m, 1 1 3.82 (br. s., 1 H) 4.36 (br. s., 1 H) 6.60 (br. s., 2 1 7.21 (br. s., 1 H) 7.34 - 7.51 (m, 3 H) 7.95 (br. s., 1 1 8.39 (d, 1 H) 8.85 - 8.94 (m, 3 H)

D22 and Dll N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2- pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-5-(trifluoromethyl)-2- pyrimidinamine

UPLC (Basic GEN QC) rtl = 0.89 minutes and rt2 0.90 minutes (rotamers present) peaks observed 4' (M+l). C 23 H 24 F 3 N 7 O requires 471.

1H NMR (400 MHz, DMSO-J 6 ) ppm 0.69 (d, 1 H) 0.95 (d, 3 H) 1.18 - 1.28 (m, 1 H) 1.28 - 1.43 (m, 2 H 1.43 - 1.53 (m, 1 H) 1.53 - 1.74 (m, 4 H) 2.68 (d, 1 H 3.71 - 3.86 (m, 1 H) 3.91 (d, 1 H) 4.37 (d, 1 H) 7.36 - 7.53 (m, 2 H) 8.25 (br. s., 1 H) 8.35 - 8.50 (m, 2 H) 8.55 - 8.63 (m, 1 H) 8.85 - 8.95 (m, 2 H)

Amide coupling Characterising data

Reactants

Il D24 and Dll N-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-

" Tl - pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-6-(trifluoromethyl)-3- pyridazinamine

UPLC (Acid GEN QC SS): rtl = 0.77 minutes and rt2 = 0.78 minutes (rotamers present), peak observed 472 (M+l). C 23 H 24 F 3 N 7 O requires 471.

1H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.70 (d, 1 H) 0.92 - 1.00 (m, 3 H) 1.62 (br. s., 5 H) 2.33 (dt, 1 H) 2.43 (br. s., 4 H) 3.11 (br. s., 1 H) 3.75 - 3.85 (m, 1 H 3.89 (br. s., 1 H) 4.37 (d, 1 H) 6.88 (d, 1 H) 7.34 (d, 1 H) 7.41 - 7.51 (m, 2 H) 7.57 - 7.82 (m, 2 H) 8.35 (d, H) 8.86 - 8.93 (m, 2 H)

m D26 and Dll 4,6-dimethyWV-[((2S,5S)-5-methyl-l-{[6-methyl-3- (2-pyrimidinyl)-2-pyridinyl]carbonyl}-2- piperidinyl)methyl]-2-pyrimidinamine

UPLC (Acid GEN QC): rtl = 0.54 minutes and rt2 = 0.56 minutes (rotamers present), peak observed 432 (M+l). C 24 H 29 N 7 O requires 431.

1H NMR (400 MHz, DMSO-J 6 ) δ ppm 8.92 (d, 2 H) 8.41 (d, 1 H) 7.46 (m, 2 H) 7.19 (m, 1 H) 6.30 (s, 1 H 4.36 (m, 1 H) 3.93 (m, 1 H) 3.74 (m, 1 H) 3.22 (m, 1 H) 2.59 (s, 3 H) 2.45 (m, 1 H) 2.11 (s, 6 H) 1.59 (m, . H) 0.95 (d, H).

Example 9: iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2- pyridinyl] carbonyl}-2-piperidinyl)methyl] -3-(trifluoromethyl)-2-pyridinamine (E9)

To a suspension of [((2S,5S)-5-methyl-l-{[6-methyl-3-(2-pyrimidinyl)-2- pyridinyl]carbonyl}-2-piperidinyl)methyl]amine D8 (35 mg, 0.108 mmol) and potassium carbonate (29.7 mg, 0.215 mmol) in dry DMF (1.5 ml), a solution of 2-fluoro-3- 10 (trifluoromethyl)pyridine (21.31 mg, 0.129 mmol) in DMF (0.5 ml) was added and the

mixture was shaken at 70 0 C overnight. After cooling mixture was diluted with AcOEt and washed with water and brine. Organics were dried and evaporated and the crude was

purified by flash chromatography (KP-Silica SNAP 1O g column, eluting with AcOEt 100 %) affording the title compound E9 (18 mg, 0.038 mmol, 35.6 % yield) N12015-22-1 as white solid.

UPLC (Acid GEN_QC_SS): rt = 0.89 minutes, peak observed: 471 (M+l). C 24 H 27 FN 6 O requires 470.

1 H NMR (400 MHz, DMSO-J 6 ) ppm 0.69 (d, 2 H) 0.94 (d, 3 H) 1.20 - 1.32 (m, 1 H) 1.33 - 1.49 (m, 4 H) 1.49 - 1.60 (m, 3 H) 1.64 (br. s., 1 H) 1.77 (br. s., 1 H) 2.37 - 2.47 (m, 4 H)

2.52 - 2.55 (m, 2 H) 2.65 - 2.70 (m, 1 H) 2.80 - 2.91 (m, 1 H) 3.13 (br. s., 1 H) 3.31 (s, 4 H) 3.39 - 3.49 (m, 1 H) 3.67 - 3.89 (m, 2 H) 3.91 - 4.03 (m, 1 H) 4.38 (br. s., 1 H) 4.96 (br. s., 1 H) 6.47 (br. s., 1 H) 6.50 - 6.62 (m, 2 H) 6.69 (dd, 1 H) 7.34 - 7.48 (m, 3 H) 7.63 - 7.70 (m, 1 H) 7.71 - 7.85 (m, 2 H) 8.31 (d, 1 H) 8.43 (t, 2 H) 8.77 (d, 1 H) 8.83 - 8.90 (m, 2 H).

The following compounds were prepared using a similar procedure to that described for

Example 9. Each compound was obtained by reacting [((2S,5S)-5-methyl-l-{[6-methyl-3- (2-pyrimidinyl)-2-pyridinyl]carbonyl}-2-piperidinyl)methyl]a mine D8 with the appropriate halo derivative. This is provided merely for assistance to the skilled chemist. The starting material may not necessarily have been prepared from the batch referred to.

Reactants Characterising data

D8 and 2,3-difluoro-5- 3-fluoro-iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2-

(trifluoromethyl)pyridi pyrimidinyl)-2-pyridinyl]carbonyl}-2- ne piperidinyl)methyl]-5-(trifluoromethyl)-2- pyridinamine

UPLC (Acid GEN QC SS): rt = 0.97 minutes, peak observed: 489 (M+l). C 24 H 27 FN 6 O requires 488.

1 H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.69 (d, 1 1

0.94 (d, 3 H) 1.27 - 1.41 (m, 1 H) 1.45 (br. s., 2 1

1.53 - 1.71 (m, 3 H) 2.40 - 2.45 (m, 3 H) 3.31 (s, 2 1

3.77 - 3.91 (m, 1 H) 3.95 (br. s., 1 H) 4.36 (br. s., 1 1

7.36 (d, 1 H) 7.40 - 7.52 (m, 2 H) 7.65 - 7.81 (m, 1 1

7.93 (s, 1 H) 8.37 (d, 1 H) 8.81 - 8.93 (m, 2 H). Reactants Characterising data

^O.

D8 and 2-fluoro-6- iV-[((2S,5S)-5-methyl-l-{[6-methyl-3-(2- (trifluoromethyl)pyridi pyrimidinyl)-2-pyridinyl]carbonyl}-2- ne piperidinyl)methyl]-6-(trifluoromethyl)-2- pyridinamine

UPLC (Acid GEN QC SS): rt = 0.96 minutes, peak

observed: 471 (M+l). C 24 H 27 FN 6 O requires 470. 1H NMR (400 MHz, DMSO-J 6 ) δ ppm 0.69 (d, 2 1 0.90 - 0.99 (m, 3 H) 1.41 (br. s., 2 H) 1.50 (d, 3 1 1.64 (br. s., 4 H) 2.29 - 2.37 (m, 1 H) 2.52 - 2.57 (m. H) 3.11 (br. s., 1 H) 3.44 - 3.55 (m, 1 H) 3.60 - 3.' (m, 1 H) 3.84 (br. s., 1 H) 4.34 (br. s., 1 H) 4.71 (br. 1 H) 6.54 - 6.65 (m, 1 H) 6.77 - 6.95 (m, 2 H) 7.17 i 1 H) 7.39 - 7.50 (m, 3 H) 7.50 - 7.64 (m, 2 H) 8.40 ( I H) 8.49 (d, 1 H) 8.91 (dd, 3 H).

Example 12: Determination of antagonist affinity at human Orexin-1 and 2 receptors using FLIPR

Cell Culture

Adherent Chinese Hamster Ovary (CHO) cells, stably expressing the recombinant human Orexin-1 or human Orexin-2 receptors or Rat Basophilic Leukaemia Cells (RBL) stably expressing recombinant rat Orexin-1 or rat Orexin-2 receptors were maintained in culture in Alpha Minimum Essential Medium (Gibco/Invitrogen, cat. no.; 22571-020),

10 supplemented with 10% decomplemented foetal bovine serum (Life Technologies, cat. no.

10106-078) and 400 μg/mL Geneticin G418 (Calbiochem, cat. no.345810). Cells were grown as monolayers under 95%:5% air:CO 2 at 37 0 C.

The sequences of the human orexin 1, human orexin 2, rat orexin 1 and rat orexin 2 receptors used in this example were as published in Sakurai, T. et al (1998) Cell, 92 pp 573

15 to 585.

Measurement of [Ca ] x using the FLIPR™

Cells were seeded into black clear-bottom 384-well plates (density of 20,000 cells per well) in culture medium as described above and maintained overnight (95%:5% air:CO 2 at 37°C). On the day of the experiment, culture medium were discarded and the cells washed three times with standard buffer (NaCl, 145 mM; KCl, 5 mM; HEPES, 20 mM; Glucose, 5.5 mM; MgCl 2 , 1 mM; CaCl 2 , 2 mM) added with Probenecid 2.5 mM. The plates were then incubated at 37 0 C for 60 minutes in the dark with 2 μM FLUO-4AM dye to allow cell uptake of the FLUO-4AM, which is subsequently converted by intracellular esterases to FLUO-4, which is unable to leave the cells. After incubation, cells were washed three times with standard buffer to remove extracellular dye and 30 μL of buffer were left in each well after washing.

Compounds of the invention were tested in a final assay concentration range from 1.66xlO "5 M to 1.58xlO M. Compounds of the invention were dissolved in

dimethylsulfoxide (DMSO) at a stock concentration of 10 mM. These stock solutions were serially diluted with DMSO and 1 μL of each dilution was transferred to a 384 well compound plate. Immediately before introducing compound to the cells, buffer solution (50 μl/well) was added to this plate. To allow agonist stimulation of the cells, a stock plate containing a solution of human orexin A (hOrexin A) was diluted with buffer to final concentration just before use. This final concentration of hOrexin A was equivalent to the calculated EC80 for hOrexinA agonist potency in this test system. This value was obtained by testing hOrexinA in concentration response curve (at least 16 replicates) the same day of the experiment.

The loaded cells were then incubated for lOmin at 37°C with test compound. The plates were then placed into a FLIPR™ (Molecular Devices, UK) to monitor cell fluorescence (λg X = 488nm, λ EM = 540nm) (Sullivan E, Tucker EM, Dale IL. Measurement of [Ca 2+ J 1 using the fluometric imaging plate reader (FLIPR). In: Lambert DG (ed.), Calcium Signaling Protocols. New Jersey: Humana Press, 1999, 125-136). A baseline fluorescence reading was taken over a 5 to 10 second period, and then 10 μL of EC80 hOrexinA solution was added. The fluorescence was then read over a 4-5 minute period.

Data Analysis

Functional responses using FLIPR were measured as peak fluorescence intensity minus basal fluorescence and expressed as a percentage of a non-inhibited Orexin- A- induced response on the same plate. Iterative curve-fitting and parameter estimations were carried out using a four parameter logistic model and Microsoft Excel (Bowen WP, Jerman JC. Nonlinear regression using spreadsheets. Trends Pharmacol. Sci. 1995; 16: 413-417). Antagonist affinity values (IC 50 ) were converted to functional pKj values using a modified Cheng-Prusoff correction (Cheng YC, Prusoff WH. Relationship between the inhibition constant (K 1 ) and the concentration of inhibitor which causes 50 percent inhibition (IC 50 ) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22: 3099-3108).

Where [agonist] is the agonist concentration, EC 50 is the concentration of agonist giving 50% activity derived from the agonist dose response curve and n=slope of the dose response curve. When n=l the equation collapses to the more familiar Cheng-Prusoff equation.

Compounds of examples 1 to 11 were tested according to the method of example 12. All compounds gave fpKi values from 8.2 to 9.2 at the human cloned orexin-1 receptor and from 8.1 to 9.2 at the human cloned orexin-2 receptor.