Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR THE RECOVERY OF PARAFFINS FROM AN ISOMERIZATION EFFLUENT
Document Type and Number:
WIPO Patent Application WO/2016/036434
Kind Code:
A1
Abstract:
A process for the recovery of C4 hydrocarbons from a C5/C6 isomerization zone. A portion of the effluent stream from the C5/C6 isomerization zone comprising C4 hydrocarbons is combined in a stabilizer section with an effluent from a C4 isomerization zone. In order to increase the C4 hydrocarbons in the effluent stream from the C5/C6 isomerization zone, a chilling zone may be used.

Inventors:
KUMAR MANOJ (US)
SHECTERLE DAVID JAMES (US)
Application Number:
PCT/US2015/037911
Publication Date:
March 10, 2016
Filing Date:
June 26, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UOP LLC (US)
International Classes:
C07C5/22; C07C7/04; C07C9/10; C07C9/12
Domestic Patent References:
WO2012097051A12012-07-19
WO2014074266A12014-05-15
WO2012021341A22012-02-16
Foreign References:
RU2368594C22009-09-27
US4673488A1987-06-16
Attorney, Agent or Firm:
MAAS, Maryann (25 East Algonquin RoadP. O. Box 501, Des Plaines Illinois, US)
Download PDF:
Claims:
CLAIMS

1. A process for the recovery of C4 hydrocarbons comprising: stabilizing and separating a first effluent stream (16, 216) in a first stabilization zone (18, 218) into an overhead stream (26, 226), a C4- liquid stream (28, 228), and a bottoms stream (30), wherein the first effluent stream (16, 216) is from a first isomerization zone (12, 212); stabilizing a second effluent stream (46, 246) from a second isomerization zone (40, 240) in a second stabilization zone (38, 238); passing at least a portion of the C4- liquid stream (28, 228) to the second stabilization zone (38, 238); and, separating the second effluent stream (46, 246) and the at least a portion of the C4- liquid stream (28, 228) into a C4 stream (50) and a C3- stream (48).

2. The process of claim 1 further comprising: separating the C4 stream (50) into an iC4 stream (56) and a nC4 stream (58).

3. The process of claim 2 further comprising: passing the iC4 stream (56) to the second isomerization zone (40, 240).

4. The process of any one of claims 1 to 3 wherein the first stabilization zone (18, 218) comprises a condenser (222), a receiver (224) and a chilling zone (264).

5. The process of claim 4 further comprising: passing a C4- stream (260) from the condenser (222) to the receiver

(224); separating the C4- stream (260) in the receiver (224) into a vapor stream (262) and a liquid stream, the liquid stream comprising the C4- liquid stream (228).

6. The process of claim 5 further comprising: cooling the vapor stream (262) from the receiver (224) in the chilling zone (264).

7. The process of claim 5 further comprising: combining a portion (226) of the vapor stream (262) from the receiver (224) and the C3- stream (48) of the second stabilization zone (38, 238).

8. The process of any one of claims 1 to 3 further comprising:

operating the first isomerization zone (12, 212) under isomerization conditions, in the presence of a catalyst, to convert iso-paraffms into normal paraffins.

9. The process of claim 8 wherein the iso-paraffms comprise iso- pentane and iso-hexane.

10. The process of claims 8 or 9 further comprising: operating the second isomerization zone (40, 240) under isomerization conditions, in the presence of a catalyst, to convert iso-butane into normal butane.

Description:
PROCESS FOR THE RECOVERY OF PARAFFINS FROM AN

ISOMERIZATION EFFLUENT

STATEMENT OF PRIORITY

This application claims priority to U.S. Application No. 14/476,256 which was filed September 03, 2014, the contents of which are hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

This invention relates generally to a process for the recovery of paraffins from an isomerization effluent, and more particularly to the recovery of C 4 hydrocarbons.

BACKGROUND OF THE INVENTION

Petroleum refining and petrochemical processes frequently involve isomerization processes. Isomerization processes are widely used by many refiners and processers to rearrange the molecular structure of hydrocarbons. In some instances it is more desirable to have more highly branched hydrocarbons. Generally, these more highly branched hydrocarbons have relatively high octane ratings. In other instances it is more desirable to have straight chain paraffins, for example for feed to a stream cracker or for production of chemicals. Accordingly, isomerization can involve conversion of iso-paraffms into normal paraffins or the conversion of normal paraffins into iso-paraffms. Additionally, due to equilibrium factors, various hydrocarbon feed streams are isomerized in different zones.

For example, C 5 and C 6 hydrocarbons streams are often isomerized in the same zone. When the isomerization comprises of converting iso-paraffms into normal paraffins, a large amount of C 4 hydrocarbons may be formed as a product of cracking and disproportionation reactions. The isomerization zone typically includes a stabilizer to separate the effluent from the isomerization zone. As a result of the high amount of light ends in the effluent, the stabilizer requires an LPG draw (C 3 /C 4 hydrocarbons). However, since the LPG draw contains some amount of chloride, typically as HC1, the LPG draw cannot be directly routed to, for example, a saturated gas plant, as the LPG draw contains some amount of chlorides. Therefore, a stripping zone is used to remove the light ends (C 2 - hydrocarbons) and chlorides. Then, the LPG draw can be passed, along with light ends from other sources, to the saturated gas plant where the combined stream can be cleaned (sulfur removed) and fractionated. Any C 4 hydrocarbons could be recovered and recycled back to be isomerized in a C 4 hydrocarbons isomerization unit.

It is believed that a more effective and efficient process for recovering the C 4 hydrocarbons would be desirable.

SUMMARY OF THE INVENTION

A first embodiment of the invention may be characterized as a process for the recovery of C 4 hydrocarbons comprising: stabilizing and separating a first effluent stream in a first stabilization zone into an overhead stream, a C 4 - liquid stream, and a bottoms stream, wherein the first effluent stream is from a first isomerization zone; stabilizing a second effluent stream from a second isomerization zone in a second stabilization zone; passing at least a portion of the C 4 - liquid stream to the second stabilization zone; and, separating the second effluent stream and the at least a portion of the C 4 - liquid stream into a C 4 stream and a C 3 - stream.

In at least one embodiment, the process further includes separating the C 4 stream into an iC 4 stream and a nC 4 stream. It is contemplated that the process also includes passing the iC 4 stream to the second isomerization zone.

In some embodiments, the first stabilization zone comprises a stabilizer, a receiving zone and a chilling zone. In at least one embodiment, the process further includes passing a C 4 - stream from the stabilizer to the receiver, separating the C 4 - stream in the receiver into a vapor stream and a liquid stream. The liquid stream comprises the C 4 - liquid stream and the vapor stream comprises mostly C 3 - hydrocarbons. It is contemplated that the process also include cooling the vapor stream from the receiver in the chilling zone. It is further contemplated that the process includes combining a portion of the vapor stream from the receiver and the C 3 - stream of the second stabilization zone.

In some embodiments, the process includes operating the first isomerization zone under isomerization conditions, in the presence of a catalyst, to convert iso-paraffms into normal paraffins. It is contemplated that the iso-paraffms comprise iso-pentane and iso-hexane. It is further contemplated that the process also includes operating the second isomerization zone under isomerization conditions, in the presence of a catalyst, to convert iso-butane into normal butane.

A second aspect of the present invention may be characterized as a process for the recovery of C 4 hydrocarbons comprising: passing a C 4 - liquid stream to a stabilization zone, the liquid C 4 - stream comprising at least a portion of an effluent from a first isomerization zone operated under isomerization conditions to convert iso-paraffms into normal paraffins; passing at least a portion of a second effluent stream from a second isomerization zone to the stabilization zone, the second effluent stream comprising C 4 - hydrocarbons, wherein the second isomerization zone is operated under isomerization conditions to convert iso-butane into normal butane; and, separating the at least a portion of the second effluent stream and the C 4 - liquid stream into a C 4 stream and a C 3 - stream.

In at least one embodiment, the iso-paraffms comprise iso-pentane and iso-hexane. It is also contemplated that the process includes cooling a portion of the effluent from the first isomerization zone to increase an amount of C 4 hydrocarbons in the liquid C 4 - stream. In some embodiments, the process further includes combining a first vapor stream from the stabilization zone comprising a C 3 - stream with a second vapor stream comprising a second C 3 - stream. It is contemplated that the second C 3 - stream comprises a portion of the effluent from the first isomerization zone. It still other embodiments the process further includes separating the C 4 stream from the stabilization zone into an iC 4 stream and an nC 4 stream. It is further contemplated that the process also includes passing the iC4 stream to the second isomerization zone.

In at least one embodiment, the process also includes separating the effluent from the first isomerization zone into a C 4 - stream and a C 5 + stream and separating the C 4 - liquid stream from at least a portion of the C 4 - stream. It is further contemplated that the process includes separating the C 4 - stream into the C 4 - liquid stream and a C 3 - vapor stream. It is contemplated that the process also includes increasing an amount of C 4 in the C 4 - liquid stream by cooling the C 4 - stream. Additional objects, embodiments, and details of the invention are set forth in the following detailed description of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The drawings are simplified process diagrams in which:

Figure 1 shows a process according to one or more embodiments of the present invention; and,

Figure 2 shows another process according to one or more embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

One or more methods have been developed which increase the recovery of C 4 hydrocarbons from the isomerization of iso-pentane and iso-hexane to normal paraffins. In some of the processes of the present invention, no additional equipment is required. In fact, in many instances, the processes reduce the amount and size of the equipment that is typically used. Thus, such processes not only increase the product recovery, but also lower the capital expenditures and operating expenses associated with same.

With reference to the attached drawings, one or more exemplary processes will now be described with the understanding that following detailed description is merely exemplary in nature and is not intended to limit the various embodiments or the application and uses thereof. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.

As shown in Figure 1, one or more processes according to the present invention comprise a first feed stream 10 being passed to a first isomerization zone 12. In a preferred embodiment the first feed steam 10 comprises a C 5 + hydrocarbon stream (meaning hydrocarbons with 5 or more carbon atoms). The C 5 + hydrocarbon stream may comprise iso- or branched paraffmic C 5 /C 6 hydrocarbons and may further include normal or unbranched paraffmic C 5 /C 6 hydrocarbons, such as normal pentane and normal hexane.

Although not illustrated, hydrogen-containing gas and a chloride promoter are typically introduced to the feed stream 10. The feed stream 10, and hydrogen-containing gas, may be passed (together or separately) through a dryer(s), a heat exchanger(s), and/or a heater(s) so that the stream(s) are dry and heated when passed into the isomerization zone 12. The chloride promoter may be added after the feed stream 10 has passed through the dryer(s)

In a preferred embodiment, the isomerization zone 12 comprises at least one fixed-bed catalytic reactor 14 operating at conditions to isomerize iso-paraffms into normal paraffins. Typical operating conditions include a temperature of from 90°C to 210°C and pressure of 3100 kPa(g). The isomerization catalyst is typically activated by HC1 by the decomposition of chloride promoter to form a high-activity chloride-promoted isomerization catalyst. Non-limiting examples of the isomerization catalyst include alumina catalyst, platinum aluminum catalyst, and the like that can be chlorinated. In a most preferred embodiment, a chloride-promoted isomerization catalyst in the presence of hydrogen is effective to isomerize the branched pentane and hexane into normal paraffins (e.g., normal pentane and normal hexane) to produce an isomerization zone effluent 16.

The isomerization zone effluent 16 contains normal and some branched C 5 /C 6 hydrocarbons, C 4 hydrocarbons, C 3 hydrocarbons, some naphthenes and C 7 paraffmic hydrocarbons, hydrogen (e.g., unreacted hydrogen), HCl, and possibly other chloride-containing compounds. Some of these compounds may have been present in the feed stream 10, while others may have been generated in the isomerization zone 12 due to various reactions, like disproportionation reactions and cracking of larger compounds.

Accordingly, the isomerization zone effluent 16 is passed to a stabilization zone 18. As shown, the stabilization zone 18 typically includes a stabilizer 20, a condenser 22 and a receiver 24. In an exemplary embodiment, the stabilization zone 18, more specifically, the receiver 24, is operating at a temperature of from 35°C to 45°C and a pressure of from 1000 kPag to 1700 kPag, preferably between 1200 kPag to 1500 kPag.

In the stabilization zone 18, the isomerization zone effluent 16 is separated into a vapor stream 26 (comprising mostly C 3 - hydrocarbons), a C 4 - hydrocarbon liquid stream 28, and a C 5 + hydrocarbon stream 30.

The C 5 + hydrocarbon stream 30 is typically rich in normal C 5 + hydrocarbons, such as normal pentanes and normal hexanes, and is removed from the process as product and may be passed to further downstream processing and separation zones for recovery.

In order to remove HCl, the vapor stream 26 is passed to a scrubbing zone 32. The scrubbing zone 32 scrubs the vapor stream 26 by neutralizing the HCl contained therein. As is known, the vapor stream 26 is typically scrubbed with caustic to form a neutralized gas stream 34. The neutralized gas stream 34 may be passed to downstream processing, for example to a saturated gas plant to recover C 3 - hydrocarbons (depending on the saturated gas plant, there may be a butane, propane, C 2 - hydrocarbons, and sometimes hydrogen stream). The C 4 - hydrocarbons liquid stream 28 typically includes C 4 hydrocarbons, as well as some C 3 - hydrocarbons, hydrogen, and HCl. A portion 36 of the C 4 - hydrocarbons liquid stream can be passed back as reflux to the stabilizer 18. Unlike conventional process which require a scrubber on the C 4 - hydrocarbons liquid stream 28 (for example to recover the scrubbed stream as LPG), in the present invention, the C 4 - hydrocarbons liquid stream 28 is passed to a second stabilization zone 38 that is disposed downstream of a second isomerization zone 40.

The second isomerization zone 40 receives a second feed stream 42. In a preferred embodiment, the second feed stream 42 is a C 4 hydrocarbons stream which comprises normal and branched paraffmic C 4 hydrocarbons, such as normal butane and isobutane. Similar to the above, although not illustrated, a hydrogen-containing gas and a chloride promoter (e.g., containing perchloroethylene or the like) are typically introduced to the second feed stream 42. The second feed stream 42 may be passed (together or separately with the hydrogen-containing gas) through a dryer(s), a heat exchanger(s), and/or a heater(s) so that the stream is dry and heated while advancing through the second isomerization zone 40. After the dryer(s), the chloride promoter may be added to the feed stream 42.

In a preferred embodiment, the second isomerization zone 40 also comprises at least one fixed-bed catalytic reactor 44 operating at conditions to isomerize iso-paraffms into normal paraffins. Typical conditions in the second isomerization zone 40 include an operating temperature of from 90°C to 210°C and pressure of 3,100 kPag. Additionally, the isomerization catalyst is preferably activated by HCl by the decomposition of chloride promoter to form a high-activity chloride-promoted isomerization catalyst as described above in relation to the first isomerization zone 12. The chloride-promoted isomerization catalyst in the presence of hydrogen is effective to isomerize the branched paraffins to normal paraffins (e.g., normal butane) to produce a second isomerization zone effluent 46.

The second isomerization zone effluent 46 contains branched and unbranched C 4 hydrocarbons, C 3 - hydrocarbons, hydrogen (e.g., unreacted hydrogen), HCl, and possibly other chloride-containing compounds and other hydrocarbons such as C 5 hydrocarbons and some trace C 6 + hydrocarbons. The second isomerization zone effluent 46 is passed to the second stabilization zone 38.

In the second stabilization zone 38, the second isomerization zone effluent 46 and the C 4 - hydrocarbons liquid stream 28 are separated into a C 3 - hydrocarbons stream 48 and a C 4 hydrocarbons stream 50. The C 3 - hydrocarbons stream 48 will also include HCl and can be passed to the scrubbing zone 32 and processed along with the vapor stream 26 from the first stabilization zone 18. The second stabilization zone 38 is operating at a temperature in the range of 35°C to 45°C and a pressure in the range of 2,000 kPag to 2,300 kPag.

The C 4 hydrocarbons stream 50 may be passed to a separation zone 52, preferably which includes a fractionation column 54, which can be used to separate iso-paraffms from normal paraffins. In embodiments in which the second feed stream 42 is a C 4 hydrocarbons stream, an overhead stream 56 from the separation zone 52 comprises iso-butane and a bottoms stream 58 from the separation zone 52 comprises normal butane, and may also include some C 5 + hydrocarbons produced, for example, in the second isomerization zone 40. The overhead stream 56 may be passed back to the second isomerization zone 40. The bottoms stream 58 may be recovered as the desired normal paraffin product and passed to further processing. This process has allowed for the recovery of the C 4 hydrocarbons produced in the first isomerization zone without requiring an additional processing unit to remove the HCl from the first isomerization zone effluent. It is further contemplated that the C 4 hydrocarbon recovery can be increased even further by chilling or cooling a portion of the effluent from the first isomerization zone. Accordingly, a second exemplary process is shown in Figure 2, in which similar elements from the embodiment of Figure 1 have the same reference numeral with the exception of an additional "2".

As shown in Figure 2, this embodiment of the invention also includes two feed streams 210, 242, each one being passed to an isomerization zone 212, 240. Each isomerization zone 212, 240 provides an effluent stream 216, 246 that is passed to a stabilization zone 218, 238. A portion 260 of the first isomerization zone effluent stream 216 is passed, preferably via a condenser 222, to a receiver 224. The portion 260 preferably comprises C 4 - hydrocarbons, as well as hydrogen and HC1.

In the receiver 224, the compounds in the portion 260 of first isomerization zone effluent stream 216 are separated into a C 4 hydrocarbons liquid stream 228, and a C 4 - hydrocarbons stream 262. In order to increase the amount of C 4 hydrocarbons in the C 4 hydrocarbons liquid stream 228, the C 4 - hydrocarbons stream 262 is passed to a chilling zone 264 where the C 4 - hydrocarbons stream 262 is cooled to a temperature between 4°C and -40°C, and preferably to a temperature of -17.7°C (0°F). From the chilling zone 264, a C 3 ~ hydrocarbons vapor stream 226 is passed to a scrubbing zone 232 to remove HC1. A chilled stream 263 is passed back from the chilling zone 264 to the receiver 224. The compounds in the chilled stream 263, mostly C 4 hydrocarbons, may be separated into the C 4 hydrocarbons liquid stream 228 and the C 4 - hydrocarbons stream 262.

The remaining portions of the embodiment in Figure 2 are the same as the embodiment shown in Figure 1, and thus, that description is incorporated herein.

In a theoretical modeling based upon TABLE 1, below, a process according to the embodiment shown in Figure 1 allowed for a recovery of 5,500 kg/h (5.5 T/h) and a recovery of 20% of the C 4 hydrocarbons from the first isomerization zone passed to the stabilization zone to be separated with the second isomerization zone effluent.

TABLE 1

In a second theoretical modeling based upon TABLE 2, a process according to the embodiment shown in Figure 2 with a chilling zone, 24,500 kg/h (24.5 T/h) C 4 hydrocarbons were recovered, representing 85% of the C 4 hydrocarbons from the first isomerization zone, is passed to the second stabilization zone to be separated with the second isomerization zone effluent.

TABLE 2

In the second theoretical modeling, the chilling zone had a temperature of -17.7°C (0°F) and both the first modeling and the second modeling assumed 90% recovery of C 4 hydrocarbons from the second stabilization zone. Thus, as will be appreciated by those of ordinary skill in the art, the chilling zone further increases the recovery of the C 4 hydrocarbons. However, in either embodiment, the C 4 hydrocarbon recovery is accomplished without the need of an additional LPG stripper section to remove the HC1 contained in the C 4 hydrocarbons liquid stream that was generated in the first isomerization zone.

Additionally, since the C 4 hydrocarbons that were produced in the first isomerization zone are not being processed in the C 3 - hydrocarbons stream passed to downstream processing, the processing units associated with same, for example, the a saturated gas plant recovery unit, can be smaller. This will allow for an increase in capital savings with smaller equipment and an increase in operating expense savings with requiring less energy to operate.

Finally, although various embodiments above were discussed with respect to the isomerization of iso-paraffms into normal paraffins, it is contemplated that the process could also be used in association with isomerization zones for isomerizing normal paraffins into iso-paraffms, with the same or similar benefits being realized.

It should be appreciated and understood by those of ordinary skill in the art that various other components such as valves, pumps, filters, coolers, etc. were not shown in the drawings as it is believed that the specifics of same are well within the knowledge of those of ordinary skill in the art and a description of same is not necessary for practicing or understating the embodiments of the present invention.

SPECIFIC EMBODIMENTS

While the following is described in conjunction with specific embodiments, it will be understood that this description is intended to illustrate and not limit the scope of the preceding description and the appended claims. A first embodiment of the invention is a process for the recovery of C4 hydrocarbons comprising stabilizing and separating a first effluent stream in a first stabilization zone into an overhead stream, a C4- liquid stream, and a bottoms stream, wherein the first effluent stream is from a first isomerization zone; stabilizing a second effluent stream from a second isomerization zone in a second stabilization zone; passing at least a portion of the C4- liquid stream to the second stabilization zone; and, separating the second effluent stream and the at least a portion of the C4- liquid stream into a C4 stream and a C3- stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising separating the C4 stream into an iC4 stream and a nC4 stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising passing the iC4 stream to the second isomerization zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the first stabilization zone comprises a stabilizer, a receiving zone and a chilling zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising passing a C4- stream from the stabilizer to the receiver; separating the C4- stream in the receiver into a vapor stream and a liquid stream, the liquid stream comprising the C4- liquid stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising cooling the vapor stream from the receiver in the chilling zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising combining a portion of the vapor stream from the receiver and the C3- stream of the second stabilization zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising operating the first isomerization zone under isomerization conditions, in the presence of a catalyst, to convert iso-paraffms into normal paraffins. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the iso- paraffins comprise iso-pentane and iso-hexane. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph further comprising operating the second isomerization zone under isomerization conditions, in the presence of a catalyst, to convert iso-butane into normal butane.

A second embodiment of the invention is a process for the recovery of C4 hydrocarbons comprising passing a C4- liquid stream to a stabilization zone, the liquid C4- stream comprising at least a portion of an effluent from a first isomerization zone operated under isomerization conditions to convert iso-paraffms into normal paraffins; passing at least a portion of a second effluent stream from a second isomerization zone to the stabilization zone, the second effluent stream comprising C4- hydrocarbons, wherein the second isomerization zone is operated under isomerization conditions to convert iso-butane into normal butane; separating the at least a portion of the second effluent stream and the C4- liquid stream into a C4 stream and a C3- stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the iso-paraffms comprise iso-pentane and iso-hexane. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising cooling a portion of the effluent from the first isomerization zone to increase an amount of C4 hydrocarbons in the liquid C4- stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising combining a first vapor stream from the stabilization zone comprising a C3- stream with a second vapor stream comprising a second C3- stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the second C3- stream comprises a portion of the effluent from the first isomerization zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising separating the C4 stream from the stabilization zone into an iC4 stream and an nC4 stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising passing the iC4 stream to the second isomerization zone. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising separating the effluent from the first isomerization zone into a C4- stream and a C5+ stream; and, separating the C4- liquid stream from at least a portion of the C4- stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph, further comprising separating the C4- stream into the C4- liquid stream and a C3- vapor stream. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph further comprising increasing an amount of C4 in the C4- liquid stream by cooling the C4- stream.

While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.