Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STABILIZED HUMIDITY-CURABLE POLYMERS HAVING 2-PHASE CURING KINETICS
Document Type and Number:
WIPO Patent Application WO/2011/047972
Kind Code:
A1
Abstract:
The invention relates to stabilized mixtures (M) comprising a polymer (P) that can be humidity-cured into a cured polymer (PV), wherein the polymer (P) comprises hydrolysable silane groups at at least one location not corresponding to the two ends of the main polymer chain, and silane (W) having at least one hydrolysable group as a water catcher, reacting faster with water at 25°C and 1 bar than the humidity-curing polymer (P), and to a method for curing polymers (P) in mixtures (M) by means of water and particular silanes (W).

Inventors:
DAISS JUERGEN OLIVER (DE)
STOHRER JUERGEN (DE)
Application Number:
PCT/EP2010/065082
Publication Date:
April 28, 2011
Filing Date:
October 08, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WACKER CHEMIE AG (DE)
DAISS JUERGEN OLIVER (DE)
STOHRER JUERGEN (DE)
International Classes:
C08F255/02; C08J3/24; C08K5/54; C08L51/06
Foreign References:
EP0245938A21987-11-19
US20030087976A12003-05-08
EP0771827A21997-05-07
EP0245938A21987-11-19
EP0007765A11980-02-06
US4043953A1977-08-23
EP0351142A21990-01-17
EP0149903A21985-07-31
EP1414909A12004-05-06
EP1529813A12005-05-11
Attorney, Agent or Firm:
FRITZ, Helmut et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Stabilisierte Mischungen (M) , welche enthalten

Polymer (P) , das zu einem vernetzten Polymer (PV) feuchte- vernetzbar ist, wobei das Polymer (P) hydrolysierbare

Silangruppen an mindestens einer Stelle enthält, die nicht den beiden Enden der Polymerhauptkette entspricht und

Silan (W) mit mindestens einer hydrolysierbaren Gruppe als Wasserfänger, der bei 25 °C und 1 bar schneller mit Wasser reagiert als das feuchtevernetzbare Polymer (P) .

2. Stabilisierte Mischungen (M) , welche enthalten

Polymer (P) , das zu einem vernetzten Polymer (PV) feuchte - vernetzbar ist, wobei das Polymer (P) hydrolysierbare

Silangruppen an mindestens einer Stelle enthält, die nicht den beiden Enden der Polymerhauptkette entspricht und

Silan (W) mit mindestens einer hydrolysierbaren Gruppe als Wasserfänger, der bei 90°C und 1 bar schneller mit Wasser reagiert als das feuchtevernetzbare Polymer (P) .

3. Stabilisierte Mischungen (M) nach Anspruch 1 oder 2, bei

denen das Polymer (P) mindestens ein Strukturelement der allgemeinen Formel I Pol[-(R2)p~SiRVaXa]b (I) , an mindestens einer Stelle des Polymers aufweist, die nicht den beiden Enden der Polymerhauptkette entspricht, wobei

Pol- einen polymeren Rest mit einer Molmasse von im

Zahlenmittel Mn mindestens 500 g/mol bedeutet,

R1 einen unsubstituierten oder durch einen oder mehrere

Substituenten Q substituierten Ci-Ci8 Alkyl- oder C6-Ci0- Aryl- oder Sii-Si2o Siloxyrest oder kondensiertes Silanhydrolysat von Silanen mit 1, 2, 3 oder 4 hydrolysierbaren Gruppen,

einen zweibändigen, unsubstituierten oder durch einen oder mehrere Substituenten Q substituierten

Kohlenwasserstoffrest mit 1-20 C-Atomen, der durch ein bis drei Heteroatome unterbrochen sein kann, oder einen

Siloxanrest mit 1-20 Si-Atomen, in dem die Si-Atome

ebenfalls Gruppen R1 oder X tragen können,

einen Fluor-, Chlor-, Brom-, lod-, Cyanato-, Isocyanato-, Cyano-, Nitro-, Nitrato-, Nitrito-, Silyl-, Sxlylalkyl-, Silylaryl-, Siloxy-, Siloxanoxy- , Siloxyalkyl- ,

Siloxanoxyalkyl- , Siloxyaryl-, Siloxanoxyaryl- , Oxo-, Hydroxy- , Epoxy- , Alkoxy- , Aryloxy- , Acyloxy-, 5-Sulfonato- , O-Sulfonato, Sulfato-, S~Sulfinato- , O-Sulfinato- , Amino- , Alkylamino-, Arylamino-, Dialkylamino- , Diarylamino- , Arylalkylamino- , Acylamino-, Imido-, Sulfonamido- , Imino-, Mercapto-, Alkylthio- oder Arylthiosubstituenten, O-Alkyl- N~Carbamato, O-Aryl-W-Carbamato, N~Alkyl~Ö~Carbamato, N- Aryl-O-Carbamato, gegebenenf lls alkyl- oder

arylsubstituierten P-Phosphonato- , gegebenenfalls alkyl- oder arylsubstituierten O-Phosphonato- , gegebenenfalls alkyl- oder arylsubstituierten P-Phosphinato- ,

gegebenenfalls alkyl- oder arylsubstituierten 0- Phosphinato- , gegebenenfalls alkyl- oder arylsubstituierten Phosphino-, Hydroxycarbonyl- , Alkoxycarbonyl- ,

Aryloxycarbonyl- , cyclischen oder acyclischen Carbonat-, Alkylcarbonato- oder Arylcarbonatosubstituenten,

p die Werte 0 oder 1 annehmen kann,

a die Werte 1, 2 oder 3 annehmen kann,

b ganzzahlige Werte größer oder gleich 1 annehmen kann und

X für eine ydroly ierbare Gruppe steht, und wobei mehrere Reste oder Gruppen innerhalb der Formel I miteinander verbunden sein können, so dass ein oder mehrere Ringe entstehen.

Stabilisierte Mischungen (M) nach Anspruch 1 bis 3, bei denen das Polymer (P) , bezogen auf die Gesamtmasse an (P) , mindestens 0,01% an Silangruppen - [ (R2) p-SiR13_aXa] b, bezogen auf die Masse aller Gruppen in Relation zur Gesamtmasse an Polymer (P) enthält.

Stabilisierte Mischungen (M) nach Anspruch 1 bis 4, bei denen das Wasserfänger Silan (W) der allgemeinen Formel II

■ (Y)cSi(CHa-Z). (II) entspricht, wobei

R3 dieselben Bedeutungen wie R1 oder wie X annehmen kann, q die Werte 0, 1, 2 oder 3 annehmen kann,

c die Werte 1, 2, 3 oder 4 annehmen kann,

Y für eine hydrolysierbare Gruppe steht,

Z für eine heteroatomhaltige Gruppe steht, die über ein

Heteroatom an die CH2-Gruppe gebunden ist,

q + c die Werte 1, 2, 3 oder 4 annehmen kann,

und wobei mehrere Reste oder Gruppen innerhalb der

allgemeinen Formel II miteinander verbunden sein können, so dass ein oder mehrere Ringe entstehen.

6. Stabilisierte Mischungen (M) nach Anspruch 1 bis 5, bei

denen

(A) X und Y so gewählt werden, dass der pKa-Wert der zu Y"

konjuguierten Br0nsted-Säure YH kleiner gewählt wird als der pKa-Wert der zu X" konjuguierten Br0nsted-Säure XH, wobei Y" eine Abgangsgruppe an einem Si-Atom von Strukturlementen der allgemeinen Formel II und " die

Abgangsgruppe am Si-Atom von Strukturelmenten der

allgemeinen Formel I darstellt, wobei, wenn X bzw. Y eine Si -gebundene Aminofunktion darstellt, der pKa-Wert der zu X" bzw. Y~ übernächst konjugierten Säure, d.h. der pKa-Wert von

XH2+ bzw. von YH2+, für den Vergleich der pKa-Werte

herangezogen wird, d.h. der pKa-Wert von XH wird, wenn weder X noch Y ein Aminorest ist, mit dem pKa-Wert von YH

verglichen; der pKa-Wert von XH wird, wenn Y ein Aminorest ist und X kein Aminorest ist, mit dem pKa-Wert von YH2+ verglichen; der pKa-Wert von XH2+ wird, wenn Y kein

Aminorest ist und X ein Aminorest ist, mit dem pKa-Wert von YH verglichen; und der pKa~Wert von XH2+ wird, wenn Y ein Aminorest ist und X ein Aminorest ist, mit dem pKa-Wert von YH2+ verglichen, oder

(B) q in der allgemeinen Formel II gleich 1, 2 oder 3 gewählt wird, oder

(C) X und Y so gewählt werden, dass XH und YH Alkohole sind, wobei XH ein in der Umgebung der alkoholischen

Hydroxylgruppe sterisch anspruchsvoller gehinderter

Alkhohol ist als YH, wobei der sterische Anspruch des

Substituenten an der alkoholischen Hydroxylfunktion

aufsteigend geordnet wird nach der Reihe Methyl < Ethyl < n-Propyl < n-Butyl < C5-C2o n-Alkyl < iso-Butyl < iso-Propyl < sec-Butyl < C3-C20 sec-Alkyl < tert-Butyl < tert-Pentyl »

CS~C20 tert-Alkyl, oder

(D) der Wert von c in der allgemeinen Formel II größer gewählt wird als der Wert von a in allgemeinen allgemeinen Formel I .

Stabilisierte Mischungen (M) nach Anspruch 1 bis 6, welche mindestens einen Katalysator enthalten, der ausgewählt wird aus zinnorganischen Verbindungen, Titanverbindungen, Azaverbindungen, Basen oder anorganischen oder organischen Säuren.

8. Verfahren zur Vernetzung von Polymeren (P) in Mischungen (M) gemäss Anspruch 1 bis 7 mit Wasser.

"9. Silane der allgemeinen Formel III,

R-CH2-C (=0) -0-CH2-Si (R5) 3-c (Y1) 0 UH) wobei

R4 einen gesättigten oder einfach oder mehrfach ungesättigten, unsubstituierten, acyclischen, monocycIisehen oder

bicyclischen C3~-C40 Alkylrest oder C7-C40 Arylrest oder C7-C40 Arylalkylrest oder C7-C40 Alkylarylrest , der nur aus

Kohlenstoff- und Wasserstoffatomen besteht und

Y1 einen gegebenenfalls substituierten Ci-C2o Alkoxyrest

bedeutet und

R5 einen unsubstituierten Ci - C4o Kohlenwasserstoffrest bedeutet und

c dieselben Bedeutungen annehmen kann wie in Anspruch 5

def niert .

Description:
Stabilisierte feuchtevernetzbare Polymere mit 2-phasiger Vernetzungskinetik

Die vorliegende Erfindung betrifft stabilisierte Mischungen enthaltend feuchtevernetzbare Polymere mit hydrolysierbaren Silangruppen und einen Wasserfänger und ein Verfahren zur

Vernetzung der Mischungen mit Wasser und Wasserfänger.

Feuchtevernetzbare Polymere, die mit Wasserfängern stabilisiert werden, sind in der Literatur bekannt. Die Zugabe von Wasserfängern ermöglicht die Verarbeitung der feuchtevernetzbaren Polymere auch an atmosphärischer Luft, die, wenn sie nicht vorgetrocknet wird, Wasser enthält. Wasserfänger reagieren mit eindringendem Wasser, ohne Vernetzung zu bewirken. Ein

Grundproblem bei diesen Systemen ist, dass die Kinetik der

Feuchtevernetzung, des stabilisierten Systems nicht nur während der Verarbeitung gebremst ist, sondern auch hernach, also wenn das feuchtevernetzbare Polymer gezielt vernetzt werden soll. So beschreiben beispielsweise EP 245 938, EP 7 765 und US 4 043 953 Polymere, die via Silanfunktionen feuchtevernetzbar sind, und die mittels Einsatz hydrolysierbarer Silane als Wasserfänger stabilisiert werden; EP 7 765 nennt als Wasserfänger darüber hinaus Trialkylorthoformiate . EP 351 142 beschreibt feuchtevernetzbare Polymere, die mit Dipentaerythritolestern stabilisiert werden. EP 149 903 beschreibt die Verwendung von Phosphor- und Antimon-Verbindungen als Wasserfänger.

Die Schriften EP 1 414 909 und EP 1 529 813 beschreiben organische Polymere mit ilanendgruppen, denen Verbindungen mit hydrolysierbaren Gruppen, meist Silane, zugesetzt wurden, die eine höhere Reaktivität gegenüber Wasser als die silantermi- nierten Polymere haben. Bei silanterminierten Polymeren werden solche Wasserfänger mit dem Zweck zugesetzt, die Aushärtungs- Charakteristik und die Viskosität der silanterminierten Polymere zu verbessern, was durch Kettenverlängerung, d.h. Cokon- densation des Wasserfängers mit den silanterminierten Polymeren geschieht. Man sollte daher erwarten, dass der Zusatz eines Wasserfängers auch als Zusatz; eines Vernetzungsmittels angesehen werden kann, welches die Vernetzung des Gesamtsystems verstärkt .

Aufgrund US 4 043 953 sollten Fachleute erwarten, dass schnell mit Wasser kondensierende Verbindungen eher als Vernetzer denn als Stabilisator wirken und daher, wenn sie feuchtevernetzenden Polymeren beigemischt werden, die Vernetzung ganz einfach beschleunigen sollten. Für silanterminierte Polymere siehe die Schriften EP 1 414 909 und EP 1 529 813, die speziell die

Einschätzung von Fachleuten zur Kettenverlängerung silan- terminierter Polymere durch zugesetzte Wasserfänger

beschreiben.

Gegenstand der Erfindung sind stabilisierte Mischungen (M) , welche enthalten

Polymer (P) , das zu einem vernetzten Polymer (PV) feuchtever- netzbar ist, wobei das Polymer (P) hydrolysierbare Silangruppen an mindestens einer Stelle enthält, die nicht den beiden Enden der Polymerhauptkette entspricht und

Silan (W) mit mindestens einer hydrolysierbaren Gruppe als Wasserf nger, der bei 25°C und 1 bar oder bei 90 °C und 1 bar schneller mit Wasser reagiert als das feuchtevernetzbare

Polymer (P) .

Silane (W) , die bei 90 °C und 1 bar schneller mit Wasser reagieren als feuchtevernetzbare Polymere (P) , reagieren aller Regel auch bei anderen Bedingungen, vor allem im Temperaturbereich von 0 °C bis 300 °C und im Druckbereich von 0 bar bis 5000 bar, insbesondere bei 25 °C und 1 bar schneller mit Wasser als die Polymere (P) . Es wurde gefunden, dass Mischungen (M) enthaltend

feuchtevernetzbare Polymere (P) eine 2-phasige Vernetzungskinetik aufweisen, wenn sie mit mindestens einem Wasserfänger (W) stabilisiert werden, der schneller mit eindringendem Wasser reagiert als das Polymer (P) , und das Polymer (P) mindestens eine hydrolysierbare Silangruppe an mindestens einer Stelle aufweist, die nicht den beiden Enden der Polymerhauptkette entspricht. Die Polymerhauptkette ist im Fall verzweigter Polymere die längste darstellbare Wiederholungseinheit. Die Abstimmung der Hydrolysekinetik von (P) versus der Hydrolysekinetik von (W) sowie die Kondensationskinetik von (P} erlauben, die Mischungen (M) durch eine 2-phasige Vernetzungs- kinetik zu vernetzen, wobei die erste Phase der Vernetzungs- kinetik im Vergleich zur Vernetzung desselben Systems ohne Wasserfänger (W) langsamer ist und die zweite Phase der

Vernetzungskinetik im Vergleich zur Vernetzung desselben

Systems ohne Wasserfänger schneller ist.

Der Vorteil eines solchen Systems (M) liegt darin, dass zu Be- ginn einer Feuchteeinwirkung keine oder stark gebremste

Vernetzung eintritt, was beispielsweise die Verarbeitung des feuchtevernetzbaren, mit Wasserfänger (W) stabilisierten

Polymers (P) an atmosphärischer feuchter Luft ermöglicht, und dass dennoch die Vernetzung nach der Verarbeitung - also dann, wenn die Vernetzung gezielt erwünscht ist - mit ungebremster Geschwindigkeit vonstatten geht. Als Maß der Vernetzung dient vorzugsweise der während der Vernetzung des Polymers (P) zunehmende Gelgehalt. Vorzugsweise weist das Polymer (P) mindestens ein

Strukturelement der allgemeinen Formel I an mindestens einer Stelle des Polymers auf, die nicht den beiden Enden der Polymerhauptkette entspricht, wobei

Pol- einen polymeren Rest mit einer Molmasse von im

Zahlenmittel M n mindestens 500 g/mol bedeutet,

R 1 einen unsubstituierten oder durch einen oder mehrere

Substituenten Q substituierten Ci-Ci 8 Alkyl- oder C 6 -C 10 - Aryl- oder Sii-Si 20 Siloxyrest oder kondensiertes

Silanhydrolysat von Silanen mit 1, 2, 3 oder 4

hydrolysierbaren Gruppen,

R 2 einen zweibindigen, unsubstituierten oder durch einen

oder mehrere Substituenten Q substituierten

Kohlenwasserstoffrest mit 1-20 C~Atomen, der durch ein bis drei Heteroatome unterbrochen sein kann, oder einen Siloxanrest mit 1-20 Si -Atomen, in dem die Si -Atome ebenfalls Gruppen R 1 oder X tragen können,

Q einen Fluor-, Chlor-, Brom-, lod- , Cyanato- , Isocyanato-, Cyano-, Nitro-, Nitrato- , Nitrito-, Silyl-, Sxlylalkyl-, Silylaryl-, Siloxy-, Siloxanoxy- , Siloxyalkyl- ,

Siloxanoxyalkyl- , Siloxyaryl-, Siloxanoxyaryl- , Oxo- , Hydroxy-, Epoxy- , Alkoxy- , Aryloxy- , Acyloxy- , S- Sulfonato-, Ö-Sulfonato, Sulfato-, 5-Sulfinato- , 0- Sulfinato-, Amino-, Alkylamino-, Arylamino- ,

Dialkylamino- , Diarylamino- , Arylalkylamino- , Acylamino-, Imido-, Sulfonamido- , Imino-, Mercapto-, Alkylthio- oder Arylthiosubstituenten, 0-Alkyl -N-Carbamato, O-Aryl-W- Carbamato, W-Alkyl- OCarbarnato , W-Aryl~0~Carbamato, gegebenenfalls alkyl- oder arylsubstituierten P- Phosphonato- , gegebenenfalls alkyl- oder

arylsubstituierten 0- hosphonato- , gegebenenfalls alkyl - oder arylsubstituierten P~Phosphinato~ , gegebenenfalls alkyl- oder arylsubstituierten O-Phosphinato- ,

gegebenenf lls alkyl- oder arylsubstituierten Phosphino-, Hydroxycarbonyl- , Alkoxycarbonyl- , Aryloxycarbonyl- , cyclischen oder acyclischen Carbonat-, Alkylcarbonato- oder Arylcarbonatosubstituenten,

ρ die Werte 0 oder 1 annehmen kann,

a die Werte 1, 2 oder 3 annehmen kann,

b ganzzahlige Werte größer oder gleich 1 annehmen kann und X für eine hydrolysierbare Gruppe steht,

und wobei mehrere Reste oder Gruppen innerhalb der Formel I miteinander verbunden sein können, so dass ein oder mehrere Ringe entstehen.

Das Polymer (P) kann bestimmte Kristallinitätsgrade , bestimmt durch Röntgenbeugung oder durch Schmelzenthalpie, aufweisen, die je nach Anwendung vorteilhaft gewählt werden. Gleiches gilt für die Viskositäten, Verzweigungsgrade oder Molmassen von (P) . Die Molmassenverteilungen der Polymere (P) können unimodal, bimodal oder multimodal sein. Die Silangruppen können in

Polymer (P) beispielsweise durch Pfropfung {beispielsweise ionisch oder radikalisch) , Cokondensation, Additionsreaktion, Copolymerisation (beispielsweise radikalische Copolymerisation von Silanen, die ungesättigte organofunktionelle Gruppen aufweisen, mit olefinischen Monomeren) , durch Metathesereaktion (beispielsweise metallorganisch) oder durch Benkeser-Reaktion oder durch mehrere der genannten Reaktionen, die nebeneinander oder nacheinander ausgeführt werden können, eingeführt werden.

Pol- ist der Rest eines Polymers {PI) . Vorzugsweise ist das Polymer (PI) ein Polyolefin, ein lineares, verzweigtes, hochverzweigtes oder hyperverzweigtes Polyolefin, das beispielsweise durch Polymerisation von Olefinen unter

radikalischen Bedingungen oder mit Metallocen-, Phillips- oder Ziegler-Natta-Katalysatoren oder mit Katalysatoren, die zu einer „chain walking isomeriaation" fähig sind, oder durch ionische Polymerisation hergestellt wurde, beispielsweise

Polyethylen, ein verzweigtes, hochverzweigtes oder

hyperverzweigtes Polyethylen, oder ein C 3 -C 18 Poly- -Olefin (z.B. Polymere aus Propen, 1-Buten, 2 -Methyl-1-propen) oder ein Copolymer aus den vorgenannten Polyolefinen (z.B. Ethen-oc-

01e£in-Copolymer, insbesondere Ethen-Propen-Copolymer, Ethen-1- Buten-Copolyme , Ethen-1-Hexen-Copolymer und Ethylen » l-Octen- Copolymer, Ethen- Propen- 1-Buten-Terpolymer, LLDPE) ; Kautschuke; Polyvinylacetat , ein Ethen-Vinylacetat-Copolymer; ein Ethen- Vinylether-Copolymer , beispielsweise Ethen-Ethylvinylether™ ,

Ethen-Butylvinylether- oder Ethen-Isobutylvinylether-Copolymer; ein Polyolefin- oder Poly-cc-Olefin-Homo- oder Copolymerwachs ; Polyester wie z.B. Poly-1 , -butylenglykol- oder -1, 2-ethylen- glykol- oder -diethylenglykol-terephthalat oder -phthalat oder -adipat; Polyamid (Nylon ® - oder Perlon ® -Typ) ; ein Acrylat- polymer oder Acrylatcopolymer, beispielsweise Ethylen-Butyl- acrylat-Copolymer, Ethylen-Ethylacrylat -Copolymer, Ethylen- Methylacrylat-Copolymer, Ethylen-Acrylsäure-Copolymer, wobei letzteres auch teilweise oder vollständig als Salz, beispiels- weise als Zinksalz, vorliegen kann, Poly (methylacrylat) , Poly- {ethylacrylat} , Poly (butylacrylat) ; ein Methacrylatpolymer oder Methacrylatcopolyme , beispielsweise Ethylen-Butylmethacrylat- Copolymer, Ethylen-Ethylmethacrylat-Copolymer, Ethylen-Methyl- methacrylat-Copolymer, Ethylen-Methacrylsäure-Copolymer, wobei letzteres auch teilweise oder vollständig als Salz, beispielsweise als Zinksalz, vorliegen kann, Poly (methylmethacrylat) , Poly (ethylmethacrylat) , Poly (butylmethacrylat) ; ein Poly- alkylenoxid wie Polyethylenoxid oder Polypropylenoxid oder ein Polyether, beispielsweise aus Tetrahydrofuran, oder ein Copoly- mer oder ein Blockcopolymer oder ein Pfropfcopolymer aus zwei oder mehreren der genannten Polymere . R 1 ist vorzugsweise ein unsubstituierter Ci-C 6 Alkyl- oder

Phenylrest, insbesondere Methyl- oder Ethylrest.

R 2 ist vorzugsweise ein unsubstituierter organischer Rest mit 1 bis 10 C-Atomen, der durch 0 oder N unterbrochen sein kann, wenn er mindestens 3 C-Atome aufweist. Bevorzugt ist keine Unterbrechung mit O oder N oder Unterbrechung mit 1 oder 2 Heteroatomen ausgewählt aus O oder N. Bevorzugte R 2 umfassen Alkylreste mit 1, 2, 3, 4 oder 5 OAtomen. Bevorzugte

Substituenten Q an R 2 umfassen Oxo. Bevorzugte Anzahl der

Substituenten Q an R 2 ist 0, 1 oder 2.

Bevorzugte Reste X sind Alkoxy, Alkenoxy, Amino, Kohlenwasser- stoffamino, Acylamino, Propen- 2 -oxy , Amino, Cx-Cio-Alkylamino, C 6 -C 20 -Arylamino, Ci~C 10 -Dialkylamino, C 6 -C 20 -Diarylamino und C 6 ~ C 2 o-Aryl~Ci-Ci 0 -alkylamino, insbesondere Ci-C 6 Alkoxy, wie ethoxy, Ethoxy, n-Propoxy, i so-Propoxy, n-Butoxy, iso~Butoxy, sec-Butoxy, tert-Butoxy , n-Pentoxy, iso-Pentoxy, sec-Pentoxy, tert- Pentoxy . Bevorzugt sind Reste X über Sauerstof atome an Silicium gebunden. a bedeutet vorzugsweise die Werte 2 oder 3. b steht vorzugsweise für die ganze Zahlen ausgewählt aus 1 bis 100, bevorzugt für ganze Zahlen ausgewählt aus 1 bis 20, insbesondere aus 1 bis 5. Beispiele für b sind 1, 2, 3, 4, 5, 6 und größer. Bezogen auf eine beliebige Probe des Polymers (P) beträgt das Verhältnis n(Eb) : n(P), d.h. das Verhältnis der Summe aller b , aufsummiert über alle Moleküle des Polymers (P) der Probe, zu der Anzahl der Moleküle des Polymers (P) in der Probe bevorzugt mindestens 0,01, insbesondere bevorzugt mindestens 0,1 und bevorzugt höchstens 20, insbesondere höchstens 50. Das

Verhältnis n(Eb) : n{P) ist bestimmbar, indem beispielsweise die Stoffmengenkonzentration c( b) an Strukturelementen der allgemeinen Formel I je Gramm Polymer (P) bestimmt wird

(Einheit [mol/g]) . Diese Bestimmung kann beispielsweise durch kernmagnetische Resonanz, durch Atomabsorpionsspektroskie

(„AAS"; zu quantifizierendes Element: Si) , durch Messung im induktiv gekoppelten Plasma {„ICP"; zu quantifizierendes

Element: Si) , durch Infrarotspektroskopie (zu integrierende Bande z.B. Si-OMe) , durch Messung der Anzahl an freisetzbaren Gruppen HX durch Hydrolyse oder durch Veraschen (Berechnung der Si-Stoffmenge als Si0 2 in der Asche} bestimmt werden. Dann gilt :

n(Eb) : n(P} = c ( b) x M n (P) ,

wobei M n (P) die Molmasse des Polymers (P) im Zahlenmittel ist. M n ist beispielsweise durch Gelpermeationschromatographie bestimmbar .

Das Polymer (P) enthält, bezogen auf die Gesamtmasse an (P) , bevorzugt mindestens 0,01%, besonders bevorzugt mindestens

0,1%, insbesondere mindestens 0,2% und vorzugsweise höchstens 50%, besonders bevorzugt höchstens 30%, insbesondere höchstens 20% an Silangruppen, bezogen auf die Masse aller Gruppen - [ (R 2 ) in Relation zur Gesamtmasse an Polymer (P) .

Vorzugsweise ist der Wasserfänger (W) ein Silan der allgemeinen Formel II, ( 3 4~c-q (Y) 0 Si (CH 2 (II) wobei

R 3 dieselben Bedeutungen wie R 1 oder wie X annehmen kann, q die Werte 0, 1, 2 oder 3 annehmen kann,

c die Werte 1, 2, 3 oder 4 annehmen kann,

Y für eine hydrolysierbare Gruppe steht,

Z für eine heteroatomhaltige Gruppe steht, die über ein

Heteroatom an die CH 2 -Gruppe gebunden ist,

q + c die Werte 1, 2, 3 oder 4 annehmen kann,

und wobei mehrere Reste oder Gruppen innerhalb der allgemeinen Formel II miteinander verbunden sein können, so dass ein oder mehrere Ringe entstehen. Dass der Wasserfänger (W) schneller mit Wasser reagiert als das Polymer (P) wird vorzugsweise dadurch erzielt, dass in den allgemeinen Formeln (I) bzw. (II) (A) X und Y so gewählt werden, dass der pK a ~Wert der zu Y ~ konjuguierten Br0nsted~Säure YH kleiner gewählt wird als der pK a -Wert der zu X " konjuguierten Br0nsted-Säure XH, wobei Y ~ eine Abgangsgruppe an einem Si-Atom von Strukturlementen der allgemeinen Formel II und X " die

Abgangsgruppe am Si-Atom von Strukturelmenten der allgemeinen Formel I darstellt, wobei, wenn X bzw. Y eine Si-gebundene Aminof nktion darstellt, der pK a -Wert der zu X " bzw. Y ~

übernächst konjugierten Säure, d.h. der pK a -Wert von XH 2 + b2w. von YH 2 + , für den Vergleich der pK a - erte herangezogen wird, d.h. der pK a -Wert von XH wird, wenn weder X noch Y ein

Aminorest ist, mit dem pK a -Wert von YH verglichen; der pK a -Wert von XH wird, wenn Y ein Aminorest ist und X kein Aminorest ist, mit dem p a -Wert von YH 2 + verglichen; der p a -Wert von XH 2 + wird, wenn Y kein Aminorest ist und X ein Aminorest ist, mit dem pK a ~ Wert von YH verglichen; und der pK a ~Wert von XH 2 + wird, wenn Y ein Aminorest ist und X ein Aminorest ist, mit dem pK a -Wert von YH 2 * verglichen, oder

(B) q in der allgemeinen Formel II gleich 1, 2 oder 3 gewählt wird, oder

(C) X und Y so gewählt werden, dass XH und YH Alkohole sind, wobei XH ein in der Umgebung der alkoholischen Hydroxylgruppe sterisch anspruchsvoller gehinderter Alkhohol ist als YH, wobei der sterische Anspruch des Substituenten an der alkoholischen Hydroxylfunktion aufsteigend geordnet wird nach der Reihe

Methyl < Ethyl < 11-Propyl < n-Butyl < C 5 ~C 20 n-Alkyl < iso-Butyl < iso-Propyl < sec-Butyl < C 5 ~C 20 sec-Alkyl < tert-Butyl < tert- Pentyl « C 6 -C 20 tert-Alkyl, oder

(D) der Wert von c in der allgemeinen Formel II größer gewählt wird als der Wert von a in allgemeinen allgemeinen Formel I, oder eine der Voraussetzungen (A) , (B) , (C) oder (D) oder die Voraussetzungen {A) und {B) oder (A) und (C) oder (A) und (D) oder (B) und (C) oder (B) und (D) oder (C) und (D) oder (A) , (B) und (C) oder (A) , (B) und (D) oder (A) , (C) und {D) oder (B) , (C) und (D) oder {A) , (B) , (C) und (D) gleichzeitig erfüllt werden.

Vorzugsweise wird Voraussetzung (B) erfüllt, q nimmt in diesem Fall vorzugsweise den Wert 1 an.

Besonders geeignete Wasserfänger (W) mit mindestens einer

Struktureinheit der allgemeinen Formel II sind die Silane der allgemeinen Formel III,

R 4 -CH 2 ~C (=0) -0-CH 2 ~Si (R 5 ) 3 c (Y 1 ) c (III) wobei

R 4 einen gesättigten oder einfach oder mehrfach ungesättigten, unsubstituierten, acyclischen, monocyclischen oder bicyclischen C 3 ~C 40 Alkylrest oder C 7 -C 40 Arylrest oder C 7 -C 40 Arylalkylrest oder C7-C40 Alkylarylrest , der nur aus

Kohlenstoff- und Wasserstoffatomen besteht und

Y 1 einen gegebenenfalls substituierten C ! -C 2 o Alkoxyrest

bedeutet und

R 5 einen unsubstituierten Ci-C 40 Kohlenwasserstoffrest bedeutet und

c dieselben Bedeutungen annehmen kann wie oben definiert. Die Silane der allgemeinen Formel III sind ebenfalls Gegenstand der Erfindung.

R 3 ist vorzugsweise ein unsubstituierter Ci-C 6 Alkyl- oder

Phenylrest, insbesondere Methyl- oder Ethylrest.

R 4 ist vorzugsweise ein unsubstituierter C 4 -C 20 Alkylrest oder oder ein C 7 ~C 2G Arylrest oder ein C 7 -C 20 Alkylarylrest oder ein C7--C 2 Q Arylalkylrest, insbesondere C 5 ~C 2 o Alkylrest. R 4 ist bevorzugt gesättigt. R 4 ist bevorzugt acyclisch. R 4 ist

bevorzugt linear.

R 5 ist vorzugsweise ein unsubstituierter Ci-C 6 Alkyl- oder

Phenylrest, insbesondere Methyl- oder Ethylrest. Bevorzugte Reste Y entsprechen den bevorzugten Resten X . Bevorzugt sind Reste Y über Sauerstoffatome an Silicium gebunden.

Bevorzugte Reste Y 1 sind unverzweigte Alkoxyreste oder

(Alkoxyalkoxy) reste, insbesondere Methoxy- , Ethoxy- oder (2- Methoxyethoxy) reste .

Z steht vorzugsweise für einen Fluor-, Chlor-, Brom-,

lodsubstituenten oder einen einwertigen über Sauerstoff, Schwefel, Stickstoff oder Phosphor angebundenen Rest. Bevorzugt bedeutet Z Gruppen OR 11 , OC{0)R 12 , OCiOOR 11 , OC(0}NR 13 2 ,

N (R 13 ) C (O) OR 11 , N(R 13 }C(0)NR 13 2 , NR 13 2 , N (R 13 ) [C (O) R 12 ] , N[C(0)R 12 ] 2 , N(R 13 }S(0) 2 R 14 , N[C{0)R 12 ] [S (O) 2 R 14 ] , N [S (O) 2 R 14 ] 2 , S(0) 2 R 14 , F, Cl, Br oder I, besonders bevorzugt Gruppen OC(0)R 12 , OC(0)NR 13 2 ,

NfR^CfOjOR 11 , N(R 13 ) C{0)NR 13 2 , NR l3 2 , N (R 13 ) [C (O) R 12 ] , N [C (0} R 12 ] 2 , N(R 13 )S{0) 2 R 14 , N[C(0)R 12 ] [S(0) 2 R 14 ] , P(0) (OR 15 } 2 , wobei R 11 , R 1 und R 15 für gegebenenfalls substituierte Cx~C -Alkyl- oder C 6 -C 20 - Arylreste und R 12 und R 13 für Wasserstoff oder gegebenenfalls substituierte Ci-C 2 o-Alkyl- oder C 6 -C 20 ~Arylreste stehen und R 11 , R 12 , R 13 , R 14 und R 15 innerhalb einer Gruppe Z miteinander

verknüpft sein können, so dass Ringe entstehen. Wird die oben mit (A) bezeichnete Ausführungs orm realisiert, so ist der pK a -Wert von YH bzw. von YH 2 + bevorzugt teilweise oder vollständig um mindestens 0,5 Einheiten, insbesondere um mindestens 1,0 Einheiten kleiner als der von XH bzw. XH 2 + , wobei für die Entscheidung, ob der pK a ~Wert von YH bzw. YH 2 + mit dem pK a -Wert von XH bzw. XH 2 + herangezogen wird, die oben beschriebenen Auswahlkriterien herangezogen werden.

Das für das Stoffmengenverhältnis von Wasserfänger (W) zu Polymer (P) wird sinnhaf erweise das Verhältnis der Stoffmengen- summe aller hydrolysierbarer Gruppen Y in (W) , η(ΣΥ), zu allen hydrolysierbaren Gruppen X in {P} , η(ΣΧ), herangezogen. Das

Stoffmengenverhältnis η(ΣΧ) : η{ΣΥ) beträgt vorzugsweise mindestens 1 : 100, insbesondere mindestens 1 : 10 und

höchstens 100 : 1, insbesondere höchstens 10 : 1. Dieses

Verhältnis und die absolut vorliegenden Konzentrationen, nämlich η(ΣΧ)/πι(Μ} bzw. η{ΣΥ)/ηα(Μ), bestimmen die Charakteristik der beiden Phasen der Vernetzungskinetik. Je größer die Konzentration n(£Y)/m{M) und je kleiner das Verhältnis η(ΣΧ} : η{ΣΥ) ist, desto länger dauert unter ansonsten vergleichbaren Bedingungen die erste Phase der Vernetzungskinetik, die

Stabilisierungsphase, an und umgekehrt. Fachleute können durch orientierende Versuche leicht herausfinden, wie viel asser- fänger (W) die Mischung (M) für ansonsten gegebene Mischungsbestandteile enthalten muss, um das gewünschte Ausmaß und die gewünschte Dauer der Stabilisierung der Mischung (M) gegen Feuchtevernetzung unter den gegebenen Bedingungen zu erzielen. Die Mischung (M) enthält vorzugsweise mindestens 0,01%, besonders bevorzugt mindestens 0,1%, insbesondere mindestens

0,2% und bevorzugt höchstens 50%, besonders bevorzugt höchstens 30%, insbesondere höchstens 20% an Wasserfänger (W) .

Die Mischungen (M) können hergestellt werden, indem mindestens ein Polymer (P) mit einem Wasserfänger (W) versetzt wird.

Dieses Verfahren kann auch zwei, drei mehrmals nacheinander mit Polymer (P) mit einem Wasserfänger (W) wiederholt werden. Die Mischungen (M) können beispielsweise in Einschneckenextrudern oder in Zweischneckenextrudern, bevorzugt corotierend, oder in dynamischen oder in statischen Mischern, oder in Rührkesseln oder Prallmischern oder Verweilzeitkesseln hergestellt werden. Bevorzugt wird die Abmischung bei Temperaturen oberhalb des Schmelzpunkts des Polymers (P) hergestellt, die Mischung kann aber auch beispielsweise durch Diffusion von Wasserfänger (W) in festes Polymer (P) hergestellt werden. Ebenso kann die

Mischung (M) heterogen vermischtes Polymer (P) und Wasserfänger (W) enthalten, so dass eine Durchmischung bei der Prozessierung beim Anwender geschieht; so kann beispielsweise die Mischung (M) ein Granulat enthaltend ein Polymer (P) und ein zweites

Granulat enthaltend einen Wasserfänger (W) enthalten. Wasserfänger (W) können auch direkt beim Herstellprozess von

Polymeren (P) zugemischt werden. Die Mischungen (M) können portioniert werden. So können sie als solche oder als eine Abmischung mit weiteren Zusätzen

beispielsweise als Schmelze abgefüllt und gegebenenf lls abgekühlt werden, was beispielsweise nach dem Erkalten

erstarrte Schmelzblöcke ergibt, oder beispielsweise mechanisch aus dem Feststoff granuliert, gemahlen, gebrochen, geschnitten, gewalzt, gepresst, extrudiert, aus der Schmelze oder aus der Lösung kristallisiert oder gefällt, pelletiert, flüssig oder halbflüssig als Tropfen gegebenenfalls auf einem Trägermaterial zu Pellets abgekühlt oder aus dem flüssigen oder festen Zustand durch Einwirken eines Lösungsmittels gelöst oder auf beispielsweise Trägerfolien aufgerakelt werden, so dass als Lieferformen beispielsweise Stangen, Stäbe, Platten, Folien, Pellets,

Flocken, Granulate, Pulver, Blöcke, Lösungen oder Schmelzen erhalten werden, die gegebenenfalls in gebrauchsfertige

Behälter wie beispielsweise Kartuschen abgefüllt oder in

Behältnisse wie Fässer, Folien, Säcke oder Tüten verpackt werden können, die vorzugsweise vor dem Zutritt atmosphärischer Feuchtigkeit schützen. Als Zusätze können beispielsweise

Katalysatoren, Trockenmi tel, Antioxidantien oder Antiblock- mittel beigemischt werden. Bevorzugt erfolgen Schritte wie die Portionierung, mechanische Zerkleinerung, das Inlösungbringen, die Formgebung, die Abfüllung, die Lagerung, die Auslieferung und die Verwendung unter einer inerten Gasatmosphäre, die bevorzugt einen Wassergehalt von weniger als 1000 ppm, insbesondere weniger als 100 ppm aufweist. Die inerte Atmosphäre enthält bevorzugt größtenteils Stickstoff oder Argon. Inert bedeutet in diesem Sinne einen geringen Wassergehalt;

gleichzeitig kann die inerte Atmosphäre Sauerstoff aufweisen, wobei Sauerstoffgehalte kleiner als 5 vol-%, insbesondere <l vol-%, bevorzugt sind. Gegenstand der Erfindung ist auch ein Verfahren zur Vernetzung von Polymeren (P) in Mischungen (M) mit .Wasser. Die Vernetzung wird bevorzugt teilweise oder vollständig erst bei oder nach Verarbeitung der Mischung (M) durchgeführt.

Bei der Feuchtigkeitsvernetzung des Polymers (P) in Mischungen (M) enthaltend mindestens ein Polymer (P) entsteht das vernetzte Polymer {PV) . Neben der Bildung von (PV) können weitere Kondensationsprodukte von ( PV} entstehen und Zwischenstufen durchlaufen werden.

In der ersten Phase der Gesamtkinetik reagiert hauptsächlich der Wasserfänger (W) mit eindringendem Wasser und bildet, gegebenenfalls unter Abspaltung von Kondensationsnebenprodukten, den hydrolysierten Wasserfänger (WH) , den feuchtevernetzten

Wasserf nger (WV) , oder entsprechende Kondensate mit Polymeren (P), bezeichnet mit [(P) (W)] , [ (P) (WH) ) oder [ (P) (WV) ] oder eine Mischung aus diesen Verbindungen. „Hauptsächlich" bedeutet im Sinn der vorliegenden Erfindung, dass die mit Silan (W) stabilisierte Mischung (M) enthaltend Polymer (P) langsamer ein Feuchtevernetzungsprodukt von (P) , genannt (PV) , bildet, als ein ansonsten identisches System ohne Wasserfänger (W) dies tun würde. Während der ersten Phase der Vernetzungskinetik können auch Hydrolyseprodukte (PH) des Polymeren (P) gebildet werden, die auch Kondensationsprodukte mit Wasserfänger (W) oder mit Hydrolyseprodukten (WH) des Wasserfängers oder mit

Kondensationsprodukten (WV) des Wasserf ngers bilden können, die mit [(PH) (W)] f [(PH) (WH)] oder [ (PH) (WV) ] bezeichnet werden. In der zweiten Phase der Kinetik der Feuchtevernetzung reagiert das mit Wasserfänger (W) (welcher inzwischen als

Wasserfänger (W) oder in hydrolysierter Form (WH) oder in vernetzter Form (WV) oder als Kondensat [{P) (W)3 , [(P) (WH)J , [{P) (WV}] , [(PH) (W)] , [(PH) (WH)] oder [ (PH) (WV) ] oder als Gemisch aus diesen vorliegen kann) jedoch schneller mit Wasser, als ein ansonsten identisches System, dem anfangs kein

Wasserfänger (W) beigemischt war, das tun würde. In der zweiten Phase der Vernetzungskinetik können in signifikanter Menge feuchtevernetzter Polymere (PV) oder deren

Kondensationsprodukte mit Wasserfänger (W) oder mit

Hydrolyseprodukten (WH) des Wasserfängers (W) oder mit

Kondensationsprodukten {WV) des Wasserfängers (W) gebildet werden, die mit [(PV) (W)], [(PV){WH)] oder [ (PV) (WV) ]

bezeichnet werden. Der Wasserfänger (W) kann auch von Anfang an teil- oder vollhydrolysierte Anteile (WH) oder teilweise oder vollständig kondensierte Anteile (WV) enthalten oder von Anfang an als Kondensate mit Polymer (P) oder mit teilweise oder vollständig hydrolysiertem Polymer (PH) enthalten, d.h. er liegt dann in der Form [ (P) (W) ] , [ (P) (WH) ] , [ (P) (WV) ] ,

[(PH)(W)], [(PH) (WH)] oder t(PH)(WV)] vor. Ebenso kann das Polymer (P) auch von Anfang an teilweise oder vollständig hydrolysierte Anteile (PH) enthalten. Die beschriebene 2-phasige Vernetzungskinetik eröffnet die

Möglichkeit, eine derart stabilisierte Mischung (M) während der ersten Phase unter Feuchigkeitszutritt , beispielsweise an der Luft unter atmosphärischen Bedingungen, zu verarbeiten, ohne dass die Verarbeitung durch die Feuchtigkeitseinwirkung gestört wird. Nach der Verarbeitung, die in der Regel eine Formgebung, beispielsweise zu einem Rohr oder Kabelisolation oder zu einem soliden Formkörper, oder die Herstellung einer Klebestelle oder verklebten Struktur, einschließt, ist eine möglichst schnelle Vernetzung erwünscht. Genau dies ermöglichen die erfindungs- gemäßen stabilisierten Mischungen (M) . Konventionelle (nicht- erfindungsgemäße) Wasserfänger bremsen die Feuchtevernetzungs- kinetik des Systems während des gesamten Zeitraums, d.h.

während beider Phasen. Während der ersten Phase ist dies durch- aus erwünscht - in der Regel bremsen die nicht-erfindungs- gemäßen Wasserfänger während der ersten Phase der Vernetzung die Kinetik nicht so effektiv wie die Wasserfänger (W) dies tun. Der Hauptnachteil der nicht-erfindungsgemäßen Wasserfänger ist jedoch, dass die nicht-erfindungsgemäßen Wasserfänger auch noch in dem Zeitraum der zweiten Phase- wenn also schnelle Vernetzung gezielt erwünscht ist ~ die Vernetzungskinetik von feuchtevernetzbaren Polymeren (P) weiterhin bremsen, während demgegenüber die Wasserfänger (W) in dieser zweiten Phase als Vernetzer wirken, also überraschend erst jetzt den Effekt entfalten, den ein Fachmann von diesen Verbindungen von Anfang an erwarten würde, und damit Vorvernetzung während der

Verarbeitung unterdrücken und hernach eine schnelle Vernetzung genau dann ermöglichen, wenn sie erwünscht ist.

Das zur Vernetzung erforderliche Wasser kann als Dampf und/oder flüssiges Wasser eingesetzt werden oder durch Luftfeuchtigkeit bereitgestellt werden. Die Vernetzung kann bevorzugt bei mindestens 0 °C, besonders bevorzugt mindestens 5 °C,

insbesondere mindestens 10 °C, insbesondere bevorzugt

mindestens 15 °C und bevorzugt höchstens 300 °C, besonders bevorzugt höchstens 200 °C, insbesondere höchstens 170 °C, insbesondere bevorzugt höchstens 140 °C ausgeführt werden.

Die Vernetzung kann bei mindestens 0 bar, besonders bevorzugt mindestens 0,5 bar, insbesondere mindestens 0,9 bar, und bevorzugt höchstens 5000 bar, besonders bevorzugt höchstens 20 bar, insbesondere höchstens 10 bar, besonders bevorzugt bei atmosphärischem Druck ausgeführt werden. Vorzugsweise beginnt die Vernetzung bei oder nach der Verarbeitung der Mischung (M) . Das Verfahren zur Vernetzung kann in Gegenwart von einem oder mehreren Katalysatoren ausgeführt werden. Die Katalysatoren können eine Beschleunigung der Feuchtigkeitsvernetzung der Polymere (P) in den Mischungen (M) bewirken, indem sie die Hydrolyse der im Polymer (P) enthaltenen hydrolysierbaren

Silangruppen unter Wassereinwirkung und/oder deren Kondensation zu Siloxanen katalysieren. Die Katalysatoren können in gleicher Weise auf die Wasserfänger (W) wirken.

Mindestens eine Mischung (M) mit mindestens einem Polymer (P) wird dabei beispielsweise mit einem Katalysator oder mit einem Masterbatch des Katalysators, d.h. einer Mischung des

Katalysators mit einem geeigneten gleich- oder andersartigen Polymer, bevorzugt in der Schmelze vermischt, vorzugsweise in einem Extruder.

Vorzugsweise enthält die Mischung (M) pro 100 Massenteile

Polymer (P) mindestens 0,1, insbesondere mindestens 0,2 und vorzugsweise höchstens 5, insbesondere höchstens 20 Massenteile des Katalysators .

Vorzugsweise enthält die fertige Mischung (M) mindestens

0,0001, bevorzugt mindestens 0,001, besonders bevorzugt mindestens 0,01 Gewichts-% und vorzugsweise höchstens 5, bevorzugt höchstens 1, besonders bevorzugt höchstens 0,2

Gewichts ~% Katalysator.

Als Katalysatoren sind beispielsweise zinnorganische Verbin- düngen, wie Dibutylzinndilaurat , Dioctylzinndilaurat , Dibutyl™ zinnoxid, Dioctylzinnoxid, Zinnsalze, wie beispielsweise

Zinn (II) isooctanoat, Titanverbindungen, wie beispielsweise Titan (IV) isopropylat , Azaverbindungen, wie 1 , 8-Diazabicyclo- [5.4.0] undec-7-en, 1 , 5-Diazabicyclo [4.3.0] non~5-en, 1,4-Diaza- bicyclo [2.2.2] octan, Basen, beispielsweise organische Amine, wie Triethylamin, Tributylamin, Ethylendiamin, oder anorganische oder organische Säuren, wie Toluolsulfonsäure, Dodecyl- benzolsulfonsäure, Stearinsäure, Palmitinsäure oder Myristin- säure einsetzbar. Besonders bevorzugt wird die Vernetzung des Polymers (P) in der Mischung (M) ohne zugesetztes Zinn oder Verbindungen des Zinns durchgeführt. Insbesondere ist der

Gehalt an Zinn bezogen auf das Element (Sn) in Mischungen {M) Sn < 30 ppm, besonders bevorzugt Sn < 5 ppm.

Ob und wie viel Katalysator in der jeweils beabsichtigten

Anwendung erforderlich oder förderlich ist, können Fachleute durch orientierende Versuche leicht selbst ermitteln.

Die Mischungen (M) können als Reaktivschmelzkleber, für die Herstellung von Beschichtungen oder Verklebungen verschiedenster Substrate, für die Herstellung von Formkörpern oder für die Herstellung von langgestrecktem Gut, wie beispielsweise Kabelisolationen, -ummantelungen oder Rohre, eingesetzt werden.

Die Mischungen (M) können vorzugsweise mit denselben Methoden verarbeitet werden, wie die Methoden, mit denen analoge Systeme ohne den entsprechenden Wasserfänger (W) verarbeitet werden, wobei die erfindungsgemäßen Mischungen aufgrund ihrer erhöhten Stabilität gegen unerwünschte Vorvernetzung Vorteile bei der Verarbeitung sowie aufgrund ihrer schnellen Vernetzung nach der Verarbeitung Verfahrensvorteile bei der Vernetzung des

Endprodukts aufweisen.

Alle vorstehenden Symbole der vorstehenden Formeln weisen ihre Bedeutungen jeweils unabhängig voneinander auf. Soweit nicht anders angegeben, bedeuten die vorstehenden %-Angaben Gewichts- Prozente und die vorstehenden Druckangaben absolute Drücke. In allen Formeln ist das Siliziumatom vierwertig. Soweit nicht anders angegeben, wurden die Reaktionen in den nachstehenden Beispielen, einschließlich der Vernetzungsreaktionen, bei atmosphärischem Druck (rund 1 bar) ausgeführt. Beispiele Silansynthesen - Herstellung eines Wasserfängers (W)

Beispiel 1. Synthese von (Caprylatomethyl) trimethoxysilan

(MeO) 3 SiCH 2 Cl + HaOC (0) -n-C 7 H 15 -> (MeO) 3 SiCH 2 OC (O) -n~C 7 H 15 + NaCl

Zu einer Lösung aus 14,78 g (43,6 mmol} Tetrabutylphosphonium- bromid (Fa. Fluka} in 372,1 g (2,18 mol) ( Chlormethyl) trimethoxysilan (Fa. Wacker Chemie AG) wurden 181,1 g (1,09 mol) Natriumcaprylat (Fa. Fluka) [= n~CHi S -C (O) ONa] gegeben und der Ansatz wurde 2,5 Stunden lang bei 130 °C gerührt. Dann wurden weitere 181,1 g (1,09 mol) Natriumcaprylat zugegeben und wei ¬ tere 3,5 Stunden bei 130 °C gerührt. Der Ansatz wurde auf Raumtemperatur abgekühlt, filtriert, der Filterkuchen wurde mit 3 x 150 mL Xylol (Isomerengemisch) nachgewaschen, Filtrat und Waschlösungen wurden vereinigt und im Vakuum destilliert. Man erhielt das Produkt in 71% Ausbeute (431,3 g, 1,55 mmol) als klare, farblose Flüssigkeit, Sdp. 115 °C / 2,5 mbar .

Herstellung von Polymeren (P? , Mischungen (M) und

Vernetzungscharakteristik

Alle im Folgenden angegebenen Teile bedeuten Massenteile.

Für die Versuche wurden folgende Silane verwendet:

Silan A: Vinyltrimethoxysilan (GENIOSIL ® XL 10,

Wacker Chemie AG, Deutschland)

Silan B: (Caprylatomethyl) trimethoxysilan aus Beispiel 1. Silan C: Hexadecyltrimethoxysilan (Silan 25013 VP, Wacker Chemie AG, Deutschland}

Beispiel 2a-b: Silanpf opfung auf Polymer im Laborextruder, Herstellung eines Polymers (P) und Herstellung einer

erfindungsgemäßen Mischung {M) .

Die Pfropfreaktion wurde in einem gleichläufig drehenden

Zweischneckenextruder (ZE 25, Fa. Berstorff) bei einem L/D- Verhältnis von 47 und einem Schneckendurchmesser von 25 mm durchgeführt. Der Extruder wurde mit folgenden Parametern betrieben: Temperaturprofil (in °C) :

130/130/150/190/210/215/215/210/210 { Kopftemperatur) ;

Ausstoß ca. 10 kg/h; Drehzahl 200 ü/Min. Das verwendete Polyethylen mittlerer Dichte ( DPE, Medium

Density Polyethylene) ist durch einen Schmelzindex von 3,5 g/10 min (2,16 kg/190°C) , eine Dichte von 944 kg/m 5 und einen VICAT- Erweichungspunkt von ca. 123 °C charakterisiert. Für Beispiel 2a wurden Silan A, Silan B und Peroxid im Massen ¬ verhältnis 1,00 : 1,87 : 0,10 abgemischt; für Beispiel 2b wurden Silan A und Peroxid im Verhältnis 1,00 : 0,10 abgemischt; das jeweilige Gemisch wurde in die dritte Heizzone bei lSO^C mit Hilfe einer Dosierpumpe der Fa. Viscotec in die

Polymerschmelze dosiert.

Für die Versuche wurde als Peroxid Di- tert-butylperoxid (DTBP, Fa . Merck) verwendet . Die durchgeführten Silanpfropfungen sind in nachfolgender

Tabelle 1 zusammengefasst . Tabelle 1; Durchgeführte Silanpfropfungen (Gewichtsteile)

* entspricht 67.5 mmol je kg MDPE

** nicht erfindungsgemäß (Vergleichsbeispiel)

Die erhaltenen Pfropfpolymere wurden pelletiert und unter

Stickstoff und Feuchtigkeitsausschluss aufbewahrt.

Die Pfropfpolymere enthielten folgende Struktureinheiten:

Pol [-CH 2 -CH 2 -Si (OMe) 3 ] b und Pol [-CH ( e) -Si (O e) 3 ] b ,

entsprechend der Definition eines Polymers (P) , wobei in diesen Struktureinheiten die Einheit Pol- einen Rest des eingesetzten Polyethylens mittlerer Dichte repräsentiert , und wobei b hauptsächlich im Bereich 1-4, insbesondere um 2, lag.

Das Produkt aus Beispiel 2a enthielt ferner (Caprylatomethyl) - trimethoxysilan mit der Struktur n-C 7 H ls -C (O) -0-CH 2 -Si (OMe) 3 entsprechend der Definition eines Wasserfängers (W) . Das hergestellte Produkt aus Beispiel 2a entspricht somit einer erfindungsgemäßen Mischung (M) in Ausführungsform (B) .

Beispiel 3: Herstellung eines Katalysatormasterbatches

Die Herstellung eines Katalysatormasterbatches wurde in einem gleichläufig drehenden Zweischneckenextruder (ZE 25, Fa.

Berstorff) bei einem L/D~Verhältnis von 47 und einem Schneckendurchmesser von 25 mm durchgeführt. Der Extruder wurde mit folgenden Parametern betrieben: Temperaturprofil (in °C) :

130/130/150/190/210/215/215/210/210 (Kopftemperatur) ;

Ausstoß ca. 10 kg/h; Drehzahl 200 U/Min. Als Trägermaterial wurde Polyethylen mittlerer Dichte (MDPE) verwendet, das durch einen Schmelzindex von 3,5 g/10. Min. (2,16 kg/190 °C) , eine Dichte von 944 kg/m 3 und einen VICAT- Erweichungspunkt von ca. 123°C charakterisiert ist. Das Polyethylen wurde mit dem Katalysator vorab abgemischt. Die Mischung wurde mit Hilfe einer Dosierwaage (Fa. Brabender} in den Einzugsbereich des Zweischneckenextruders dosiert.

Für die Herstellung der Katalysatormasterbatches wurden

folgende Katalysatoren verwendet:

Katalysator A: Dioctylzinndilaurat (DOTL) , Wacker Chemie AG, Deutschland

Es wurde folgendes Mischungsverhältnis eingestellt:

MDPE: 98,8 Teile

Katalysator A: 1,2 Teile

Die erhaltenen Katalysatormasterbatches wurden pelletiert und unter Stickstoff und Feuchtigkeitsausschluss aufbewahrt.

Beispiel 4a-b: Herstellung von Probekörpern für die Vernetzung

Die in Beispiel 2a-b hergestellten Pfropfpolymere wurden mit dem in Beispiel 3 hergestellten Katalysatormasterbatch, wie in nachfolgender Tabelle 2 angegeben, abgemischt. Tabelle 2: Zusammensetzung der Probekörper für die Vernetzung (Gewichtsteile)

** nicht erfindungsgemäß

Beispiel 5a-b: Vernetzungscharakteristik

Die Mischungen gemäß Beispiel 4a-b wurden auf einem Ein- schnecken-Messextruder (Fa. Göttfert} mit einem L/D Verhältnis von 20 und einem Schneckendurchmesser von 30 mm durch eine Lochdüse (Durchmesser 5 mm) zu Probestäben extrudiert .

Der Extruder wurde mit folgenden Parametern betrieben:

Temperaturprofil (in °C) : 180/190/195/200 (Ko ftemperatur) ; Drehzahl 25 U/Min.; Füllgrad 100%.

Die gemäß Beispiel 4a-b hergestellten Probestäbe wurden in Proben von je ca. 5 cm Länge geschnitten und für jeweils 1/2 h, 1 h, 4 h und 24 h im Wasserbad bei 90°C gelagert. Zusätzlich wurde jeweils ein Probekörper direkt nach dem Abkühlen auf Raumtemperatur, ohne Wasserlagerung, weiterverarbeitet; diese Proben wurden mit „0 h" bezeichnet und zeigen den Zustand des Produkts direkt nach der Verarbeitung im Extruder. Nach Wasserlagerung und mechanischer Trocknung (Ausnahme „0 h"- Proben: nach dem Abkühlen - d.h. keine Wasserlagerung, keine Trocknung) wurden mit Hilfe einer Drehbank von den Probekörpern Späne mit einer Dicke von 0,7 mm abgehobelt. Die Späne wurden gemäß DIN EN 579 in siedendem Xylol für 8 h extrahiert. Der Gelgehalt wurde durch Differenzwägung der Probe vor und nach Extraktion und Trocknung bestimmt. Die Ergebnisse sind in nachfolgender Tabelle 3 zusammengefasst . Tabelle 3: Gelgehalt (in %) vor (0 h} und nach Wasserlagerung (0,5 h, 1 h, 4 h, 24 h) und Extraktion gemäß DIN EN 579

** nicht erfindungsgemäß

Für Beispiel 5a spiegelt der Zeitraum 0 - 1/2 Stunden die Phase 1 der Vernetzungskinetik wieder {Stabilisierungsphase, gebremste Vernetzung, Wasserfänger (W) reagiert mit eindringendem Wasser) ; der Zeitraum 1/2 - 24 Stunden spiegelt die Phase 2 der Vernetzung wieder (schnelle Vernetzung, Polymer (P) vernetzt) . Beispiel 6. Silanpfropfung auf Polymer im Batchansatz,

Herstellung eines Polymers (P)

Ein hochverzweigtes Polyethylen (Epolene ® C-10 der Fa , Westlake Chemical (Houston, Texas, USA) ; 1100 g) wurde bei 180 °C aufgeschmolzen. Bei dieser Temperatur wurde zu der gerührten Schmelze innerhalb von 30 Minuten eine Mischung aus 96,3 g

(649,3 mmol) Silan A und 1,65 g (5,68 mmol) 2 , 5 -Dimethyl-2 , 5 - di { tert-butylperoxy) exan dosiert. Das Gemisch wurde nach Ende der Dosierzeit weitere 20 Minuten bei 180 °C gerührt, dann wurden flüchtige Bestandteile bei 180 °C im Vakuum entfernt und das Produkt auf Raumtemperatur abgekühlt. Man erhielt einen farblosen Feststoff. Kontrolle per ICP (inductively coupled plasma - induktiv gekoppeltes Plasma, zu analysierendes

Element: Si) zeigte einen Siliciumgehalt im Pfropfprodukt von 1,15% an, was einem Gehalt an gepfropftem Vinyltrimethoxysilan (Silan A-gepfropft) von 6,06% (409 mmol/kg) entspricht.

Das Pfropf olymer enthielt folgende Struktureinheiten:

Pol [-CH 2 -CH 2 -Si (OMe) 3 ] b und Pol [-CH (Me) -Si (OMe) 3 ] b ,

entsprechend der Definition eines Polymers (P) , wobei in diesen Struktureinheiten die Einheit Pol- einen Rest des eingesetzten hochverzweigten Polyethylens repräsentiert, und wobei b

hauptsächlich im Bereich 1-6, insbesondere um 3, lag.

Beispiel 7. Herstellung von erfindungsgemäßen Mischungen (M) und von Probekörpern für die Vernetzung.

Das Produkt aus Beispiel 6 wurde aufgeschmolzen, in drei Teile geteilt und gemäß den in Tabelle 4 angegebenen Mischungsver- hältnissen mit Silan B bzw. Silan C und/oder Katalysator A abgemischt .

Tabelle 4: Zusammensetzung der Probekörper für die Vernetzung

{Gewichtsteile)

* enthält 409 mmol/kg an Silangruppen [-Si (OMe) 3 ] .

** Vergleichsbeispiel (nicht erfindungsgemäß) .

*** Wasserfängerbeladung: 100 mmol je kg Pfropf rodukt aus

Beispiel 6,

Beispiel 7a ist keine erfindungsgemäße Mischung (M) , da sie keinen Wasser~fänger enthält. Die Mischung nach Beispiel 7c ist nicht erfindungsgemäß, da die Wahl der Kombination aus polymergebundenen hydrolysierbaren Silangruppen in Polymer (P) und aus Silangruppen des Wasserfängers keine der Möglichkeiten (A) , (B) , (C) oder (D) für die erfindungsgemäßen Kombinations- möglichkeiten von Strukturelementen der Formeln I und II erfüllt .

Beispiel 8a-c: Vernetzungscharakteristik

Die Mischungen aus Beispiel 7a-c wurden unter Schutzgas (Argon) auf Raumtemperatur abgekühlt, so dass sie erstarrten. Mit einer Bohrmaschine wurden Späne entnommen und 1/2 h r 1 h, 4 h und 24 h im Wasserbad bei 90 °C gelagert. Zusätzlich wurde jeweils ein Probekörper direkt nach dem Abkühlen auf Raumtemperatur, ohne Wasserlagerung, weiterverarbeitet; diese Proben wurden mit „0 h" bezeichnet und zeigen den Zustand des Produkts direkt nach der Herstellung der Mischung (M) an. Nach Wasserlagerung und mechanischer Trocknung (Ausnahme „0 h"- Proben: nach dem Abkühlen - d.h. keine Wasserlagerung, keine Trocknung) wurden die Späne in Anlehnung an DIN EN 579 in siedendem Xylol für 4 h extrahiert. Der Gelgehalt wurde durch Differenzwägung der Probe vor und nach Extraktion und Trocknung bestimmt. Die Ergebnisse sind in nachfolgender Tabelle 5 zusammengefasst .

Tabelle 5: Gelgehalt (in %) vor (0 h) und nach Wasserlagerung (0,5 h, 0,75 h, 1 h, 2 h, 4 h, 6,5 h, 24 h, 48 h, 72 h) und

Extraktion in Anlehnung an DIN EN 579.

** nicht erfindungsgemäß Für Beispiel 8b spiegelt der Zeitraum 0 - 0,5 Stunden die Phase 1 der Vernetzungskinetik wieder {Stabilisierungsphase,

gebremste Vernetzung, Wasserfänger (W) reagiert mit

eindringendem Wasser); der Zeitraum 0,5 - 4 Stunden spiegelt die Phase 2 der Vernetzung wieder (schnelle Vernetzung, Polymer (P) vernetzt) . Das Beispiel zeigt, dass die erfindungsgemäße Mischung (M) nach Beispiel 7b die erwünschte 2 -phasige

Vernetzungskinetik zeigt (d.h. keine messbare Vernetzung in Phase 1 im Vergleich zu demselben System ohne Wasserfänger (= nicht -erfindungsgemäße Mischung aus Beispiel 7a) , in Phase 2 hingegen ungebremst schnelle Vernetzung) . Demgegenüber wirkt ein Wasserfänger mit anders abgestufter Reaktivität von

Wasserfänger vs . Reaktivität von Polymer (P) gegenüber Wasser (siehe Beispiel 7c,· nicht erfindungsgemäß, denn keine der Bedingungen (A) , (B) , (C) oder {D) wird erfüllt) eher als Vernetzer denn als Wasserfänger.