Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUBSTITUTED [1,2,4]TRIAZOLE AND IMIDAZOLE COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2014/124850
Kind Code:
A1
Abstract:
The present invention relates to compounds of the formula I wherein the variables are defined in the description and the claims.

Inventors:
GRAMMENOS WASSILIOS (DE)
CRAIG IAN ROBERT (DE)
BOUDET NADEGE (DE)
MÜLLER BERND (DE)
LAUTERWASSER ERICA MAY WILSON (DE)
LOHMANN JAN KLAAS (DE)
HADEN EGON (DE)
WITSCHEL MATTHIAS (DE)
ESCRIBANO CUESTA ANA (DE)
GROTE THOMAS (DE)
Application Number:
PCT/EP2014/052239
Publication Date:
August 21, 2014
Filing Date:
February 05, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C07D403/06; A01N43/653; C07D233/58; C07D249/08
Domestic Patent References:
WO2010146114A12010-12-23
WO2003064572A12003-08-07
WO2002015701A22002-02-28
WO1993007278A11993-04-15
WO1995034656A11995-12-21
WO2003018810A22003-03-06
WO2003052073A22003-06-26
WO2003018810A22003-03-06
WO2009126473A12009-10-15
WO2009124707A22009-10-15
WO2003057861A22003-07-17
WO2010085795A22010-07-29
WO2012064527A12012-05-18
WO2010080169A12010-07-15
WO2010080619A22010-07-15
WO2001040441A22001-06-07
WO2011022809A12011-03-03
WO2011109395A22011-09-09
WO2012079073A12012-06-14
WO2008002371A12008-01-03
WO1998046608A11998-10-22
WO1999014187A11999-03-25
WO1999024413A21999-05-20
WO1999027783A11999-06-10
WO2000029404A12000-05-25
WO2000046148A12000-08-10
WO2000065913A12000-11-09
WO2001054501A22001-08-02
WO2001056358A22001-08-09
WO2002022583A22002-03-21
WO2002040431A22002-05-23
WO2003010149A12003-02-06
WO2003011853A12003-02-13
WO2003014103A12003-02-20
WO2003016286A12003-02-27
WO2003053145A12003-07-03
WO2003061388A12003-07-31
WO2003066609A12003-08-14
WO2003074491A12003-09-12
WO2004049804A22004-06-17
WO2004083193A12004-09-30
WO2005120234A22005-12-22
WO2005123689A12005-12-29
WO2005123690A12005-12-29
WO2005063721A12005-07-14
WO2005087772A12005-09-22
WO2005087773A12005-09-22
WO2006015866A12006-02-16
WO2006087325A12006-08-24
WO2006087343A12006-08-24
WO2007082098A22007-07-19
WO2007090624A22007-08-16
WO2011028657A12011-03-10
WO2012168188A12012-12-13
WO2007006670A12007-01-18
WO2011077514A12011-06-30
WO2013047749A12013-04-04
WO2010069882A12010-06-24
WO2013047441A12013-04-04
WO2003016303A12003-02-27
WO2009090181A22009-07-23
WO2013007767A12013-01-17
WO2013010862A12013-01-24
WO2013127704A12013-09-06
WO2013024009A12013-02-21
WO2013024010A12013-02-21
Foreign References:
CN1923819A2007-03-07
EP0044605A11982-01-27
EP0044605A11982-01-27
CN1923819A2007-03-07
EP0126430A21984-11-28
EP0374753A21990-06-27
EP0427529A11991-05-15
EP0451878A11991-10-16
EP0392225A21990-10-17
US6406690B12002-06-18
EP0585215B11999-09-15
EP0585215B11999-09-15
US20020031495A12002-03-14
US8221736B22012-07-17
US6994849B22006-02-07
US5248500A1993-09-28
US8206972B22012-06-26
US20130035230A12013-02-07
US5403584A1995-04-04
US5968503A1999-10-19
US20120149571A12012-06-14
US20100260735A12010-10-14
US20120149571A12012-06-14
US8445255B22013-05-21
US7262151B22007-08-28
US6955912B22005-10-18
US5422107A1995-06-06
EP0141317A21985-05-15
EP0152031A21985-08-21
EP0226917A11987-07-01
EP0243970A11987-11-04
EP0256503A21988-02-24
EP0428941A11991-05-29
EP0532022A11993-03-17
EP1028125A12000-08-16
EP1035122A12000-09-13
EP1201648A12002-05-02
EP1122244A12001-08-08
JP2002316902A2002-10-31
DE19650197A11998-06-10
DE10021412A12001-06-21
DE102005009458A12006-09-07
US3296272A1967-01-03
US3325503A1967-06-13
Other References:
J. AGRIC. FOOD CHEM., vol. 57, 2009, pages 4854 - 4860
J.AGRIC. FOOD CHEM., vol. 57, 2009, pages 4854 - 4860
J. MED. CHEM., vol. 38, no. 11, 1995, pages 1892 - 903
J. HETEROCYC. CHEM., vol. 18, no. 7, 1981, pages 1305 - 8
J. AM. CHEM. SOC., vol. 123, no. 25, 2001, pages 5962 - 5973
PEST MANAGEM. SCI., vol. 61, 2005, pages 246
PEST MANAGEM. SCI, vol. 61, 2005, pages 258
PEST MANAGEM. SCI, vol. 61, 2005, pages 277
PEST MANAGEM. SCI., vol. 61, 2005, pages 269
PEST MANAGEM. SCI, vol. 61, 2005, pages 286
PEST MANAGEM. SCI, vol. 64, 2008, pages 326
PEST MANAGEM. SCI, vol. 64, 2008, pages 332
WEED SCI., vol. 57, 2009, pages 108
AUSTRAL. J. AGRICULT. RES., vol. 58, 2007, pages 708
SCIENCE, vol. 316, 2007, pages 1185
"Technical Monograph No. 2", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
MOLLET; GRUBE- MANN: "Formulation technology", 2001, WILEY VCH
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
"McCutcheon's, Vol.1: Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA, article "Adjuvants and additives"
"e-Pesticide Manual", 2008
NATURE, vol. 280, 1979, pages 697 - 699
PROC. 9TH INT. AND 1S' LATIN AMERICAN PGPR MEETING, 2012, pages 60
EUR. J. SOIL BIOL, vol. 45, no. 1, 2009, pages 28 - 35
PROC. 9TH INT. AND 1ST LATIN AMERICAN PGPR MEETING, 2012, pages 60
PROC. 9TH INT. AND 1ST LATIN AMERICAN PGPR MEETING, 2012, pages 60
J. MICROBIOL. BIO- TECHNOL., vol. 17, no. 2, 2007, pages 280 - 286
J. APPL. MICROBIOL., vol. 100, no. 5, 2006, pages 1063 - 72
PHYTOPARASITICA, vol. 23, no. 3, 1995, pages 231 - 234
BIOLOGICAL CONTROL, vol. 51, 2009, pages 403 - 408
SCIENCE, vol. 257, 1992, pages 1 - 132
BIOLOGICAL CONTROL, vol. 45, 2008, pages 288 - 296
CURR. MICROBIOL., vol. 59, no. 6, 2009, pages 608 - 615
MICROBIOL. RES., vol. 158, pages 107 - 115
BIOLOGICAL CONTROL, vol. 31, no. 2, 2004, pages 145 - 154
MYCOLOGIA, vol. 94, no. 2, 2002, pages 297 - 301
CROP PROTECTION, vol. 27, 2008, pages 352 - 361
J. BACTE- RIOL., vol. 192, no. 24, 2010, pages 6486 - 6487
FERTILIZER RES., vol. 39, 1994, pages 97 - 103
J. INVERTEBR. PATHOL., vol. 113, no. 1, 2013, pages 104 - 14
APPL. ENVIRON. MICROBIOL., vol. 44, no. 5, pages 1096 - 1101
NEW PHYTOL, vol. 179, no. 1, 2008, pages 224 - 235
SOIL BIOLOGY & BIOCHEMISTRY, vol. 39, 2007, pages 867 - 876
MOL GEN GENOMICS, vol. 272, 2004, pages 1 - 17
CROP PROTECTION, vol. 25, 2006, pages 468 - 475
INT. J. MICROBIOL. RES., vol. 3, no. 2, 2011, pages 120 - 130
SYSTEM APPL. MICROBIOL, vol. 27, 2004, pages 372 - 379
CHMIEL: "Bioprozesstechnik 1. Ein- fuhrung in die Bioverfahrenstechnik", 1991, GUSTAV FISCHER VERLAG
STORHAS: "Bioreaktoren und periphere Einrichtungen", 1994, VIEWEG VERLAG
H.D. BURGES: "Formulation of Micobial Biopestcides", 1998, SPRINGER
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
Attorney, Agent or Firm:
SCHWECHHEIMER, Sabrina, Brigitte (Ludwigshafen, DE)
Download PDF:
Claims:
Claims

1 . Compounds of the formula I

wherein

X is CH or N;

Y is CH or N;

R31 is 2-Ci-C6-haloalkyl or 3-Ci-C6-haloalkyl;

R4 is independently selected from halogen, CN, NO2, OH, SH, Ci-C6-alkyl, C1-C6- alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl, Cs-Cs-cycloalkyloxy, NH2, NH(Ci-C4-alkyl), N(Ci-C4-alkyl)2, N H(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, S(0)P(Ci-C4-alkyl), C(=0)(Ci-C4-alkyl), C(=0)(OH), C(=0)(0-Ci-C4-alkyl), C(=0)(NH(Ci-C4-alkyl)), C(=0)(N(Ci-C4-alkyl)2), C(=0)(NH(C3-C6-cycloalkyl)) and C(=0)-(N(C3-C6-cycloalkyl)2; wherein each of R4 is unsubstituted or further substituted by one, two, three or four R4a; wherein

R4a is independently selected from halogen, CN, NO2, OH, Ci-C4-alkyl, C1-C4- haloalkyl, Cs-Cs-cycloalkyl, C3-Cs-halocycloalkyl, Ci-C4-alkoxy and C1-C4- haloalkoxy; and wherein

p is 0, 1 or 2;

m is 0, 1 , 2, 3, 4 or 5;

and the N-oxides and the agriculturally acceptable salts thereof.

The compounds of claim 1 , wherein m is 0.

The compounds of claim 1 , wherein m is 1 .

The compounds of claim 1 , wherein m is 2.

The compounds of any one of claims 1 to 4, wherein X and Y are N.

The compounds of any one of claims 1 to 4, wherein X is N and Y is CH.

The compounds of any one of claims 1 to 4, wherein X and Y are CH.

The compounds of any one of claims 1 to 7, wherein one of the respective R4 is in para- (4-)position.

The compounds of any one of claims 1 to 8, wherein R31 is 2-Ci-C6-haloalkyl.

The compounds of any one of claims 1 to 8, wherein R31 is in 3-Ci-C6-haloalkyl.

1 1 . A composition, comprising one compound of formula I, as defined in any of the claims 1 to 10, an N-oxide or an agriculturally acceptable salt thereof.

12. The composition according to claim 1 1 , comprising additionally a further active

substance.

13. A use of a compound of the formula I, as defined in any of the claims 1 to 10, and/or of an agriculturally acceptable salt thereof or of the compositions, as defined in any of the claims 1 1 or 12, for combating phytopathogenic fungi.

14. A method for combating phytopathogenic fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of at least one compound of formula I, as defined in any of the claims 1 to 10, or with a composition, as defined in any of the claims 1 1 or 12.

15. Seed, coated with at least one compound of the formula I, as defined in any of the

claims 1 to 10, and/or an agriculturally acceptable salt thereof or with a composition, as defined in any of the claims 1 1 or 12, in an amount of from 0.1 to 10 kg per 100 kg of seed.

Description:
Substituted [1 ,2,4]triazole and imidazole compounds

Description

The present invention relates to substituted [1 ,2,4]triazole and imidazole compounds and the N- oxides and the salts thereof for combating phytopathogenic fungi, and to the use and methods for combating phytopathogenic fungi and to seeds coated with at least one such compound. The invention also relates to processes for preparing these compounds, intermediates, processes for preparing such intermediates, and to compositions comprising at least one compound I.

J. Agric. Food Chem. 2009, 57, 4854-4860 describes certain bistriazoles and triazole- imidazoles and their use as fungicide. EP 0 044 605 relates to fungicidal bisazolyls, in particular bis triazolyl compounds. CN 1923819 relates to bistriazoles.

Using known pesticidal compounds, in many cases, in particular at low application rates, the fungicidal activity of the known fungicidal compounds is unsatisfactory. Based on this, it was an object of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic fungi.

Surprisingly, this object is achieved by the use of the inventive substituted [1 ,2,4]triazole and imidazole compounds of formula I having favorable fungicidal activity against phytopathogenic fungi.

Accordingly, the present invention relates to com ounds of the formula I

wherein

X is CH or N;

Y is CH or N;

R 31 is 2-Ci-C 6 -haloalkyl or 3-Ci-C 6 -haloalkyl;

R 4 is independently selected from halogen, CN, NO2, OH, SH, d-Ce-alkyl, d-Ce-alkoxy, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 8 -cycloalkyl, C 3 -C 8 -cycloalkyloxy, NH 2 , NH(Ci-C 4 -alkyl), N(Ci-C 4 -alkyl) 2 , NH(C 3 -C 6 -cycloalkyl), N(C 3 -C 6 -cycloalkyl) 2 , S(0) P (Ci-C 4 -alkyl),

alkyl), C(=0)(OH), C(=0)(0-Ci-C 4 -alkyl), C(=0)(NH(Ci-C 4 -alkyl)), C(=0)(N(Ci-C 4 -alkyl) 2 ), C(=0)(NH(C 3 -C 6 -cycloalkyl)) and C(=0)-(N(C 3 -C 6 -cycloalkyl) 2 ; wherein each of R 4 is unsubsti- tuted or further substituted by one, two, three or four R 4a ; wherein

R 4a is independently selected from halogen, CN, N0 2 , OH, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, C 3 -C 3 - cycloalkyl, C 3 -C8-halocycloalkyl, Ci-C 4 -alkoxy and Ci-C 4 -haloalkoxy; and wherein

p is 0, 1 or 2; m is 0, 1 , 2, 3, 4 or 5;

and the N-oxides and the agriculturally acceptable salts thereof.

The compounds I can be obtained for example in analogy to prior art processes known (cf. J.Agric. Food Chem. (2009) 57, 4854-4860; EP 0 126 430 A2), EP 0 044 605, CN 1923819 and by the synthesis routes shown in the following schemes.

For example, phenoles II are reacted, in a first step, with derivatives III, wherein X 1 stands for I or Br, in particular Br (=bromo derivatives Ilia), preferably in the presence of a base to result in compounds IV.

[preferably

IV

X = F or CI Thereafter, the resulting compounds IV , in particular IVa (wherein X 1 is Br) are then transformed into Grignard reagents by the reaction with transmetallation reagents such as iso- propylmagnesium halides and subsequently reacted with acetyl chloride preferably under anhydrous conditions and preferably in the presence of a catalyst such as CuCI, CuC , AlC , LiCI and mixtures thereof, to obtain acetophenones V.

These compounds V can be halogenated e.g. with bromine preferably in an organic solvent such as diethyl ether, methyl tert. -butyl ether (MTBE), methanol or acetic acid. In the resulting com ounds VI, "Hal" stands for "halogen" such as e.g. Br or CI.

O Hal=halogen, e.g. Br

Compounds VI can subsequently be reacted with 1 H-1 ,2,4-triazole or imidazole preferably in the presence of a solvent such as tetrahydrofuran (THF), dimethylformamide (DMF), toluene, and in the presence of a base such as potassium carbonate, sodium hydroxide or sodium hydride to obtain compounds VII. Thereafter, intermediates VII are reacted with trimethylsulf(ox)onium halides, preferably iodide, preferably in the presence of a base such as sodium hydroxide, to result in epoxides VIII.

The epoxides VIII may then be reacted with 1 H-1 ,2,4-triazole or imidazole, respectively, preferably in the presence of a base such as potassium carbonate and preferably in the presence of an organic solvent such as DMF to obtain compounds I.

(wherein X 1 is Br) are transformed into Grignard reagents by the reaction with transmetallation reagents such as isopropylmagnesium halides and subsequently reacted with an electrophile such as bis(triethylsilyloxy)acetone or dichloroacetone to obtain a compound IX. Preferably, the reaction is carried out under anhydrous conditions and preferably in the presence of a catalyst such as CuCI, CuC , AlC , LiCI and mixtures thereof. Transformation of the resulting protected triol to compound I is completed by activation of the two terminal alcohol groups as mesylates followed by substitution with the respective azoles.

If individual inventive compounds cannot be directly obtained by the routes described above, they may be prepared by derivatization of other inventive compounds.

The N-oxides may be prepared from the inventive compounds according to conventional oxidation methods, e. g. by treating compounds I with an organic peracid such as metachloroper- benzoic acid (cf. WO 03/64572 or J. Med. Chem. 38(1 1 ), 1892-903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (cf. J. Heterocyc. Chem. 18(7), 1305-8, 1981 ) or oxone (cf. J. Am. Chem. Soc. 123(25), 5962-5973, 2001 ). The oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.

If the synthesis yields mixtures of isomers, a separation is generally not necessarily required since in some cases the individual isomers can be interconverted during work-up for use or dur- ing application (e. g. under the action of light, acids or bases). Such conversions may also take place after use, e. g. in the treatment of plants in the treated plant, or in the harmful fungus to be controlled.

In the definitions of the variables given above, collective terms are used which are generally representative for the substituents in question. The term "C n -C m " indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.

The term "halogen" refers to fluorine, chlorine, bromine and iodine.

The term "Ci-C6-alkyl" refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, e.g. methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 -methylpropyl, 2- methylpropyl, 1 ,1 -dimethylethyl, pentyl, 1 -methylbutyl, 2-methylbutyl, 3-methylbutyl,

2.2- dimethylpropyl, 1 -ethylpropyl, 1 ,1 -dimethylpropyl, 1 ,2-dimethylpropyl, hexyl, 1 -methylpentyl,

2- methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1 -dimethylbutyl, 1 ,2-dimethylbutyl,

1 .3- dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 -ethylbutyl,

2-ethylbutyl, 1 ,1 ,2-trimethylpropyl, 1 ,2,2-trimethylpropyl, 1 -ethyl-1 -methylpropyl and 1 -ethyl-2- methylpropyl. Likewise, the term "C2-C4-alkyl" refers to a straight-chained or branched alkyl group having 2 to 4 carbon atoms, such as ethyl, propyl (n-propyl), 1 -methylethyl (iso-propoyl), butyl, 1 -methylpropyl (sec. -butyl), 2-methylpropyl (iso-butyl), 1 ,1 -dimethylethyl (tert. -butyl).

The term "Ci-C6-haloalkyl" refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are "Ci-C2-haloalkyl" groups such as chloromethyl, bro- momethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloro- fluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1 -chloroethyl, 1 -bromoethyl, 1 - fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro- 2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl or pentafluoroethyl.

The term "C2-C6-alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position. Examples are "C2-C4-alkenyl" groups, such as ethenyl, 1 -propenyl, 2-propenyl (allyl), 1 -methylethenyl, 1 -butenyl, 2-butenyl,

3- butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 -methyl-2-propenyl, 2-methyl-2-propenyl. The term "C2-C6-alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond. Examples are "C2-C4- alkynyl" groups, such as ethynyl, prop-1 -ynyl, prop-2-ynyl (propargyl), but-1 -ynyl, but-2-ynyl, but-3-ynyl , 1 -methyl-prop-2-ynyl .

The term "Cs-Cs-cycloalkyl" refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.

The term "C3-C8-cycloalkyl-Ci-C4-alkyl" refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a cycloalkyl radical having 3 to 8 carbon atoms (as defined above).

The term "Ci-C6-alkoxy" refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkyl group. Examples are "C1-C4- alkoxy" groups, such as methoxy, ethoxy, n-propoxy, 1 -methylethoxy, butoxy, 1 - methyhpropoxy, 2-methylpropoxy or 1 ,1 -dimethylethoxy.

The term "Ci-C6-haloalkoxy" refers to a Ci-C6-alkoxy radical as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are "Ci-C4-haloalkoxy" groups, such as OCH2F, OCHF2, OCF3, OCH2CI, OCHCI2, OCCI3, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoro- ethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-tri- chloro-"ethoxy, OC2F5, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy,

2,3-difluoro-"propoxy, 2 chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bro- mo-"propoxy, 3 bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2-C2F5, OCF2-C2F5, 1 -fluoromethyl-2-fluoroethoxy, 1 -chloromethyl-2-chloroethoxy, 1 -bromomethyl-2- bromo-'ethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.

Agriculturally acceptable salts of the inventive compounds encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of said compounds. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manga- nese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four Ci-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammoni- um, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phos- phonium ions, sulfonium ions, preferably tri(Ci-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bro- mide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.

The inventive compounds can be present in atropisomers arising from restricted rotation about a single bond of asymmetric groups. They also form part of the subject matter of the present invention.

Depending on the substitution pattern, the compounds of formula I and their N-oxides may have one or more centers of chirality, in which case they are present as pure enantiomers or pure diastereomers or as enantiomer or diastereomer mixtures. Both, the pure enantiomers or dia- stereomers and their mixtures are subject matter of the present invention.

In the following, particular embodiments of the inventive compounds are described. Therein, specific meanings of the respective substituents are further detained, wherein the meanings are in each case on their own but also in any combination with one another, particular embodiments of the present invention.

Furthermore, in respect of the variables, generally, the embodiments of the compounds I also apply to the intermediates.

X according to the invention is N or CH. According to one embodiment X is N. According to a further embodiment X is CH.

Y according to the invention is N or CH. According to one embodiment Y is N. According to further embodiment Y is CH. According to one particular embodiment, X and Y are N.

According to a further particular embodiment, X is N and Y is CH.

According to still a further embodiment, X and Y are CH.

R 31 according to the invention is 2-Ci-C6-haloalkyl or 3-Ci-C6-haloalkyl.

According to one embodiment, R 31 is 2-Ci-C6-haloalkyl, in particular 2-Ci-C4-haloalkyl, more particularly 2-Ci-C2-haloalkyl, more specifically 2-Ci-halogenalkyl.

According to a further embodiment, R 31 is 3-Ci-C6-haloalkyl, in particular 3-Ci-C4-haloalkyl, more particularly 3-Ci-C2-haloalkyl, more specifically 3-Ci-halogenalkyl.

According to one particular embodiment, R 31 is Ci-C4-fluoroalkyl, more particularly C1-C2- fluoroalkyl, more specifically Ci-fluoroalkyl, wherein the substituent in each case contains 1 , 2, 3, 4, 5 or 5, in particular 1 , 2 or 3 fluoro. According to a particular embodiment, R 31 is CH2F. According to a further particular embodiment, R 31 is CHF2. According to a specifically preferred embodiment, R 31 is CF3. According to one specific embodiment, in each case, R 31 is in 2- position. According to a further specific embodiment, in each case, R 31 is in 3-position.

According to a further particular embodiment, R 31 is Ci-C4-chloroalkyl, more particularly C1-C2- chloroalkyl, more specifically Ci-chloroalkyl, wherein the substituent in each case contains 1 , 2, 3, 4, 5 or 5, in particular 1 , 2 or 3 chloro. According to a particular embodiment, R 31 is CH2CI. According to a further particular embodiment, R 31 is CHC . According to a specifically preferred embodiment, R 31 is CCI3. According to one specific embodiment, in each case, R 31 is in 2- position. According to a further specific embodiment, in each case, R 31 is in 3-position.

Each R 4 according to the present invention is independently selected from halogen, CN, NO2, OH, SH, d-Ce-alkyl, Ci-C 6 -alkoxy, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 8 -cycloalkyl, C 3 -C 8 - cycloalkyloxy, NH 2 , NH(Ci-C 4 -alkyl), N(Ci-C 4 -alkyl) 2 , NH(C 3 -C 6 -cycloalkyl), N(C 3 -C 6 -cycloalkyl) 2 , S(0) P (Ci-C 4 -alkyl), C(=0)(Ci-C 4 -alkyl), C(=0)(OH), C(=0)(0-Ci-C 4 -alkyl), C(=0)(NH(Ci-C 4 - alkyl)), C(=0)(N(Ci-C 4 -alkyl) 2 ), C(=0)(NH(C 3 -C 6 -cycloalkyl)) and C(=0)-(N(C 3 -C 6 -cycloalkyl) 2 ); wherein each of R 4 is unsubstituted or further substituted by one, two, three or four R 4a independently selected from halogen, CN, NO2, OH, Ci-C4-alkyl, Ci-C4-haloalkyl, C 3 -C 3 - cycloalkyl, C 3 -C8-halocycloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy and p is 0, 1 or 2.

According to the invention, there can be zero, one, two, three, four or five R 4 present, namely for m is 0, 1 , 2, 3, 4 or 5. In particular, m is 0, 1 , 2, 3 or 4.

According to one embodiment, m is 0.

According to a further embodiment, m is 1 , 2, 3 or 4, in particular 1 , 2 or 3, more specifically 1 or 2. According to one specific embodiment thereof, m is 1 , according to a further specific embodiment, m is 2.

According to still a further embodiment, m is 2, 3 or 4.

According to still a further embodiment, m is 3.

According to one embodiment of the invention, one R 4 is attached to the para-position (4- position). According to a further embodiment of the invention, one R 4 is attached to the meta-position (3- position).

According to a further embodiment of the invention, one R 4 is attached to the ortho-position (2- position).

According to a further embodiment of the invention, two R 4 are attached in 2,4-position.

According to a further embodiment of the invention, two R 4 are attached in 2,3-position.

According to a further embodiment of the invention, two R 4 are attached in 2,5-position.

According to a further embodiment of the invention, two R 4 are attached in 2,6-position.

According to a further embodiment of the invention, two R 4 are attached in 3,4-position.

According to a further embodiment of the invention, two R 4 are attached in 3,5-position.

According to a further embodiment of the invention, three R 4 are attached in 2,4,6-position.

For every R 4 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of any other R 4 that may be present in the phenyl ring. Furthermore, the particular embodiments and preferences given herein for R 4 apply independently for each of m=1 , m=2, m=3, m= 4 and m=5.

According to one embodiment, R 4 is independently selected from halogen, CN, NO2, OH, SH, Ci-C6-alkyl, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C 3 -C8-cycloalkyl, C 3 -C8-cycloalkyloxy, NH 2 , NH(Ci-C 4 -alkyl), N(Ci-C 4 -alkyl) 2 , N H(C 3 -C 6 -cycloalkyl), N(C 3 -C 6 -cycloalkyl) 2 , S(0) P (Ci-C 4 - alkyl) (p=0, 1 or 2), C(=0)(Ci-C 4 -alkyl), C(=0)(OH), C(=0)(0-Ci-C 4 -alkyl), C(=0)(NH(Ci-C 4 - alkyl)), C(=0)(N(Ci-C 4 -alkyl) 2 ), C(=0)(NH(C 3 -C 6 -cycloalkyl)) and C(=0)-(N(C 3 -C 6 -cycloalkyl) 2 ); wherein each of R 4 is unsubstituted or further substituted by one, two, three or four

independently selected R 4a , wherein R 4a is as defined and preferably defined herein.

According to a further embodiment, R 4 is independently selected from halogen, CN, NO2, C1-C4- alkyl, Ci-C 4 -alkoxy, C2-C 4 -alkenyl, C2-C 4 -alkynyl, C 3 -C6-cycloalkyl, C 3 -C6-cycloalkyloxy, NH2, NH(Ci-C 42 -alkyl), N(Ci-C 2 -alkyl) 2 , S(0) P (Ci-C 2 -alkyl) (p=0, 1 or 2), C(=0)(Ci-C 2 -alkyl),

C(=0)(OH) and C(=0)(0-Ci-C 2 -alkyl), wherein each of R 4 is unsubstituted or further substituted by one, two, three or four independently selected R 4a , wherein R 4a is as defined and preferably defined herein.

According to a further embodiment, R 4 is independently selected from halogen, CN, NO2, C1-C4- alkyl, Ci-C 4 -haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy, C2-C 4 -alkenyl, C2-C 4 -haloalkenyl, C2-C4- alkynyl, C 2 -C 4 -haloalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halocycloalkyl, S(Ci-C 2 -alkyl), S(0)(Ci-C 2 - alkyl), S(0) 2 (Ci-C 2 -alkyl), C(=0)(Ci-C 2 -alkyl), C(=0)(OH) and C(=0)(0-Ci-C 2 -alkyl).

According to a further embodiment, R 4 is independently selected from halogen, CN, NO2, C1-C2- alkyl, Ci-C 2 -haloalkyl, Ci-C 2 -alkoxy, Ci-C 2 -haloalkoxy, S(Ci-C 2 -alkyl), S(0)(Ci-C 2 -alkyl), S(0) 2 (Ci-C 2 -alkyl), C(=0)(OH) and C(=0)(0-Ci-C 2 -alkyl).

According to a further embodiment, R 4 is independently selected from F, CI, Br, CN, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy, S(Ci-C 4 -alkyl), S(0)(Ci-C 4 -alkyl) and S(0) 2 (Ci- C 4 -alkyl). According to still a further specific embodiment, R 4 is independently selected from halogen, in particular from Br, F and CI, more specifically from F and CI.

According to a further specific embodiment, R 4 is CN.

According to one further embodiment R 4 is NO2.

According to one further embodiment R 4 is OH.

According to one further embodiment R 4 is SH.

According to a further specific embodiment, R 4 is Ci-C6-alkyl, in particular Ci-C4-alkyl, such as CH3. Further appropriate alkyls are ethyl, n-propyl, i-propyl, n-butyl, i-butyl and t-butyl.

According to a further specific embodiment, R 4 is Ci-C6-haloalkyl, in particular Ci-C4-haloalkyl, such as CF 3 , CHF 2 , CH 2 F, CCI 3 , CHC or CH 2 CI.

According to a further specific embodiment R 4 is Ci-C6-alkyl, preferably Ci-C4-alkyl, substituted by OH, more preferably CH 2 OH, CH 2 CH 2 OH, CH 2 CH 2 CH 2 OH, CH(CH 3 )CH 2 OH,

CH 2 CH(CH 3 )OH, CH 2 CH 2 CH 2 CH 2 OH. In a special embodiment R 4 is CH 2 OH. According to a further specific embodiment R 4 is Ci-C6-alkyl, preferably Ci-C4-alkyl substituted by CN, more preferably CH 2 CN, CH 2 CH 2 CN, CH 2 CH 2 CH 2 CN, CH(CH 3 )CH 2 CN, CH 2 CH(CH 3 )CN, CH 2 CH- 2 CH 2 CH 2 CN. In a special embodiment R 4 is CH 2 CH 2 CN. In a further special embodiment R 4 is CH(CH 3 )CN. According to a further specific embodiment R 4 is Ci-C4-alkoxy-Ci-C6-alkyl, more preferably Ci-C4-alkoxy-Ci-C4-alkyl. In a special embodiment R 4 is CH 2 OCH 3 . In a further special embodiment R 4 is CH 2 CH 2 OCH 3 . In a further special embodiment R 4 is CH(CH 3 )OCH 3 . In a further special embodiment R 4 is CH(CH 3 )OCH 2 CH 3 . In a further special embodiment R 4 is CH 2 CH 2 OCH 2 CH 3 . According to a further specific embodiment R 4 is Ci-C4-haloalkoxy-Ci-C6- alkyl, more preferably Ci-C4-alkoxy-Ci-C4-alkyl. In a special embodiment R 4 is CH 2 OCF 3 . In a further special embodiment R 4 is CH 2 CH 2 OCF 3 . In a further special embodiment R 4 is

CH 2 OCCI 3 . In a further special embodiment R 4 is CH 2 CH 2 OCCI 3 .

According to a further specific embodiment, R 4 is Ci-C6-alkoxy, in particular Ci-C4-alkoxy, more specifically Ci-C 2 -alkoxy such as OCH 3 or OCH 2 CH 3 .

According to a further specific embodiment, R 4 is Ci-C6-haloalkoxy, in particular C1-C4- haloalkoxy, more specifically Ci-C 2 -haloalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCI 3 , OCHCI 2 or OCH 2 CI, in particular OCF 3 , OCHF 2 , OCCI 3 or OCHCI 2 .

According to still a further embodiment, R 4 is C 2 -C6-alkenyl or C 2 -C6-haloalkenyl, in particular C 2 -C 4 -alkenyl or C 2 -C 4 -haloalkenyl, such as CH=CH 2 , CH 2 CH=CH 2 , CH=CHCH 3 or

C(CH 3 )=CH 2 .

According to a further specific embodiment R 4 is C 2 -C6-alkenyl, preferably C 2 -C4-alkenyl, substituted by OH, more preferably, CH=CHOH, CH=CHCH 2 OH, C(CH 3 )=CHOH, CH=C(CH 3 )OH. In a special embodiment R 4 is CH=CHOH. In a further special embodiment R 4 is CH=CHCH 2 OH. According to a further specific embodiment R 4 is Ci-C4-alkoxy-C 2 -C6-alkenyl, more preferably Ci-C4-alkoxy-C 2 -C4-alkenyl. In a special embodiment R 4 is CH=CHOCH 3 . In a further special embodiment R 4 is CH=CHCH 2 OCH 3 . According to a further specific embodiment R 4 is C1-C4- haloalkoxy-C 2 -C6-alkenyl, more preferably Ci-C4-haloalkoxy-C 2 -C4-alkenyl. In a special embod- iment R 4 is CH=CHOCF 3 . In a further special embodiment R 4 is CH=CHCH 2 OCF 3 . In a further special embodiment R 4 is CH=CHOCCl3. In a further special embodiment R 4 is

CH=CHCH20CCl3. According to a further specific embodiment R 4 is C3-C8-cycloalkyl-C2-C6- alkenyl, preferably C3-C6-cycloalkyl-C2-C4-alkenyl. According to a further specific embodiment R 4 is C3-C6-halocycloalkyl-C2-C4-alkenyl, preferably C3-C8-halocycloalkyl-C2-C6-alkenyl.

According to still a further embodiment, R 4 is C2-C6-alkynyl or C2-C6-haloalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -haloalkynyl, such as C≡CH, CH 2 CCH or CH 2 CCCH 3 .

According to a further specific embodiment R 4 is C2-C6-alkynyl, preferably C2-C 4 -alkynyl, substituted by OH, more preferably, CCOH, CH 2 CCOH. In a special embodiment R 4 is CCOH. In a further special embodiment R 4 is CH2CCOH. According to a further specific embodiment R 4 is Ci-C 4 -alkoxy-C2-C6-alkynyl, more preferably Ci-C 4 -alkoxy-C2-C 4 -alkynyl. In a special embodiment R 4 is CCOCH3. In a further special embodiment R 4 is CH2CCOCH3. According to a further specific embodiment R 4 is Ci-C 4 -haloalkoxy-C2-C6-alkynyl, more preferably Ci-C 4 -haloalkoxy- C2-C 4 -alkynyl. In a special embodiment R 4 is CCOCF3. In a further special embodiment R 4 is CH2CCOCF3. In a further special embodiment R 4 is CCOCCI3. In a further special embodiment R 4 is CH2CCOCCI3. According to a further specific embodiment R 4 is C3-C8-cycloalkyl-C2-C6- alkynyl, preferably C3-C6-cycloalkyl-C2-C 4 -alkynyl. According to a further specific embodiment R 4 is C3-C6-halocycloalkyl-C2-C 4 -alkynyl, preferably C3-C8-halocycloalkyl-C2-C6-alkynyl.

According to one another embodiment R 4 is Cs-Cs-cycloalkyl, preferably cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in particular cyclopropyl or cyclobutyl. In a special embodiment R 4 is cyclopropyl. In a further special embodiment R 4 is cyclobutyl. In a further special embodiment R 4 is cyclopentyl. In a further special embodiment R 4 is cyclohexyl.

According to one another embodiment R 4 is Cs-Cs-cycloalkoxy, preferably C3-C6-cycloalkoxy. In a special embodiment R 4 is O-cyclopropyl.

According to a specific embodiment R 4 is Cs-Cs-halocycloalkyl, more preferably fully or partially halogenated C3-C6-cycloalkyl. In a special embodiment R 4 is fully or partially halogenated cyclopropyl. In a further special embodiment R 4 is 1 -CI-cyclopropyl. In a further special embodiment R 4 is 2-CI-cyclopropyl. In a further special embodiment R 4 is 1 -F-cyclopropyl. In a further special embodiment R 4 is 2-F-cyclopropyl. In a further special embodiment R 4 is fully or partially halo- genated cyclobutyl. In a further special embodiment R 4 is 1 -CI-cyclobutyl. In a further special embodiment R 4 is 1 -F-cyclobutyl. In a further special embodiment R 4 is 3,3-Cl2-cyclobutyl. In a further special embodiment R 4 is 3,3-F2-cyclobutyl. According to a specific embodiment R 4 is Cs- Cs-cycloalkyl substituted by Ci-C 4 -alkyl, more preferably is C3-C6-cycloalkyl substituted by Ci- C 4 -alkyl. In a special embodiment R 4 is 1 -CH3-cyclopropyl. According to a specific embodiment R 4 is Cs-Cs-cycloalkyl substituted by CN, more preferably is C3-C6-cycloalkyl substituted by CN. In a special embodiment R 4 is 1 -CN-cyclopropyl.According to a further specific embodiment R 4 is C3-C8-cycloalkyl-C3-C8-cycloalkyl, preferably C3-C6-cycloalkyl-C3-C6-cycloalkyl. In a special embodiment R 4 is cyclopropyl-cyclopropyl. In a special embodiment R 4 is 2-cyclopropyl- cyclopropyl. According to a further specific embodiment R 4 is Cs-Cs-cycloalkyl-Cs-Cs- halocycloalkyl, preferably C3-C6-cycloalkyl-C3-C6-halocycloalkyl. According to one another embodiment R 4 is C3-C8-cycloalkyl-Ci-C4-alkyl, preferably C3-C6- cycloalkyl-Ci-C4-alkyl. In a special embodiment R 4 is CH(CH3)(cyclopropyl). In a further special embodiment R 4 is CH2-(cyclopropyl).

According to a further preferred embodiment R 4 is C3-C8-cycloalkyl-Ci-C4-alkyl wherein the alkyl moiety can be substituted by one, two, three or up to the maximum possible number of identical or different groups R a as defined and preferably herein and the cycloalkyi moiety can be substituted by one, two, three or up to the maximum possible number of identical or different groups R b as defined and preferably herein.

According to a specific embodiment R 4 is C3-C8-cycloalkyl-Ci-C4-haloalkyl, C3-C6-cycloalkyl-Ci- C4-haloalkyl. According to a specific embodiment R 4 is C3-C8-halocycloalkyl-Ci-C4-alkyl, C3-C6- halocycloalkyl-Ci-C4-alkyl. In a special embodiment R 4 is fully or partially halogenated cyclopro- pyl-Ci-C4-alkyl. In a further special embodiment R 4 is 1 -CI-cyclopropyl-Ci-C4-alkyl. In a further special embodiment R 4 is 1 -F-cyclopropyl-Ci-C4-alkyl.

According to one another embodiment R 4 is NH2.

According to one another embodiment R 4 is NH(Ci-C4-alkyl). According to a specific embodiment R 4 is NH(CH3). According to a specific embodiment R 4 is NH(CH2CH3). According to a specific embodiment R 4 is NH(CH2CH2CH3). According to a specific embodiment R 4 is

NH(CH(CH 3 )2). According to a specific embodiment R 4 is NH(CH2CH2CH 2 CH 3 ). According to a specific embodiment R 4 is NH(C(CH 3 ) 3 ).

According to one another embodiment R 4 is N(Ci-C4-alkyl)2. According to a specific embodiment R 4 is N(CH3)2. According to a specific embodiment R 4 is N(CH2CH3)2. According to a specific embodiment R 4 is N(CH2CH 2 CI-l3)2. According to a specific embodiment R 4 is N(CH(CH 3 )2)2.

According to a specific embodiment R 4 is N(CH2CH2CH2CH3)2. According to a specific embodiment R 4 is NH(C(CH 3 ) 3 )2.

According to one another embodiment R 4 is NH(C3-C8-cycloalkyl) preferably NH(C3-C6- cycloalkyl). According to a specific embodiment R 4 is NH(cyclopropyl). According to a specific embodiment R 4 is NH(cyclobutyl). According to a specific embodiment R 4 is NH(cyclopentyl). According to a specific embodiment R 4 is NH(cyclohexyl).

According to one another embodiment R 4 is N(C3-C8-cycloalkyl)2 preferably N(C3-C6- cycloalkyi. According to a specific embodiment R 4 is N(cyclopropyl)2. According to a specific embodiment R 4 is N(cyclobutyl)2. According to a specific embodiment R 4 is N(cyclopentyl)2.

According to a specific embodiment R 4 is N(cyclohexyl)2.

According to still a further embodiment, R 4 is selected from C(=0)(Ci-C4-alkyl), C(=0)(OH), C(=0)(0-Ci-C 4 -alkyl), C(=0)(NH(Ci-C 4 -alkyl)), C(=0)(N(Ci-C 4 -alkyl) 2 ), C(=0)(NH(C 3 -C 6 - cycloalkyi)) and C(=0)(N(C 3 -C 6 -cycloalkyl) 2 ), in particular selected from C(=0)(Ci-C 2 -alkyl), C(=0)(OH), C(=0)(0-Ci-C 2 -alkyl), C(=0)(NH(Ci-C 2 -alkyl)), C(=0)(N(Ci-C 2 -alkyl) 2 ),

C(=0)(NH(C3-C6-cycloalkyl)) and C(=0)(N(C3-C6-cycloalkyl)2). According to one specific embodiment thereof, R 4 is C(=0)(OH) or C(=0)(0-Ci-C 4 -alkyl), in particular C(=0)(OCH 3 ). According to one another embodiment R 4 is C(=0)(-Ci-C4-alkyl). According to a specific embodiment R 4 is C(=0)CH3.. According to a further specific embodiment R 4 is C(=0)CH2CH3. According to a further specific embodiment R 4 is C(=0)CH2CH2CH3. According to a further specific embodiment R 4 is C(=0)CH(CH 3 )2. According to a further specific embodiment R 4 is C(=0)C(CH 3 )3. BITTE ERGANZEN

According to one another embodiment R 4 is C(=0)OH.

According to one another embodiment R 4 is C(=0)(-0-Ci-C4-alkyl). According to a specific embodiment R 4 is C(=0)OCH 3 , According to a further specific embodiment R 4 is C(=0)OCH 2 CH 3 . According to a further specific embodiment R 4 is C(=0)OCH2CH2CH3. According to a further spe- cific embodiment R 4 is C(=0)OCH(CH3)2. According to a further specific embodiment R 4 is C(=0)OC(CH 3 ) 3 .

According to one another embodiment R 4 is C(=0)-NH(Ci-C4-alkyl). According to a specific embodiment R 4 is C(=0)NHCH 3 , According to a further specific embodiment R 4 is C(=0)NHCH 2 CH 3 . According to a further specific embodiment R 4 is C(=0)NHCH2CH2CH3. According to a further specific embodiment R 4 is C(=0)NHCH(CH3)2. According to a further specific embodiment R 4 is C(=0)NHC(CH 3 ) 3 .

According to one another embodiment R 4 is C(=0)-N(Ci-C4-alkyl)2. According to a specific embodiment R 4 is C(=0)N(CH3)2. According to a further specific embodiment R 4 is

C(=0)N(CH 2 CH 3 )2. According to a further specific embodiment R 4 is C(=0)N(CH2CH 2 CH3)2. Ac- cording to a further specific embodiment R 4 is C(=0)N(CH(CH3)2)2. According to a further specific embodiment R 4 is C(=0)N(C(CH 3 ) 3 ) 2 .

According to one another embodiment R 4 is C(=0)-NH(C3-C6-cycloalkyl). According to a specific embodiment R 4 is C(=0)NH(cyclopropyl).. According to a further specific embodiment R 4 is C(=0)NH(cyclobutyl). According to a further specific embodiment R 4 is C(=0)NH(cyclopentyl). Ac- cording to a further specific embodiment R 4 is C(=0)NH(cyclohexyl).

According to one another embodiment R 4 is C(=0)-N(C3-C6-cycloalkyl)2. According to a specific embodiment R 4 is C(=0)N(cyclopropyl)2. According to a further specific embodiment R 4 is C(=0)N(cyclobutyl)2. According to a further specific embodiment R 4 is C(=0)N(cyclopentyl)2. According to a further specific embodiment R 4 is C(=0)N(cyclohexyl)2.

According to still a further embodiment, R 4 is selected from S(Ci-C2-alkyl), S(0)(Ci-C2-alkyl) and S(0) 2 (Ci-C 2 -alkyl), in particular SCH 3 , S(0)(CH 3 ) and S(0) 2 (CH 3 ). According to a specific embodiment R 4 is selected from S(Ci-C 2 -haloalkyl), S(0)(Ci-C 2 -haloalkyl) and S(0) 2 (Ci-C 2 - haloalkyl), such as SO2CF3.

Particularly preferred embodiments of R 4 according to the invention are in Table P4 below, wherein each line of lines P4-1 to P4-16 corresponds to one particular embodiment of the invention, wherein P4-1 to P4-16 are also in any combination with one another a preferred embodiment of the present invention. Thereby, for every R 4 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R 4 that may be present in the phenyl ring: Table P4:

Particularly preferred embodiments of (R 4 ) m according to the invention are in Table A below, wherein each line of lines A-1 to A-155 corresponds to one particular embodiment of the invention, wherein A-1 to A-155 are also in any combination a preferred embodiment of the present invention. More particularly preferred embodiments of (R 4 ) m according to the invention are in Table A1 below, wherein each line of lines A1 -1 to A1 -64 corresponds to one particular embodiment of the invention, wherein A1 -1 to A1 -64 are also in any combination a preferred embodiment of the present invention.

Table A1

- * means that m=0 Accordin to one embodiment, X is N and Y is N, corresponding to compounds I.A:

Accordin to a further embodiment, X is N and Y is CH, corresponding to compounds I.B:

Accordin to still a further embodiment, X is CH and Y is CH, corresponding to compounds I.C:

In particular with a view to their use, preference is given to the compounds of the formula I, in particular I.A, I.B and I.C, compiled in the Tables 1 a to 12a, Tables 1 b to 12b and Tables 1 c to 12c below. Each of the groups mentioned for a substituent in the tables is furthermore per se, independently of the combination in which it is mentioned, a particularly preferred aspect of the substituent in question.

Table 1 a Compounds of the formula I .A in which R 31 corresponds to line B-1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-1.A1 to I.A.B-1 .A155).

Table 2a Compounds of the formula I .A in which R 31 corresponds to line B-2 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-2.A1 to I.A.B-2.A155).

Table 3a Compounds of the formula I.A in which R 31 corresponds to line B-3 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-3.A1 to I.A.B-3.A155).

Table 4a Compounds of the formula I.A in which R 31 corresponds to line B-4 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-4.A1 to I.A.B-4.A155).

Table 5a Compounds of the formula I.A in which R 31 corresponds to line B-5 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-5.A1 to I.A.B-5.A155). Table 6a Compounds of the formula I. A in which R 31 corresponds to line B-6 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-6.A1 to I.A.B-6.A155).

Table 7a Compounds of the formula I. A in which R 31 corresponds to line B-7 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-7.A1 to I.A.B-7.A155).

Table 8a Compounds of the formula I. A in which R 31 corresponds to line B-8 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-8.A1 to I.A.B-8.A155).

Table 9a Compounds of the formula I .A in which R 31 corresponds to line B-9 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-9.A1 to I. A. B-9.A155).

Table 10a Compounds of the formula I .A in which R 31 corresponds to line B-10 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-10.A1 to I.A.B-10.A155).

Table 1 1 a Compounds of the formula I .A in which R 31 corresponds to line B-1 1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-1 1 .A1 to I.A.B-1 1 Λ155).

Table 12a Compounds of the formula I .A in which R 31 corresponds to line B-12 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.A.B-12.A1 to I.A.B-12.A155).

Table 1 b Compounds of the formula I.B in which R 31 corresponds to line B-1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-1.A1 to I.B. B-1 .A155).

Table 2b Compounds of the formula I.B in which R 31 corresponds to line B-2 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-2.A1 to I.B.B-2.A155).

Table 3b Compounds of the formula I.B in which R 31 corresponds to line B-3 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.B.B-3.A1 to I.B.B-3.A155).

Table 4b Compounds of the formula I.B in which R 31 corresponds to line B-4 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-4.A1 to I.B.B-4.A155).

Table 5b Compounds of the formula I.B in which R 31 corresponds to line B-5 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-5.A1 to I.B.B-5.A155).

Table 6b Compounds of the formula I.B in which R 31 corresponds to line B-6 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-6.A1 to I.B.B-6.A155).

Table 7b Compounds of the formula I.B in which R 31 corresponds to line B-7 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of

Table A (compounds I.B.B-7.A1 to I.B.B-7.A155). Table 8b Compounds of the formula I.B in which R 31 corresponds to line B-8 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.B.B-8.A1 to I.B.B-8.A155).

Table 9b Compounds of the formula I.B in which R 31 corresponds to line B-9 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.B.B-9.A1 to I.B.B-9.A155).

Table 10b Compounds of the formula I.B in which R 31 corresponds to line B-10 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.B.B-10.A1 to I.B.B-10.A155).

Table 1 1 b Compounds of the formula I.B in which R 31 corresponds to line B-1 1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.B.B-1 1 .A1 to I.B.B-1 1 .A155).

Table 12b Compounds of the formula I.B in which R 31 corresponds to line B-12 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I. B.B-12.A1 to I.B.B-12.A155).

Table 1 c Compounds of the formula I .C in which R 31 corresponds to line B-1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-1 .A1 to I.C.B-1 .A155).

Table 2c Compounds of the formula I.C in which R 31 corresponds to line B-2 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-2.A1 to I.C.B-2.A155).

Table 3c Compounds of the formula I.C in which R 31 corresponds to line B-3 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-3.A1 to I.C.B-3.A155).

Table 4c Compounds of the formula I.C in which R 31 corresponds to line B-4 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C. B-4.A1 to I.C.B-4.A155).

Table 5c Compounds of the formula I.C in which R 31 corresponds to line B-5 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-5.A1 to I.C.B-5.A155).

Table 6c Compounds of the formula I.C in which R 31 corresponds to line B-6 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-6.A1 to I.C.B-6.A155).

Table 7c Compounds of the formula I.C in which R 31 corresponds to line B-7 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C. B-7.A1 to I.C.B-7.A155).

Table 8c Compounds of the formula I.C in which R 31 corresponds to line B-8 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-8.A1 to I.C.B-8.A155).

Table 9c Compounds of the formula I.C in which R 31 corresponds to line B-9 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-9.A1 to I.C.B-9.A155). Table 10c Compounds of the formula I .C in which R 31 corresponds to line B-10 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-10.A1 to I.C.B-10.A155).

Table 1 1 c Compounds of the formula I .C in which R 31 corresponds to line B-1 1 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-1 1.A1 to I.C.B-1 1 Λ155).

Table 12c Compounds of the formula I.C in which R 31 corresponds to line B-12 of Table B and the meaning for (R 4 ) m for each individual compound corresponds in each case to one line of Table A (compounds I.C.B-12.A1 to I.C.B-12.A155).

Table A

No. (R 4 )m No. (R 4 )m No. (R 4 )m

A-1 * A-31 2,6-CI 2 A-61 3-CHs

A-2 2-CI A-32 2,3-F 2 A-62 4-CHs

A-3 3-CI A-33 2,4-F 2 A-63 2-CH2CH3

A-4 4-CI A-34 2,5-F 2 A-64 3-CH2CH3

A-5 2-F A-35 3,4-F 2 A-65 4-CH2CH3

A-6 3-F A-36 3,5-F 2 A-66 2-CF3

A-7 4-F A-37 2,6-F 2 A-67 3-CF3

A-8 2-CN A-38 2-F-3-CI A-68 4-CF3

A-9 3-CN A-39 2-F-4-CI A-69 2-CHF2

A-10 4-CN A-40 3-F-4-CI A-70 3-CHF2

A-1 1 2-NO2 A-41 2-F-6-CI A-71 4-CHF2

A-12 3-NO2 A-42 2-CI-3-F A-72 2-OCH3

A-13 4-NO2 A-43 2-CI-4-F A-73 3-OCH3

A-14 2-SCHs A-44 3-CI-4-F A-74 4-OCH3

A-15 3-SCHs A-45 2,3,4-CI 3 A-75 2-OCH2CH3

A-16 4-SCH3 A-46 2,4,5-CI 3 A-76 3-OCH2CH3

A-17 2-SOCH3 A-47 3,4,5-Cls A-77 4-OCH2CH3

A-18 3-SOCH3 A-48 2,4,6-Cls A-78 2-OCF3

A-19 4-SOCH3 A-49 2,3,4-Fs A-79 3-OCF3

A-20 2-SO2CH3 A-50 2,4,5-Fs A-80 4-OCF3

A-21 3-SO2CH3 A-51 3,4,5-Fs A-81 2-OCHF2

A-22 4-SO2CH3 A-52 2,4,6-Fs A-82 3-OCHF2

A-23 2-CO2CH3 A-53 2,3-4-Fs A-83 4-OCHF2

A-24 3-CO2CH3 A-54 2.4-F2-3-CI A-84 2,3-(CH 3 ) 2

A-25 4-CO2CH3 A-55 2,6-F 2 -4-CI A-85 2,4-(CH 3 ) 2

A-26 2,3-C A-56 2,5-F 2 -4-CI A-86 3,4-(CH 3 ) 2

A-27 2,4-Cfe A-57 2.4-CI2-3-F A-87 2,6-(CH 3 ) 2

A-28 2,5-CI 2 A-58 2,6-CI 2 -4-F A-88 2,3-(CH 2 CH 3 )2

A-29 3,4-C A-59 2,5-CI 2 -4-F A-89 2,4-(CH 2 CH 3 )2

A-30 3,5-CI 2 A-60 2-CHs A-90 3,4-(CH 2 CH 3 )2 No. (R 4 )m No. (R 4 )m No. (R 4 )m

A-91 2,6-(CH 2 CH 3 ) 2 A-1 13 2,4-(OCHF 2 ) 2 A-135 2,4,6-(OCH 3 ) 3

A-92 2,3-(CF 3 ) 2 A-1 14 3,4-(OCHF 2 ) 2 A-136 2,3,4-(OCH 2 CH 3 ) 3

A-93 2,4-(CF 3 ) 2 A-1 15 2,6-(OCHF 2 ) 2 A-137 2,4,5-(OCH 2 CH 3 ) 3

A-94 3,4-(CF 3 ) 2 A-1 16 2,3,4-(CH 3 ) 3 A-138 3,4,5-(OCH 2 CH 3 ) 3

A-95 2,6-(CF 3 ) 2 A-1 17 2,4,5-(CH 3 ) 3 A-139 2,4,6-(OCH 2 CH 3 ) 3

A-96 2,3-(CHF 2 ) 2 A-1 18 3,4,5-(CH 3 ) 3 A-140 2,3,4-(OCF 3 ) 3

A-97 2,4-(CHF 2 ) 2 A-1 19 2,4,6-(CH 3 ) 3 A-141 2,4,5-(OCF 3 ) 3

A-98 3,4-(CHF 2 ) 2 A-120 2,3,4-(CH 2 CH 3 ) 3 A-142 3,4,5-(OCF 3 ) 3

A-99 2,6-(CHF 2 ) 2 A-121 2,4,5-(CH 2 CH 3 ) 3 A-143 2,4,6-(OCF 3 ) 3

A-100 2,3-(OCH 3 ) 2 A-122 3,4,5-(CH 2 CH 3 ) 3 A-144 2,3,4-(OCHF 2 ) 3

A-101 2,4-(OCH 3 ) 2 A-123 2,4,6-(CH 2 CH 3 ) 3 A-145 2,4,5-(OCHF 2 ) 3

A-102 3,4-(OCH 3 ) 2 A-124 2,3,4-(CF 3 ) 3 A-146 3,4,5-(OCHF 2 ) 3

A-103 2,6-(OCH 3 ) 2 A-125 2,4,5-(CF 3 ) 3 A-147 2,4,6-(OCHF 2 ) 3

A-104 2,3-(OCH 2 CH 3 ) 2 A-126 3,4,5-(CF 3 ) 3 A-148 2-CF 3 -4-CI

A-105 2,4-(OCH 2 CH 3 ) 2 A-127 2,4,6-(CF 3 ) 3 A-149 2-CF 3 -4-F

A-106 3,4-(OCH 2 CH 3 ) 2 A-128 2,3,4-(CHF 2 ) 3 A-150 2-CI-4-CF 3

A-107 2,6-(OCH 2 CH 3 ) 2 A-129 2,4,5-(CHF 2 ) 3 A-151 2-F-4-CF 3

A-108 2,3-(OCF 3 ) 2 A-130 3,4,5-(CHF 2 ) 3 A-152 2-CN-4-CI

A-109 2,4-(OCF 3 ) 2 A-131 2,4,6-(CHF 2 ) 3 A-153 2-CN-4-F

A-1 10 3,4-(OCF 3 ) 2 A-132 2,3,4-(OCH 3 ) 3 A-154 2-CI-4-CN

A-1 1 1 2,6-(OCF 3 ) 2 A-133 2,4,5-(OCH 3 ) 3 A-155 2-F-4-CN

A-1 12 2,3-(OCHF 2 ) 2 A-134 3,4,5-(OCH 3 ) 3

- * means tha m=0

Table B

The compounds I and the compositions according to the invention, respectively, are suitable as fungicides.

Consequently, according to a further aspect, the present invention relates to the use of compounds of formula I, the N-oxides and the agriculturally acceptable salts thereof or of the compositions of the invention for combating phytopathogenic fungi.

Accordingly, the present invention also encompasses a method for combating harmful fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of at least one compound of formula I or with a composition comprising according to the invention.

They are distinguished by an outstanding effectiveness against a broad spectrum of phytopath- ogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmo- diophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemi- cally effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.

The compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.

Preferably, compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; or- namentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.

Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.

The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.

Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxy- genase (HPPD) inhibitors or phytoene desaturase (PDS) inhibittors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e. g. described in Pest Managem. Sci. 61 , 2005, 246; 61 , 2005, 258; 61 , 2005, 277; 61 , 2005, 269; 61 , 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1 185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield ® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox, or ExpressSun ® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady ® (glyphosate-tolerant, Monsanto, U.S.A.), Cul- tivance ® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink ® (glufosinate-tolerant, Bayer CropScience, Germany).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as δ-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nema- todes, e. g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdyster- oid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coelop- tera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of which are commercially available such as YieldGard ® (corn cultivars producing the CrylAb toxin), YieldGard ® Plus (corn cultivars producing CrylAb and Cry3Bb1 toxins), Starlink ® (corn cultivars producing the Cry9c toxin), Herculex ® RW (corn cultivars producing Cry34Ab1 , Cry35Ab1 and the enzyme Phosphinothri- cin-N-Acetyltransferase [PAT]); NuCOTN ® 33B (cotton cultivars producing the CrylAc toxin), Bollgard ® I (cotton cultivars producing the CrylAc toxin), Bollgard ® II (cotton cultivars producing CrylAc and Cry2Ab2 toxins); VIPCOT ® (cotton cultivars producing a VIP-toxin); NewLeaf ® (potato cultivars producing the Cry3A toxin); Bt-Xtra ® , NatureGard ® , KnockOut ® , BiteGard ® , Pro- tecta ® , Bt1 1 (e. g. Agrisure ® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CrylAb toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CrylAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis- related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Er- winia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).

The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:

Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Altemaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassi- cae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. altemata), tomatoes (e. g. A. solani or A. altemata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) gram- inis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botry- otinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: An- thracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemu- thianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sa- sakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. lirio- dendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D.

phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyr- enophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formiti- poria (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (£. pyri), soft fruits (£. veneta: anthracnose) and vines (£. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Ery- siphe spp. (powdery mildew) on sugar beets (£. betae), vegetables (e. g. E. pisi), such as cu- curbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani ( sp. glycines now syn. F. virguliforme ) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining com- plex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica);

Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Phy- soderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P.

megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad- leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yal- lundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or .rotbrenner', anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P. asparagi on asparagus; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sa- rocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) no- dorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Lepto- sphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.

The compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and nonliving materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Altemaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.

The method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of fungi and microorganisms. According to the present invention, the term "stored products" is understood to denote natural substances of plant or an- imal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Stored products of crop plant origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably "stored products" is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.

The compounds I and compositions thereof, resepectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.

The term "plant health" is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor (e. g. improved plant growth and/or greener leaves ("greening effect")), quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.

The compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.

The compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.

Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.

The invention also relates to compositions comprising one compound I according to the invention. In particular, such composition further comprises an auxiliary as defined below.

The term "effective amount" used denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific com- pound I used.

The compounds I, their N-oxides and salts can be converted into customary types of agrochem- ical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), cap- sules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.

The compositions are prepared in a known manner, such as described by Mollet and Grube- mann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.

Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil frac- tions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.

Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective col- loid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.

Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.

Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.

Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.

Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.

Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.

Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.

Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).

Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, pol- yacrylates, biological or synthetic waxes, and cellulose ethers.

Examples for composition types and their preparation are:

i) Water-soluble concentrates (SL, LS)

10-60 wt% of a compound I and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active substance dis- solves upon dilution with water.

ii) Dispersible concentrates (DC)

5-25 wt% of a compound I and 1 -10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dispersion.

iii) Emulsifiable concentrates (EC)

15-70 wt% of a compound I and 5-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion.

iv) Emulsions (EW, EO, ES)

5-40 wt% of a compound I and 1 -10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aro- matic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion. v) Suspensions (SC, OD, FS)

In an agitated ball mill, 20-60 wt% of a compound I are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1 -2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added.

vi) Water-dispersible granules and water-soluble granules (WG, SG)

50-80 wt% of a compound I are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.

vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)

50-80 wt% of a compound I are ground in a rotor-stator mill with addition of 1 -5 wt% dispersants (e.g. sodium lignosulfonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.

viii) Gel (GW, GF)

In an agitated ball mill, 5-25 wt% of a compound I are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lignosulfonate), 1 -5 wt% thickener (e.g. carboxymethylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.

iv) Microemulsion (ME)

5-20 wt% of a compound I are added to 5-30 wt% organic solvent blend (e.g. fatty acid dime- thylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and ar- ylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.

iv) Microcapsules (CS)

An oil phase comprising 5-50 wt% of a compound I, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4'-diisocyanatae) are dis- persed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1 -10 wt%. The wt% relate to the total CS composition.

ix) Dustable powders (DP, DS)

1 -10 wt% of a compound I are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%.

x) Granules (GR, FG)

0.5-30 wt% of a compound I is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed.

xi) Ultra-low volume liquids (UL)

1 -50 wt% of a compound I are dissolved in organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%.

The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1 -1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1 -1 wt% anti-foaming agents, and 0.1 -1 wt% col- orants.

The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.

In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 g to 10 kg, in particular 0.1 to 1000 g, more particularly from 1 to 1000 g, specificaly from 1 to 100 g and most specificaly from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.

When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners, biopesticides) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions ac- cording to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.

A pesticide is generally a chemical or biological agent (such as a virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease. The term pesticides includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of acrop plant.

Biopesticides are typically created by growing and concentrating naturally occurring organisms and/or their metabolites including bacteria and other microbes, fungi, viruses, nematodes, proteins, etc. They are often considered to be important components of integrated pest manage- ment (I PM) programmes.

Biopesticides fall into two major classes, microbial and biochemical pesticides:

(1 ) Microbial pesticides consist of bacteria, fungi or viruses (and often include the metabolites that bacteria and fungi produce). Entomopathogenic nematodes are also classed as microbial pesticides, even though they are multi-cellular.

Biochemical pesticides are naturally occurring substances that control pests or provide other crop protection uses as defined below, but are relatively non-toxic to mammals.

The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemi- cal composition is made up with water, buffer, and/or further auxiliaries to the desired applica- tion concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.

According to one embodiment, individual components of the composition according to the in- vention such as parts of a kit or parts of a composition comprising two or three active ingredients, may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e.g seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.

When living microorganisms, such as pesticides from groups L1 ), L3) and L5), form part of such kit, it must be taken care that choice and amounts of the components (e.g. chemcial pesticidal agents) and of the further auxiliaries should not influence the viability of the microbial pesticides in the composition mixed by the user. Especially for bactericides and solvents, compatibility with the respective microbial pesticide has to be taken into account.

Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit compring a) a composition comprising component 1 ) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.

Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.

The following list of pesticides (e.g. pesticidally active substances and biopesticides), in con- junction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:

A) Respiration inhibitors

Inhibitors of complex III at Q 0 site (e.g. strobilurins): azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxystrobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin, 2-[2-(2,5-dimethyl-phenoxymethyl)-phenyl]-3- methoxy-acrylic acid methyl ester and 2-(2-(3-(2,6-dichlorophenyl)-1 -methyl-allylideneaminooxy- methyl)-phenyl)-2-methoxyimino-N-methyl-acetamide, pyribencarb, triclopyricarb/chlorodincarb, famoxadone, fenamidone;

- inhibitors of complex III at Q, site: cyazofamid, amisulbrom, [(3S,6S,7R,8R)-8-benzyl-3-[(3- acetoxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-di oxo-1 ,5-dioxonan-7-yl]

2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(acetoxymethoxy)-4-methoxy-pyr idine- 2-carbonyl]amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)- 8-benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy-pyridine-2-car bonyl)amino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[[3-(1 ,3-benzodioxol-5- ylmethoxy)-4-methoxy-pyridine-2-carbonyl]amino]-6-methyl-4,9 -dioxo-1 ,5-dioxonan-7-yl] 2- methylpropanoate; (3S,6S,7R,8R)-3-[[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl] amino]- 6-methyl-4,9-dioxo-8-(phenylmethyl)-1 ,5-dioxonan-7-yl 2-methylpropanoate, (3S,6S,7R,8R)-3- [[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl- 4,9-dioxo-8-(phenylmethyl)-1 ,5- dioxonan-7-yl 2-methylpropanoate;

inhibitors of complex II (e. g. carboxamides): benodanil, benzovindiflupyr, bixafen, bos- calid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, iso- pyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxamide, N- (2-(1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5-fluoro-1 H-pyrazole-4-carboxamide,

3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide,

3-(trifluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1 ,3-dimethyl- N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1 ,5-dimethyl-N-(1 ,1 ,3- trimethylindan-4-yl)pyrazole-4-carboxamide, 1 ,3,5-trimethyl-N-(1 , 1 ,3-trimethylindan-4- yl)pyrazole-4-carboxamide, N-(7-fluoro-1 ,1 ,3-trimethyl-indan-4-yl)-1 ,3-dimethyl-pyrazole-4- carboxamide, N-[2-(2,4-dichlorophenyl)-2-methoxy-1 -methyl-ethyl]-3-(difluoromethyl)-1 -methyl- pyrazole-4-carboxamide;

other respiration inhibitors (e.g. complex I, uncouplers): diflumetorim, (5,8-difluoro- quinazolin-4-yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2- yloxy)-phenyl]-ethyl}-amine; nitrophenyl derivates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone; organometal compounds: fen- tin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthiofam;

B) Sterol biosynthesis inhibitors (SBI fungicides)

C14 demethylase inhibitors (DMI fungicides): triazoles: azaconazole, bitertanol, bro- muconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipcona- zole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticona- zole, uniconazole,

1 -[re/-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxir anylmethyl]-5-thiocyanato-1 H- [1 ,2,4]triazole, 2-[re/-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxi ranylmethyl]- 2H-[1 ,2,4]triazole-3-thiol; 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 -(1 ,2,4-triazoM -yl)pentan-2- ol, 1 -[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -cyclopropyl-2-(1 ,2,4-triazol-1 -yl)ethanol,

2- [4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[2-chloro-4- (4-chlorophenoxy)phenyl]-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-

(trifluoromethyl)phenyl]-3-methyl-1 -(1 ,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2- (trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-

3- methyl-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 - (1 ,2,4-triazol-1 -yl)pentan-2-ol, 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol- 1 -yl)propan-2-ol; imidazoles: imazalil, pefurazoate, prochloraz, triflumizol; pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, 3-(4-chloro-2-fluoro-phenyl)-5-(2,4- difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol;

Delta14-reductase inhibitors: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine; Inhibitors of 3-keto reductase: fenhexamid;

C) Nucleic acid synthesis inhibitors

phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;

- others: hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2-(p- tolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine;

D) Inhibitors of cell division and cytoskeleton

tubulin inhibitors, such as benzimidazoles, thiophanates: benomyl, carbendazim, fuber- idazole, thiabendazole, thiophanate-methyl; triazolopynmidines: 5-chloro-7-(4-methylpiperidin-1 - yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine

other cell division inhibitors: diethofencarb, ethaboxam, pencycuron, fluopicolide, zox- amide, metrafenone, pyriofenone;

E) Inhibitors of amino acid and protein synthesis

methionine synthesis inhibitors (anilino-pyrimidines): cyprodinil, mepanipyrim, pyrimethan- il;

protein synthesis inhibitors: blasticidin-S, kasugamycin, kasugamycin hydrochloride- hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;

F) Signal transduction inhibitors

MAP / histidine kinase inhibitors: fluoroimid, iprodione, procymidone, vinclozolin, fen- piclonil, fludioxonil;

G protein inhibitors: quinoxyfen;

G) Lipid and membrane synthesis inhibitors

Phospholipid biosynthesis inhibitors: edifenphos, iprobenfos, pyrazophos, isoprothiolane; lipid peroxidation: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;

phospholipid biosynthesis and cell wall deposition: dimethomorph, flumorph, mandipro- pamid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1 -(1 -(4-cyano-phenyl)- ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;

compounds affecting cell membrane permeability and fatty acides: propamocarb, pro- pamocarb-hydrochlorid

fatty acid amide hydrolase inhibitors: oxathiapiprolin, 1 -[4-[4-[5-(2,6-difluorophenyl)-4,5- dihydro-3-isoxazolyl]-2-thiazolyl]-1 -piperidinyl]-2-[5-methyl-3-(trifluoromethyl)-1 H-pyrazol- 1 -yl]ethanone, 2-{3-[2-(1 -{[3,5-bis(difluoromethyl-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3- thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5-yl}phenyl methanesulfonate, 2-{3-[2-(1 -{[3,5-bis(difluoro- methyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl) 1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5-yl}-3- chlorophenyl methanesulfonate;

H) Inhibitors with Multi Site Action

inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur;

- thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, metiram, propineb, thiram, zineb, ziram;

organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine, chlo- rothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, hexachlorobenzene, pentachlor- phenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4-methyl- benzenesulfonamide;

guanidines and others: guanidine, dodine, dodine free base, guazatine, guazatine- acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon, 2,6- dimethyl-1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;

I) Cell wall synthesis inhibitors

- inhibitors of glucan synthesis: validamycin, polyoxin B; melanin synthesis inhibitors: py- roquilon, tricyclazole, carpropamid, dicyclomet, fenoxanil;

J) Plant defence inducers

acibenzolar-S-methyl, probenazole, isotianil, tiadinil, prohexadione-calcium; phospho- nates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts;

K) Unknown mode of action

- bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, difen- zoquat, difenzoquat-methylsulfate, diphenylamin, fenpyrazamine, flumetover, flusulfamide, flutianil, methasulfocarb, nitrapyrin, nitrothal-isopropyl, oxathiapiprolin, tolprocarb, oxin- copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen- 4-one, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn-1 -yloxy)phenyl]- 4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, 2-[3,5- bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-1 -yloxy)phenyl]-4,5- dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, 2-[3,5-bis(difluoromethyl)- 1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3- yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, N-(cyclopropylmethoxyimino-(6-difluoro-methoxy- 2,3-difluoro-phenyl)-methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)- 2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoromethyl- phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5-trifluoromethyl- 4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl- 2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-me thyl formamidine, methoxy- acetic acid 6-tert-butyl-8-fluoro-2,3-dimethyl-quinolin-4-yl ester, 3-[5-(4-methylphenyl)-2,3- dimethyl-isoxazolidin-3-yl]-pyridine, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]- pyridine (pyrisoxazole), N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide, 5- chloro-1 -(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 2-(4-chloro-phenyl)-N- [4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-ac etamide, 2-[3,5- bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2- oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 - y |]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thi-azol- 2-yl)piperidin-1 -yl]ethanone, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-chloro- 6-(prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 - yl]ethanone; ethyl (Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate , picarbutrazox, pentyl N-[6- [[(Z)-[(1 -methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-py ridyl]carbamate, 2-[2- [(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]prop an-2-ol, 2-[2-fluoro-6-[(8-fluoro-2- methyl-3-quinolyl)oxy]phen-yl]propan-2-ol, 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroiso- quinolin-1 -yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1 -yl)quinoline, 3- (4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1 -yl)quinolone, 9-fluoro-2,2-dimethyl-5-(3- quinolyl)-3H-1 ,4-benzoxazepine;

Biopesticides

L1 ) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michi- ganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryp- tococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus polymyxa, Pantoea va- gans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Strep- tomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T. harzianum; T. stromati- cum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocla- dium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain); L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, na- tamycin, Plum pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachlinensis extract, salicylic acid, tea tree oil;

L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity:

Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniartii , Burkholderia sp., Chromobacterium subtsugae, Cydia pomonella granulosis virus, Cryptophlebia leucotreta granulovirus (CrleGV), Isaria fumosorosea, Heterorhabditis bacteriophora, Lecanicillium longispo- rum, L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramose, P. reneformis, P. thornea, P. usgae, Pseudomonas fluorescens, Steinernema carpocapsae, S. feltiae, S. kraussei;

L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or ne- maticidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl buty- rate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)-9,12- tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate, Z-1 1 - tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;

L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense, A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. elkanii, B. japonicum,

B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseoli, R. I. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium meliloti;

L6) Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2-one, for- mononetin, genistein, hesperetin, homobrassinlide, humates, jasmonic acid or salts or derivatives thereof, lysophosphatidyl ethanolamine, naringenin, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract;

M) Growth regulators

abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6- dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione (prohexadione- calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate,

2,3,5-tri-iodobenzoic acid , trinexapac-ethyl and uniconazole;

N) Herbicides

acetamides: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufenacet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamid, pretilachlor, propachlor, thenylchlor;

amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate;

aryloxyphenoxypropionates: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop, haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl;

- Bipyridyls: diquat, paraquat;

(thio)carbamates: asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thioben- carb, triallate;

cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepralox- ydim, tralkoxydim;

dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, trifluralin; diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen;

hydroxybenzonitriles: bomoxynil, dichlobenil, ioxynil;

- imidazolinones: imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, ima- zethapyr;

phenoxy acetic acids: clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlor- prop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;

pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate;

- pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr;

sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metazosulfuron, met- sulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfu- ron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusul- furon, tritosulfuron, 1 -((2-chloro-6-propyl-imidazo[1 ,2-b]pyridazin-3-yl)sulfonyl)-3-(4,6-dimethoxy- pyrimidin-2-yl)urea;

triazines: ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone, metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam;

ureas: chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, metha- benzthiazuron,tebuthiuron;

other acetolactate synthase inhibitors: bispyribac-sodium, cloransulam-methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam,

propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrimisul- fan, pyrithiobac, pyroxasulfone, pyroxsulam;

others: amicarbazone, aminotriazole, anilofos, beflubutamid, benazolin, bencarba- zone,benfluresate, benzofenap, bentazone, benzobicyclon, bicyclopyrone, bromacil, bromobu- tide, butafenacil, butamifos, cafenstrole, carfentrazone, cinidon-ethyl, chlorthal, cinmethylin, clomazone, cumyluron, cyprosulfamide, dicamba, difenzoquat, diflufenzopyr, Drechslera mo- noceras, endothal, ethofumesate, etobenzanid, fenoxasulfone, fentrazamide, flumiclorac-pentyl, flumioxazin, flupoxam, flurochloridone, flurtamone, indanofan, isoxaben, isoxaflutole, lenacil, propanil, propyzamide, quinclorac, quinmerac, mesotrione, methyl arsonic acid, naptalam, oxadiargyl, oxadiazon, oxaziclomefone, pentoxazone, pinoxaden, pyraclonil, pyraf I uf en-ethyl, pyrasulfotole, pyrazoxyfen, pyrazolynate, quinoclamine, saflufenacil, sulcotrione, sulfentrazone, terbacil, tefuryltrione, tembotrione, thiencarbazone, topramezone, (3-[2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin- 1 -yl)-phenoxy]-pyridin-2-yloxy)- acetic acid ethyl ester, 6-amino-5-chloro-2-cyclopropyl-pyrimidine-4-carboxylic acid methyl ester, 6-chloro-3-(2-cyclopropyl-6-methyl-phenoxy)-pyridazin-4-ol, 4-amino-3-chloro-6-(4-chloro- phenyl)-5-fluoro-pyridine-2-carboxylic acid, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxy- phenyl)-pyridine-2-carboxylic acid methyl ester, and 4-amino-3-chloro-6-(4-chloro-3- dimethylamino-2-fluoro-phenyl)-pyridine-2-carboxylic acid methyl ester.

O) Insecticides

organo(thio)phosphates: acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methidathion, methyl- parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothi- ofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon;

- carbamates: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosul- fan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamate;

pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha- cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin;

insect growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, cy- ramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ec- dysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spi- romesifen, spirotetramat;

nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran, flupyradi- furone, imidacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1 -2-chloro-thiazol-5- ylmethyl)-2-nitnmino-3,5-dimethyl-[1 ,3,5]triazinane;

GABA antagonist compounds: endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole, pyriprole, 5-amino-1 -(2,6-dichloro-4-methyl-phenyl)-4-sulfinamoyl-1 H-pyrazole-3-carbothioic acid amide;

macrocyclic lactone insecticides: abamectin, emamectin, milbemectin, lepimectin, spi- nosad, spinetoram;

mitochondrial electron transport inhibitor (METI) I acaricides: fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad, flufenerim;

- METI II and III compounds: acequinocyl, fluacyprim, hydramethylnon;

Uncouplers: chlorfenapyr;

oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide, propargite; moulting disruptor compounds: cryomazine;

mixed function oxidase inhibitors: piperonyl butoxide;

- sodium channel blockers: indoxacarb, metaflumizone;

ryanodine receptor inhibitors: chlorantraniliprole, cyantraniliprole, flubendiamide, N-[4,6- dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-pheny l]-2-(3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4- sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyri dyl)-5-(trifluoromethyl)pyrazole-3- carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl ]-6-methyl-phenyl]- 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxa mide; N-[4,6-dichloro-2-[(di-2-propyl- lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyri dyl)-5-(trifluoromethyl)pyrazole-3- carboxamide; N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl ]-phenyl]-2-(3-chloro- 2-pyridyl)-5-(difluoromethyl)pyrazole-3-carboxamide; N-[4,6-dibromo-2-[(di-2-propyl-lambda- 4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3- carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl ]-6-cyano-phenyl]- 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxa mide; N-[4,6-dibromo-2-[(diethyl- lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyri dyl)-5-(trifluoromethyl)pyrazole-3- carboxamide);

- others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocy- clam, flubendiamide, chlorantraniliprole, cyazypyr (HGW86), cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyrifluquinazon and 1 ,1 '- [(3S,4R,4aR,6S,6aS, 12R, 12aS, 12bS)-4-[[(2-cyclopropylacetyl)oxy]methyl]- 1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy-4,6a,12b-trim ethyl-1 1 -oxo-9-(3-pyridinyl)- 21-1,1 1 H-naphtho[2,1 -b]pyrano[3,4-e]pyran-3,6-diyl] cyclopropaneacetic acid ester.

The present invention furthermore relates to compositions comprising a compound I (component 1 ) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to O) (component 2), in particular one further fungicide, e. g. fungicide from the groups A) to L), as described above, and if desired one suitable solvent or solid carrier. Those compositions are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. Furthermore, combating harmful fungi with a compris- tion comprising a compound I and a fungicide from groups A) to L), as described above, is more efficient than combating those fungi with individual compounds I or individual fungicides from groups A) to L). By applying compounds I together with at least one active substance from groups A) to O) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic compositions).

This can be obtained by applying the compounds I and at least one further active substance simultaneously, either jointly (e. g. as tank-mix) or seperately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.

When applying a compound of the present invention and a pesticide II sequentially the time between both applications may vary e.g. between 2 hours to 7 days. Also a broader range is possible ranging from 0.25 hour to 30 days, preferably from 0.5 hour to 14 days, particularly from 1 hour to 7 days or from 1 .5 hours to 5 days, even more preferred from 2 hours to 1 day. In case of a composition or mixture comprising a pesticide II selected from group L), it is preferred that the pesticide II is applied as last treatment.

According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil, Tagetes oil, etc.) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction medium or the suspension medium in case of liquid formulations of the microbial pesticides).

In accordance with the present invention, the weight ratios and percentages used herein for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).

The total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms, can be determined using the amount of CFU of the respective microorganism to calclulate the total weight of the respective active component with the following equation that 1 x 10 9 CFU equals one gram of total weight of the respective active component. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here "CFU" may also be understood as the number of (juvenile) individual nematodes in case of (entomopathogenic) nematode biopesticides, such as

Steinernema feltiae.

In the binary mixtures and compositions according to the invention the weight ratio of the component 1 ) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 , even more preferably in the range of from 1 :4 to 4:1 and in particular in the range of from 1 :2 to 2:1.

According to a further embodiments of the binary mixtures and compositions, the weight ratio of the component 1 ) and the component 2) usually is in the range of from 1000:1 to 1 :1 , often in the range of from 100: 1 to 1 :1 , regularly in the range of from 50:1 to 1 :1 , preferably in the range of from 20:1 to 1 :1 , more preferably in the range of from 10:1 to 1 :1 , even more preferably in the range of from 4:1 to 1 :1 and in particular in the range of from 2:1 to 1 :1.

According to a further embodiments of the binary mixtures and compositions, the weight ratio of the component 1 ) and the component 2) usually is in the range of from 1 :1 to 1 :1000, often in the range of from 1 :1 to 1 :100, regularly in the range of from 1 :1 to 1 :50, preferably in the range of from 1 :1 to 1 :20, more preferably in the range of from 1 :1 to 1 :10, even more preferably in the range of from 1 :1 to 1 :4 and in particular in the range of from 1 :1 to 1 :2.

In the ternary mixtures, i.e. compositions according to the invention comprising the component 1 ) and component 2) and a compound III (component 3), the weight ratio of component 1 ) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4:1 , and the weight ratio of component 1 ) and component 3) usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :4 to 4:1.

Any further active components are, if desired, added in a ratio of from 20:1 to 1 :20 to the component 1 ).

These ratios are also suitable for inventive mixtures applied by seed treatment.

In compositions according to the invention comprising one compound I (component 1 ) and one further pesticidally active substance (component 2), e. g. one active substance from groups A) to O), the weight ratio of component 1 and component 2 generally depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , preferably in the range of from 1 :20 to 20:1 , more preferably in the range of from 1 :10 to 10:1 and in particular in the range of from 1 :3 to 3:1.

In compositions according to the invention comprising one compound I (component 1 ) and a first further pesticidally active substance (component 2) and a second further pesticidally active substance (component 3), e. g. two active substances from groups A) to O), the weight ratio of component 1 and component 2 depends from the properties of the active substances used, preferably it is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1 , and the weight ratio of component 1 and component 3 preferably is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1. Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group A) (component 2) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyra- clostrobin, trifloxystrobin; famoxadone, fenamidone; benzovindiflupyr, bixafen, boscalid, fluopy- ram, fluxapyroxad, isopyrazam, penflufen, penthiopyrad, sedaxane; ametoctradin, cyazofamid, fluazinam, fentin salts, such as fentin acetate.

Preference is given to compositions comprising a compound of formula I (component 1 ) and at least one active substance selected from group B) (component 2) and particularly selected from cyproconazole, difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, metcona- zole, myclobutanil, penconazole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetraconazole, triticonazole, prochloraz, fenarimol, triforine; dodemorph, fenprop- imorph, tridemorph, fenpropidin, spiroxamine; fenhexamid.

Preference is given to compositions comprising a compound of formula I (component 1 ) and at least one active substance selected from group C) (component 2) and particularly selected from metalaxyl, (metalaxyl-M) mefenoxam, ofurace.

Preference is given to compositions comprising a compound of formula I (component 1 ) and at least one active substance selected from group D) (component 2) and particularly selected from benomyl, carbendazim, thiophanate-methyl, ethaboxam, fluopicolide, zoxamide, metrafenone, pyriofenone.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group E) (component 2) and particularly selected from cy- prodinil, mepanipyrim, pyrimethanil.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group F) (component 2) and particularly selected from iprodione, fludioxonil, vinclozolin, quinoxyfen.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group G) (component 2) and particularly selected from di- methomorph, flumorph, iprovalicarb, benthiavalicarb, mandipropamid, propamocarb.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group H) (component 2) and particularly selected from copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, mancozeb, metiram, propineb, thiram, captafol, folpet, chlorothalonil, dichlofluanid, dithianon.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group I) (component 2) and particularly selected from car- propamid and fenoxanil.

Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group J) (component 2) and particularly selected from acibenzolar-S-methyl, probenazole, tiadinil, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof. Preference is also given to compositions comprising a compound I (component 1 ) and at least one active substance selected from group K) (component 2) and particularly selected from cy- moxanil, proquinazid and A/-methyl-2-{1 -[(5-methyl-3-trifluoromethyl-1 H-pyrazol-1 -yl)-acetyl]- piperidin-4-yl}-A/-[(1 R)-1 ,2,3,4-tetrahydronaphthalen-1 -yl]-4-thiazolecarboxamide.

The biopesticides from group L) of pesticides II, their preparation and their pesticidal activity e.g. against harmful fungi or insects are known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ); http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri-lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein).

The biopesticides from group L1 ) and/or L2) may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L5) and/or L6) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.

Many of these biopesticides are registered and/or are commercially available: aluminium silicate (Screen™ Duo from Certis LLC, USA), Agrobacterium radiobacter K1026 (e.g. NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g. GallTroll® from AG Biochem, Inc., C, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract or filtrate (e.g. ORKA GOLD from Becker Underwood, South Africa; or Goemar® from Laboratoires Goemar, France), Aspergillus flavus NRRL 21882 isolated from a peanut in Georgia in 1991 by the USDA, National Peanut Research Laboratory (e.g. in Afla-Guard® from Syngenta, CH), mixtures of Aureobasidium pullulans DSM14940 and DSM 14941 (e.g. blasto- spores in Blossom Protect® from bio-ferm GmbH, Germany), Azospirillum amazonense BR 1 1 140 (SpY2 T ) (Proc. 9 th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958-46-0908-3), A. brasilense AZ39 (Eur. J. Soil Biol 45(1 ), 28-35, 2009), A. brasilense XOH (e.g. AZOS from Xtreme Gardening, USA or RTI Reforestation Tech- nologies International; USA), A. brasilense BR 1 1002 (Proc. 9 th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60, ISBN 978-958-46-0908-3), A. brasilense BR 1 1005 (SP245; e.g. in GELFIX Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. lipoferum BR 1 1646 (Sp31 ) (Proc. 9 th Int. and 1 st Latin American PGPR meeting, Quimara, Medellin, Colombia 2012, p. 60), Bacillus amyloliquefaciens FZB42 (e.g. in RhizoVi- tal® 42 from AbiTEP GmbH, Berlin, Germany), B. amyloliquefaciens IN937a (J. Microbiol. Bio- technol. 17(2), 280-286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA), B. amyloliquefaciens IT-45 (CNCM I-3800) (e.g. Rhizocell C from ITHEC, France), B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595, deposited at United States Department of Agriculture) (e.g. Integral®, Subtilex® NG from Becker Underwood, USA), B. cereus CNCM 1-1562 (US 6,406,690), B. firmus CNCM 1-1582 (WO 2009/126473, WO 2009/124707, US 6,406,690; Vo- tivo® from Bayer Crop Science LP, USA), B. pumilus GB34 (ATCC 700814; e.g. in YieldShield® from Gustafson LLC, TX, USA), and Bacillus pumilus KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa), B. pumilus QST 2808 (NRRL B-30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), B. subtilis GB03 (e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, NY 10603, USA), B. subtilis GB07 (Epic® from Gustafson, Inc., USA), B. subtilis QST-713 (NRRL B-21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc., USA), B. subtilis var. amyloliquefaciens FZB24 (e.g. Taegro® from Novozyme Biologicals, Inc., USA), B. subtilis var. amyloliquefaciens D747 (e.g. Double Nickel 55 from Certis LLC, USA), B. thuringiensis ssp. aizawai ABTS-1857 (e.g. in XenTari® from BioFa AG, Munsingen, Germany), B. t. ssp. aizawai SAN 401 I, ABG-6305 and ABG-6346, Bacillus t. ssp. israelensis AM65-52 (e.g. in VectoBac® from Valent Biosciences, IL, USA), Bacillus thuringiensis ssp. kurstaki SB4 (NRRL B-50753; e.g. Beta Pro® from Becker Underwood, South Africa), B. t. ssp. kurstaki ABTS-351 identical to HD-1 (ATCC SD-1275; e.g. in Dipel® DF from Valent Biosciences, IL, USA), B. t. ssp. kurstaki EG 2348 (e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.l., Italy), B. t. ssp. tenebrionis DSM 2803 (EP 0 585 215 B1 ; identical to NRRL B-15939; Mycogen Corp.), B. t. ssp. tenebrionis NB-125 (DSM 5526; EP 0 585 215 B1 ; also referred to as SAN 418 I or ABG-6479; former production strain of Novo-Nordisk), B. t. ssp. tenebrionis NB-176 (or NB- 176-1 ) a gamma-irridated, induced high-yielding mutant of strain NB-125 (DSM 5480; EP 585 215 B1 ; Novodor® from Valent Biosciences, Switzerland), Beauveria bassiana ATCC 74040

(e.g. in Naturalis® from CBC (Europe) S.r.l., Italy), B. bassiana DSM 12256 (US 200020031495; e.g. BioExpert® SC from Live Sytems Technology S.A., Colombia), B. bassiana GHA (Bota- niGard® 22WGP from Laverlam Int. Corp., USA), B. bassiana PPRI 5339 (ARSEF number 5339 in the USDA ARS collection of entomopathogenic fungal cultures; NRRL 50757) (e.g. Broad Band® from Becker Underwood, South Africa), B. brongniartii (e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol. 100(5), 1063-72, 2006), Bradyrhizobium sp. (e.g. Vault® from Becker Underwood, USA), B. japonicum (e.g. VAULT® from Becker Underwood, USA), Candida oleophila 1-182 (NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231 -234, 1995), C. oleophila strain O (NRRL Y-2317; Biological Control 51 , 403-408, 2009),, Candida saitoana (e.g. Biocure® (in mixture with lysozyme) and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta), Chitosan (e.g. Armour-Zen® from BotriZen Ltd., NZ), Clonostachys rosea f. catenulata, also named Gliocladi- um catenulatum (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), Chromobacterium subtsugae PRAA4-1 isolated from soil under an eastern hemlock (Tsuga canadensis) in the Catoctin Mountain region of central Maryland (e.g. in GRANDEVO from Marrone Bio Innovations, USA), Coniothyrium minitans CON/M/91 -08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), Cryptophlebia leucotreta granulovirus (CrleGV) (e.g. in CRYPTEX from Adermatt Biocontrol, Switzerland), Cydia pomo- nella granulovirus (CpGV) V03 (DSM GV-0006; e.g. in MADEX Max from Andermatt Biocontrol, Switzerland), CpGV V22 (DSM GV-0014; e.g. in MADEX Twin from Adermatt Biocontrol, Switzerland), Delftia acidovorans RAY209 (ATCC PTA-4249; WO 2003/57861 ; e.g. in BIO- BOOST from Brett Young, Winnipeg, Canada), Dilophosphora alopecuri (Twist Fungus from Becker Underwood, Australia), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), formononetin (e.g. in MYCONATE from Plant Health Care pic, U.K.), Fusarium oxysporum (e.g. BIOFOX® from S.I.A.P.A., Italy, FUSACLEAN® from Natural Plant Protection, France), Glomus intraradices (e.g. MYC 4000 from ITHEC, France), Glomus intrara- dices RTI-801 (e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), grapefruit seeds and pulp extract (e.g. BC-1000 from Chemie S.A., Chile), harpin (alpha-beta) protein (e.g. MESSENGER or HARP-N-Tek from Plant Health Care pic, U.K.; Science 257, 1-132, 1992), Heterorhabditis bacteriophaga (e.g. Nemasys® G from Becker Underwood Ltd., UK), Isaria fumosorosea Apopka-97 (ATCC 20874) (PFR-97™ from Cer- tis LLC, USA), cis-jasmone (US 8,221 ,736), laminarin (e.g. in VACCIPLANT from Laboratoires Goemar, St. Malo, France or Stahler SA, Switzerland), Lecanicillium longisporum KV42 and KV71 (e.g. VERTALEC® from Koppert BV, Netherlands), L. muscarium KV01 (formerly Verti- cillium lecanii) (e.g. MYCOTAL from Koppert BV, Netherlands), Lysobacter antibioticus 13-1 (Biological Control 45, 288-296, 2008), L. antibioticus HS124 (Curr. Microbiol. 59(6), 608-615, 2009), L. enzymogenes 3.1 T8 (Microbiol. Res. 158, 107-1 15; Biological Control 31 (2), 145-154, 2004), Metarhizium anisopliae var. acridum IMI 330189 (isolated from Ornithacris cavroisi in Niger; also NRRL 50758) (e.g. GREEN MUSCLE® from Becker Underwood, South Africa), M. a. var. acridum FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), M. anisopliae FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), M. anisopliae F52 (DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada), M. anisopliae ICIPE 69 (e.g. METATHRIPOL from ICIPE, Nairobe, Kenya), Metschnikowia fructicola (NRRL Y-30752; e.g. SHEMER® from Agrogreen, Israel, now distributed by Bayer CropSciences, Germany; US 6,994,849), Microdochium dimerum (e.g. ANTIBOT® from Agrau- xine, France), Microsphaeropsis ochracea P130A (ATCC 74412 isolated from apple leaves from an abandoned orchard, St-Joseph-du-Lac, Quebec, Canada in 1993; Mycologia 94(2), 297-301 , 2002), Muscodor albus QST 20799 originally isolated from the bark of a cinnamon tree in Honduras (e.g. in development products Muscudor™ or QRD300 from AgraQuest, USA), Neem oil (e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA), Nomuraea rileyi strains SA86101 , GU87401 , SR86151 , CG128 and VA9101 , Paecilomyces fumosoroseus FE 9901 (e.g. NO FLY™ from Natural Industries, Inc., USA), P. Iilacinus 251 (e.g. in BioAct®/MeloCon® from Prophyta, Germany; Crop Protection 27, 352-361 , 2008; originally isolated from infected nematode eggs in the Philippines), P. Iilacinus DSM 15169 (e.g. NEMATA® SC from Live Systems Technology S.A., Colombia), P. Iilacinus BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 (NRRL B-50755), Pantoea vagans (formerly agglomerans) C9-1 (originally isolated in 1994 from apple stem tissues BlightBan C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; J. Bacte- riol. 192(24) 6486-6487, 2010), Pasteuria spp. ATCC PTA-9643 (WO 2010/085795), Pasteuria spp. ATCC SD-5832 (WO 2012/064527), P. nishizawae (WO 2010/80169), P. penetrans (US 5,248,500), P. ramose (WO 2010/80619), P. thornea (WO 2010/80169), P. usgae (WO 2010/80169), Penicillium bilaiae (e.g. Jump Start® from Novozymes Biologicals BioAg Group, Canada, originally isolated from soil in southern Alberta; Fertilizer Res. 39, 97-103, 1994), Phle- biopsis gigantea (e.g. RotStop® from Verdera Oy, Finland), Pichia anomala WRL-076 (NRRL Y- 30842; US 8,206,972), potassium bicarbonate (e.g. Amicarb® fromm Stahler SA, Switzerland), potassium silicate (e.g. Sil-MATRIX™ from Certis LLC, USA), Pseudozyma flocculosa PF-A22 UL (e.g. Sporodex® from Plant Products Co. Ltd., Canada), Pseudomonas sp. DSM 13134 (WO 2001/40441 , e.g. in PRORADIX from Sourcon Padena GmbH & Co. KG, Hechinger Str. 262, 72072 Tubingen, Germany), P. chloraphis MA 342 (e.g. in CERALL or CEDEMON from BioAgri AB, Uppsala, Sweden), P. fluorescens CL 145A (e.g. in ZEQUANOX from Marrone Bio- Innovations, Davis, CA, USA; J. Invertebr. Pathol. 1 13(1 ):104-14, 2013), Pythium oligandrum DV 74 (ATCC 38472; e.g. POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep. and GOWAN, USA; US 2013/0035230), Reynoutria sachlinensis extract (e.g. REGALIA® SC from Marrone Biolnnovations, Davis, CA, USA), Rhizobium leguminosarum bv. phaseoli (e.g. RHIZO-STICK from Becker Underwood, USA), R. I. trifolii RP1 13-7 (e.g. DORMAL from Becker Underwood, USA; Appl. Environ. Microbiol. 44(5), 1096-1 101 ), R. I. bv. viciae P1 NP3Cst (also referred to as 1435; New Phytol 179(1 ), 224-235, 2008; e.g. in NODULATOR PL Peat Granule from Becker Underwood, USA; or in NODULATOR XL PL bfrom Becker Underwood, Canada), R. I. bv. viciae SU303 (e.g. NODULAID Group E from Becker Underwood, Australia), R. I. bv. viciae WSM1455 (e.g. NODULAID Group F from Becker Underwood, Australia), R. tropici SEMIA 4080 (identical to PRF 81 ; Soil Biology & Biochemistry 39, 867-876, 2007), Sinorhizobi- um meliloti MSDJ0848 (INRA, France) also referred to as strain 201 1 or RCR201 1 (Mol Gen Genomics (2004) 272: 1-17; e.g. DORMAL ALFALFA from Becker Underwood, USA; Nl- TRAGIN® Gold from Novozymes Biologicals BioAg Group, Canada), Sphaerodes mycoparasiti- ca IDAC 301008-01 (WO 201 1/022809), Steinernema carpocapsae (e.g. MILLENIUM® from Becker Underwood Ltd., UK), S. feltiae (NEMASHIELD® from BioWorks, Inc., USA;

NEMASYS® from Becker Underwood Ltd., UK), S. kraussei L137 (NEMASYS® L from Becker Underwood Ltd., UK), Streptomyces griseoviridis K61 (e.g. MYCOSTOP® from Verdera Oy, Espoo, Finland; Crop Protection 25, 468-475, 2006), S. lydicus WYEC 108 (e.g. Actinovate® from Natural Industries, Inc., USA, US 5,403,584), S. violaceusniger YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, US 5,968,503), Talaromyces flavus V1 17b (e.g. PROTUS® from Prophyta, Germany), Trichoderma asperellum SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), T. asperellum ICC 012 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA), T. atroviride LC52 (e.g. SENTINEL® from Agrimm Technologies Ltd, NZ), T. atroviride CNCM 1-1237 (e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound diseases on vine and plant root pathogens), T. fertile JM41 R (NRRL 50759; e.g. RICHPLUS™ from Becker Underwood Bio Ag SA Ltd, South Africa), T. gamsii ICC 080 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA), T. harzianum T-22 (e.g. PLANTSHIELD® der Firma BioWorks Inc., USA), T. harzianum TH 35 (e.g. ROOT PRO® from Mycontrol Ltd., Israel), T. harzianum T-39 (e.g. TRICHODEX® and TRICHODERMA 2000® from Mycontrol

Ltd., Israel and Makhteshim Ltd., Israel), T. harzianum and T. viride (e.g. TRICHOPEL from Ag- rimm Technologies Ltd, NZ), T. harzianum ICC012 and T. viride ICC080 (e.g. REMEDIER® WP from Isagro Ricerca, Italy), T. polysporum and T. harzianum (e.g. BINAB® from BINAB Bio- Innovation AB, Sweden), T. stromaticum (e.g. TRICOVAB® from C.E.P.L.A.C., Brazil), T. virens GL-21 (also named Gliocladium virens) (e.g. SOILGARD® from Certis LLC, USA), T. viride (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien), T. viride TV1 (e.g. T. viride TV1 from Agribiotec srl, Italy) and Ulocladium oudemansii HRU3 (e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ).

Strains can be sourced from genetic resource and deposition centers: American Type Culture Collection, 10801 University Blvd., Manassas, VA 201 10-2209, USA (strains with ATCC prefic); CABI Europe - International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and I Ml); Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC); Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Docteur Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-lnstitut DSMZ-Deutsche Samm- lung von Mikroorganismen und Zellkulturen GmbH, Inhoffenst^e 7 B, 38124 Braunschweig, Germany (strains with prefix DSM); International Depositary Authority of Canada Collection, Canada (strains with prefix IDAC); Interntional Collection of Micro-orgniasms from Plants, Land- care Research, Private Bag 92170, Auckland Mail Centre, Auckland 1 142, New Zealand (strans with prefix ICMP); IITA, PMB 5320, Ibadan, Nigeria (straisn with prefix IITA); The National Collections of Industrial and Marine Bacteria Ltd., Torry Research Station, P.O. Box 31 , 135 Abbey Road, Aberdeen, AB9 8DG, Scotland (strains with prefix NCIMB); ARS Culture Collection of the National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, USA (strains with prefix NRRL); Department of Scientific and Industrial Research Culture Collection, Applied Biochemistry Division, Palmerston North, New Zealand (strains with prefix NZP); FEPAGRO- Fundagao Estadual de Pesquisa Agropecuaria, Rua Gongalves Dias, 570, Bairro Menino Deus, Porto Alegre/RS, Brazil (strains with prefix SEMIA); SARDI, Adelaide, South Australia (strains with prefix SRDI); U.S. Department of Agriculture, Agricultural Research Service, Soybean and Alfalfa Research Laboratory, BARC-West, 10300 Baltimore Boulevard, Building 01 1 , Room 19- 9, Beltsville, MD 20705, USA (strains with prefix USDA: Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30: http://pdf.usaid.gov/pdf_docs/PNAAW891.pdf); and Murdoch University, Perth, Western Australia (strains with prefix WSM). Further strains may be found at the Global catalogue of Microorganisms: http://gcm.wfcc.info/ and

http://www.landcareresearch.co.nz/resources/collections/i cmp and further references to strain collections and their prefixes at http://refs.wdcm.org/collections.htm.

Bacillus amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation Bacillus subtilis 1430 (and identical to NCIMB 1237). Recently, MBI 600 has been re-classified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp. plantarum MBI600, formerly Bacillus subtilis MBI600. Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. 3(2) (201 1 ), 120-130 and further described e.g. in US 2012/0149571 A1. This strain MBI600 is e.g. commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).

Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This B. subtilis strain promotes plant health (US 2010/0260735 A1 ; WO 201 1/109395 A2). B. subtilis FB17 has also been deposited at ATCC under number PTA-1 1857 on April 26, 201 1 . Bacillus subtilis strain FB17 may be referred elsewhere to as UD1022 or UD10-22.

Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B- 50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B- 50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. japonicum SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. japonicum SEMIA 5080 (e.g. GELFIX 5 or ADHERE 60 from Nitral Urbana Laoboratories, Brazil, a BASF Company), B. mojavensis AP-209 (NRRL B-50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571 , US 8,445,255, WO 2012/079073. Bradyrhizobium japonicum USDA 3 is known from US patent 7,262,151.

Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassium jasmona- te, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethylammonium jasmona- te, isopropylammonium jasmonate, diolammonium jasmonate, diethtriethanolammonium jasmo- nate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L-valine, L- leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L-serine, coronafacoyl-L-threonine, methyl esters of 1 -oxo-indanoyl-isoleucine, methyl esters of 1 -oxo- indanoyl-leucine, coronalon (2-[(6-ethyl-l-oxo-indane-4-carbonyl) -amino]-3-methyl -pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.

Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite. Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer effi- ciency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.

According to one embodiment, the microbial pesticides selected from groups L1 ), L3) and L5) embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also its cell-free extract, its suspensions in a whole broth culture or as a metabolite- containing supernatant or a purified metabolite obtained from a whole broth culture of the mi- croorganism or microorganism strain.

According to a further embodiment, the microbial pesticides selected from groups L1 ), L3 and L5) embraces not only the isolated, pure cultures of the respective micro-organism as defined herein, but also a cell-free extract thereof or at least one metabolite thereof, and/or a mutant of the respective micro-organism having all the identifying characteristics thereof and also a cell- free extract or at least one metabolite of the mutant.

"Whole broth culture" refers to a liquid culture containing both cells and media.

"Supernatant" refers to the liquid broth remaining when cells grown in broth are removed by centrifugation, filtration, sedimentation, or other means well known in the art.

The term "cell-free extract" refers to an extract of the vegetative cells, spores and/or the whole culture broth of a microorganism comprising cellular metabolites produced by the respective microorganism obtainable by cell disruption methods known in the art such as solvent-based (e.g. organic solvents such as alcohols sometimesin combination with suitable salts), temperature-based, application of shear forces, cell disrupotion with an ultrasonicator. The desired ex- tract may be concentrated by conventional concentration techniques such as drying, evaporation, centrifugation or alike. Certain washing steps using organic solents and/or water-based media may also be applied to the crude extract preferably prior to use.

The term "metabolite" refers to any compound, substance or byproduct produced by a microorganism (such as fungi and bacteria) that has improves plant growth, water use efficiency of the plant, plant health, plant appearance, or the population of beneficial microorganisms in the soil around the plant activity.

The term "mutant" refers a microorganism obtained by direct mutant selection but also includes microorganisms that have been further mutagenized or otherwise manipulated (e.g., via the introduction of a plasmid). Accordingly, embodiments include mutants, variants, and or deriva- tives of the respective microorganism, both naturally occurring and artificially induced mutants. For example, mutants may be induced by subjecting the microorganism to known mutagens, such as N-methyl-nitrosoguanidine, using conventional methods.

Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones. Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hex- acyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, polyacry- lates, biological or synthetic waxes, and cellulose ethers.

In the case of mixtures comprising microbial pesticides II selected from groups L1 ), L3) and L5), the microorganisms as used according to the invention can be cultivated continuously or discon- tinuously in the batch process or in the fed batch or repeated fed batch process. A review of known methods of cultivation will be found in the textbook by Chmiel (Bioprozesstechnik 1. Ein- fuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991 )) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

When living microorganisms, such as pesticides II from groups L1 ), L3) and L5), form part of the compositions, such compositions can be prepared as compositions comprising besides the active ingredients at least one auxiliary (inert ingredient) by usual means (see e.g. H.D. Burges: Formulation of Micobial Biopestcides, Springer, 1998). Suitable customary types of such compositions are suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). Herein, it has to be taken into account that each formulation type or choice of auxiliary should not influence the viability of the microorganism during storage of thecomposition and when finally applied to the soil, plant or plant propagation material. Suitable formulations are e.g. mentioned in WO 2008/002371 , US 6955,912, US 5,422,107.

Examples for suitable auxiliaries are those mentioned earlier herein, wherein it must be taken care that choice and amounts of such auxiliaries should not influence the viability of the micro- bial pesticides in the composition. Especially for bactericides and solvents, compatibility with the respective microorganism of the respective microbial pesticide has to be taken into account. In addition, compositions with microbial pesticides may further contain stabilizers or nutrients and UV protectants. Suitable stabilzers or nutrients are e.g. alpha-tocopherol, trehalose, glutamate, potassium sorbate, various sugars like glucose, sucrose, lactose and maltodextrine (H.D.

Burges: Formulation of Micobial Biopestcides, Springer, 1998). Suitable UV protectants are e.g. inorganic compouns like titan dioxide, zinc oxide and iron oxide pigments or organic compounds like benzophenones, benzotriazoles and phenyltriazines. The compositions may in addition to auxiliaries mentioned for compositions comprising compounds I herein optionally comprise 0.1 - 80% stabilizers or nutrients and 0.1 -10% UV protectants.

When mixtures comprising microbial pesticides are employed in crop protection, the application rates preferably range from about 1 x 10 6 to 5 x 10 15 (or more) CFU/ha. Preferably, the spore concentration is about 1 x 10 7 to about 1 x 10 11 CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e.g. Steinernema feltiae), the application rates preferably range inform about 1 x 10 5 to 1 x 10 12 (or more), more preferably from 1 x 10 8 to 1 x 10 11 , even more preferably from 5 x 10 8 to 1 x 10 10 individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infetive juvenile stage) per ha.

When mixtures comprising microbial pesticides are employed in seed treatment, the application rates with respect to plant propagation material preferably range from about 1 x 10 6 to 1 x 10 12 (or more) CFU/seed. Preferably, the concentration is about 1 x 10 6 to about 1 x 10 11 CFU/seed. In the case of the microbial pesticides II, the application rates with respect to plant propagation material also preferably range from about 1 x 10 7 to 1 x 10 14 (or more) CFU per 100 kg of seed, preferably from 1 x 10 9 to about 1 x 10 11 CFU per 100 kg of seed.

Accordingly, the present invention furthermore relates to compositions comprising one compound I (component 1 ) and one further active substance (component 2), which further active substance is selected from the column "Component 2" of the lines C-1 to C-401 of Table C.

A further embodiment relates to the compositions C-1 to C-401 listed in Table C, wherein one row of Table C corresponds in each case to a composition comprising one of the compounds I that are individualized compounds of formula I (component 1 ) and the respective further active substance from groups A) to O) (component 2) stated in the respective row. According to a pre- ferred embodiment, the "individualized compound I" is one of the compounds as individualized in Tables 1 a to 12a, Tables 1 b to 12b and Tables 1 c to 12c. Preferably, the compositions described comprise the active substances in synergistically effective amounts.

Table C: Composition comprising one individualized compound of the present invention and one further active substance from groups A) to O)

composition Component 1 Component 2

C-1 one individualized compound I Azoxystrobin

C-2 one individualized compound I Coumethoxystrobin

C-3 one individualized compound I Coumoxystrobin

C-4 one individualized compound I Dimoxystrobin

C-5 one individualized compound I Enestroburin

C-6 one individualized compound I Fenaminstrobin

C-1 one individualized compound I Fenoxystrobin/Flufenoxystrobin

C-8 one individualized compound I Fluoxastrobin

C-9 one individualized compound I Kresoxim-methyl

C-10 one individualized compound I Metominostrobin

C-1 1 one individualized compound I Orysastrobin

C-12 one individualized compound I Picoxystrobin

C-13 one individualized compound I Pyraclostrobin

C-14 one individualized compound I Pyrametostrobin

C-15 one individualized compound I Pyraoxystrobin

C-16 one individualized compound I Pyribencarb

C-17 one individualized compound I Trifloxystrobin

C-18 one individualized compound I Triclopyricarb/Chlorodincarb

2-[2-(2,5-dimethyl-phenoxymethyl)-

C-19 one individualized compound I phenyl]-3-methoxy-acrylic acid methyl ester

2-(2-(3-(2,6-dichlorophenyl)-1 -methyl-

C-20 one individualized compound I allylideneaminooxymethyl)-phenyl)- 2-methoxyimino-N-methyl-acetamide composition Component 1 Component 2

C-21 one individualized compound I Benalaxyl

C-22 one individualized compound I Benalaxyl-M

C-23 one individualized compound I Benodanil

C-24 one individualized compound I Benzovindiflupyr

C-25 one individualized compound I Bixafen

C-26 one individualized compound I Boscalid

C-27 one individualized compound I Carboxin

C-28 one individualized compound I Fenfuram

C-29 one individualized compound I Fenhexamid

C-30 one individualized compound I Flutolanil

C-31 one individualized compound I Fluxapyroxad

C-32 one individualized compound I Furametpyr

C-33 one individualized compound I Isopyrazam

C-34 one individualized compound I Isotianil

C-35 one individualized compound I Kiralaxyl

C-36 one individualized compound I Mepronil

C-37 one individualized compound I Metalaxyl

C-38 one individualized compound I Metalaxyl-M

C-39 one individualized compound I Ofurace

C-40 one individualized compound I Oxadixyl

C-41 one individualized compound I Oxycarboxin

C-42 one individualized compound I Penflufen

C-43 one individualized compound I Penthiopyrad

C-44 one individualized compound I Sedaxane

C-45 one individualized compound I Tecloftalam

C-46 one individualized compound I Thifluzamide

C-47 one individualized compound I Tiadinil

2-Amino-4-methyl-thiazole-5-

C-48 one individualized compound I

carboxylic acid anilide

N-(4'-trifluoromethylthiobiphenyl-2-yl)-

C-49 one individualized compound I 3-difluoromethyl-1 -methyl-1 H- pyrazole-4-carboxamide

N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-

C-50 one individualized compound I 1 ,3-dimethyl-5-fluoro-1 H-pyrazole- 4-carboxamide

3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-

C-51 one individualized compound I trimethylindan-4-yl)pyrazole-4-carbox- amide composition Component 1 Component 2

3-(trifluoromethyl)-1 -methyl-N-(1 ,1 ,3-

C-52 one individualized compound I trimethylindan-4-yl)pyrazole-4-carbox- amide

1 ,3-dimethyl-N-(1 ,1 ,3-trimethylindan-

C-53 one individualized compound I

4-yl)pyrazole-4-carboxamide

3- (trifluoromethyl)-1 ,5-dimethyl-

C-54 one individualized compound I N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-

4- carboxamide

3- (difluoromethyl)-1 ,5-dimethyl-

C-55 one individualized compound I N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-

4- carboxamide

1 ,3,5-trimethyl-N-(1 ,1 ,3-

C-56 one individualized compound I trimethylindan-4-yl)pyrazole-4- carboxamide

C-57 one individualized compound I Dimethomorph

C-58 one individualized compound I Flumorph

C-59 one individualized compound I Pyrimorph

C-60 one individualized compound I Flumetover

C-61 one individualized compound I Fluopicolide

C-62 one individualized compound I Fluopyram

C-63 one individualized compound I Zoxamide

C-64 one individualized compound I Carpropamid

C-65 one individualized compound I Diclocymet

C-66 one individualized compound I Mandipropamid

C-67 one individualized compound I Oxytetracyclin

C-68 one individualized compound I Silthiofam

N-(6-methoxy-pyridin-3-yl) cyclopro-

C-69 one individualized compound I

panecarboxylic acid amide

C-70 one individualized compound I Azaconazole

C-71 one individualized compound I Bitertanol

C-72 one individualized compound I Bromuconazole

C-73 one individualized compound I Cyproconazole

C-74 one individualized compound I Difenoconazole

C-75 one individualized compound I Diniconazole

C-76 one individualized compound I Diniconazole-M

C-77 one individualized compound I Epoxiconazole

C-78 one individualized compound I Fenbuconazole

C-79 one individualized compound I Fluquinconazole

C-80 one individualized compound I Flusilazole composition Component 1 Component 2

C-81 one individualized compound I Flutriafol

C-82 one individualized compound I Hexaconazol

C-83 one individualized compound I Imibenconazole

C-84 one individualized compound I Ipconazole

C-85 one individualized compound I Metconazole

C-86 one individualized compound I Myclobutanil

C-87 one individualized compound I Oxpoconazol

C-88 one individualized compound I Paclobutrazol

C-89 one individualized compound I Penconazole

C-90 one individualized compound I Propiconazole

C-91 one individualized compound I Prothioconazole

C-92 one individualized compound I Simeconazole

C-93 one individualized compound I Tebuconazole

C-94 one individualized compound I Tetraconazole

C-95 one individualized compound I Triadimefon

C-96 one individualized compound I Triadimenol

C-97 one individualized compound I Triticonazole

C-98 one individualized compound I Uniconazole

1 - [re/-(2S;3R)-3-(2-chlorophenyl)-

C-99 one individualized compound I 2- (2,4-difluorophenyl)-oxiranylmethyl]- 5-thiocyanato-1 H-[1 ,2,4]triazole,

2-[re/-(2S;3R)-3-(2-chlorophenyl)-

C-100 one individualized compound I 2-(2,4-difluorophenyl)-oxiranylmethyl]-

2H-[1 ,2,4]triazole-3-thiol

C-101 one individualized compound I Cyazofamid

C-102 one individualized compound I Amisulbrom

C-103 one individualized compound I Imazalil

C-104 one individualized compound I Imazalil-sulfate

C-105 one individualized compound I Pefurazoate

C-106 one individualized compound I Prochloraz

C-107 one individualized compound I Triflumizole

C-108 one individualized compound I Benomyl

C-109 one individualized compound I Carbendazim

C-1 10 one individualized compound I Fuberidazole

C-1 1 1 one individualized compound I Thiabendazole

C-1 12 one individualized compound I Ethaboxam

C-1 13 one individualized compound I Etridiazole

C-1 14 one individualized compound I Hymexazole composition Component 1 Component 2

2-(4-Chloro-phenyl)-N-[4-(3,4-dimeth-

C-1 15 one individualized compound I oxy-phenyl)-isoxazol-5-yl]-2-prop-2- ynyloxy-acetamide

C-1 16 one individualized compound I Fluazinam

C-1 17 one individualized compound I Pyrifenox

3-[5-(4-Chloro-phenyl)-2,3-dimethyl-is-

C-1 18 one individualized compound I oxazolidin-3-yl]-pyridine (Pyrisoxa- zole)

3-[5-(4-Methyl-phenyl)-2,3-dimethyl-

C-1 19 one individualized compound I

isoxazolidin-3-yl]-pyridine

C-120 one individualized compound I Bupirimate

C-121 one individualized compound I Cyprodinil

C-122 one individualized compound I 5-Fluorocytosine

5-Fluoro-2-(p-tolylmethoxy)pyrimidin-

C-123 one individualized compound I

4-amine

5-Fluoro-2-(4-fluorophenylmethoxy)-

C-124 one individualized compound I

pyrimidin-4-amine

C-125 one individualized compound I Diflumetorim

(5,8-Difluoroquinazolin-4-yl)-{2-[2-fluo-

C-126 one individualized compound I ro-4-(4-trifluoromethylpyridin-2-yloxy)- phenyl]-ethyl}-amine

C-127 one individualized compound I Fenarimol

C-128 one individualized compound I Ferimzone

C-129 one individualized compound I Mepanipyrim

C-130 one individualized compound I Nitra pyrin

C-131 one individualized compound I Nuarimol

C-132 one individualized compound I Pyrimethanil

C-133 one individualized compound I Triforine

C-134 one individualized compound I Fenpiclonil

C-135 one individualized compound I Fludioxonil

C-136 one individualized compound I Aldimorph

C-137 one individualized compound I Dodemorph

C-138 one individualized compound I Dodemorph-acetate

C-139 one individualized compound I Fenpropimorph

C-140 one individualized compound I Tridemorph

C-141 one individualized compound I Fenpropidin

C-142 one individualized compound I Fluoroimid

C-143 one individualized compound I Iprodione

C-144 one individualized compound I Procymidone composition Component 1 Component 2

C-145 one individualized compound I Vinclozolin

C-146 one individualized compound I Famoxadone

C-147 one individualized compound I Fenamidone

C-148 one individualized compound I Flutianil

C-149 one individualized compound I Octhilinone

C-150 one individualized compound I Probenazole

C-151 one individualized compound I Fenpyrazamine

C-152 one individualized compound I Acibenzolar-S-methyl

C-153 one individualized compound I Ametoctradin

C-154 one individualized compound I Amisulbrom

[(3S,6S,7R,8R)-8-benzyl-3-[(3- isobutyryloxymethoxy-4-

C-155 one individualized compound I methoxypyridine-2-carbonyl)amino]-6- methyl-4,9-dioxo-[1 ,5]dioxonan-7-yl]

2-methylpropanoate

[(3S,6S,7R,8R)-8-benzyl-3-[(3- acetoxy-4-methoxy-pyridine-2-

C-156 one individualized compound I carbonyl)amino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl]

2-methylpropanoate

[(3S,6S,7R,8R)-8-benzyl-3-[[3-(acet- oxymethoxy)-4-methoxy-pyridine-

C-157 one individualized compound I 2-carbonyl]amino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl] 2- methylpropanoate

[(3S,6S,7R,8R)-8-benzyl-3-[(3-isobut- oxycarbonyloxy-4-methoxy-pyridine-

C-158 one individualized compound I 2-carbonyl)amino]-6-methyl-4,9-dioxo- 1 ,5-dioxonan-7-yl] 2- methylpropanoate

[(3S,6S,7R,8R)-8-benzyl-3-[[3-(1 ,3- benzodioxol-5-ylmethoxy)-4-methoxy-

C-159 one individualized compound I pyridine-2-carbonyl]amino]-6-methyl- 4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate

(3S,6S,7R,8R)-3-[[(3-hydroxy-4-meth- oxy-2-pyridinyl)carbonyl]amino]-

C-160 one individualized compound I

6-methyl-4,9-dioxo-8-(phenylmethyl)- 1 ,5-dioxonan-7-yl 2-methylpropanoate

C-161 one individualized compound I Anilazin composition Component 1 Component 2

C-162 one individualized compound I Blasticidin-S

C-163 one individualized compound I Captafol

C-164 one individualized compound I Captan

C-165 one individualized compound I Chinomethionat

C-166 one individualized compound I Dazomet

C-167 one individualized compound I Debacarb

C-168 one individualized compound I Diclomezine

C-169 one individualized compound I Difenzoquat,

C-170 one individualized compound I Difenzoquat-methylsulfate

C-171 one individualized compound I Fenoxanil

C-172 one individualized compound I Folpet

C-173 one individualized compound I Oxolinsaure

C-174 one individualized compound I Piperalin

C-175 one individualized compound I Proquinazid

C-176 one individualized compound I Pyroquilon

C-177 one individualized compound I Quinoxyfen

C-178 one individualized compound I Triazoxid

C-179 one individualized compound I Tricyclazole

2-Butoxy-6-iodo-3-propyl-chromen-4-

C-180 one individualized compound I

one

5-Chloro-1 -(4,6-dimethoxy-pyrimidin-

C-181 one individualized compound I

2-yl)-2-methyl-1 H-benzoimidazole

5- Chloro-7-(4-methyl-piperidin-1 -yl)-

C-182 one individualized compound I 6- (2,4,6-trifluoro-phenyl)-[1 ,2,4]tri- azolo[1 ,5-a]pyrimidine

C-183 one individualized compound I Ferbam

C-184 one individualized compound I Mancozeb

C-185 one individualized compound I Maneb

C-186 one individualized compound I Metam

C-187 one individualized compound I Methasulphocarb

C-188 one individualized compound I Metiram

C-189 one individualized compound I Propineb

C-190 one individualized compound I Thiram

C-191 one individualized compound I Zineb

C-192 one individualized compound I Ziram

C-193 one individualized compound I Diethofencarb

C-194 one individualized compound I Benthiavalicarb

C-195 one individualized compound I Iprovalicarb

C-196 one individualized compound I Propamocarb composition Component 1 Component 2

C-197 one individualized compound I Propamocarb hydrochlorid

C-198 one individualized compound I Valifenalate

N-(1 -(1 -(4-cyanophenyl)ethanesulfon-

C-199 one individualized compound I yl)-but-2-yl) carbamic acid-(4-fluoro- phenyl) ester

C-200 one individualized compound I Dodine

C-201 one individualized compound I Dodine free base

C-202 one individualized compound I Guazatine

C-203 one individualized compound I Guazatine-acetate

C-204 one individualized compound I Iminoctadine

C-205 one individualized compound I Iminoctadine-triacetate

C-206 one individualized compound I Iminoctadine-tris(albesilate)

C-207 one individualized compound I Kasugamycin

C-208 one individualized compound I Kasugamycin-hydrochloride-hydrate

C-209 one individualized compound I Polyoxine

C-210 one individualized compound I Streptomycin

C-21 1 one individualized compound I Validamycin A

C-212 one individualized compound I Binapacryl

C-213 one individualized compound I Dicloran

C-214 one individualized compound I Dinobuton

C-215 one individualized compound I Dinocap

C-216 one individualized compound I Nitrothal-isopropyl

C-217 one individualized compound I Tecnazen

C-218 one individualized compound I Fentin salts

C-219 one individualized compound I Dithianon

2,6-dimethyl-1 H,5H-[1 ,4]dithiino

C-220 one individualized compound I [2,3-c:5,6-c']dipyrrole-

1 ,3,5,7(2H,6H)-tetraone

C-221 one individualized compound I Isoprothiolane

C-222 one individualized compound I Edifenphos

C-223 one individualized compound I Fosetyl, Fosetyl-aluminium

C-224 one individualized compound I Iprobenfos

Phosphorous acid (H3PO3) and de¬

C-225 one individualized compound I

rivatives

C-226 one individualized compound I Pyrazophos

C-227 one individualized compound I Tolclofos-methyl

C-228 one individualized compound I Chlorothalonil

C-229 one individualized compound I Dichlofluanid

C-230 one individualized compound I Dichlorophen composition Component 1 Component 2

C-231 one individualized compound I Flusulfamide

C-232 one individualized compound I Hexachlorbenzene

C-233 one individualized compound I Pencycuron

C-234 one individualized compound I Pentachlorophenol and salts

C-235 one individualized compound I Phthalide

C-236 one individualized compound I Quintozene

C-237 one individualized compound I Thiophanate Methyl

C-238 one individualized compound I Tolylfluanid

N-(4-chloro-2-nitro-phenyl)-N-ethyl-

C-239 one individualized compound I

4-methyl-benzenesulfonamide

C-240 one individualized compound I Bordeaux mixture

C-241 one individualized compound I Copper acetate

C-242 one individualized compound I Copper hydroxide

C-243 one individualized compound I Copper oxychloride

C-244 one individualized compound I basic Copper sulfate

C-245 one individualized compound I Sulfur

C-246 one individualized compound I Biphenyl

C-247 one individualized compound I Bronopol

C-248 one individualized compound I Cyflufenamid

C-249 one individualized compound I Cymoxanil

C-250 one individualized compound I Diphenylamin

C-251 one individualized compound I Metrafenone

C-252 one individualized compound I Pyriofenone

C-253 one individualized compound I Mildiomycin

C-254 one individualized compound I Oxin-copper

C-255 one individualized compound I Oxathiapiprolin

C-256 one individualized compound I Prohexadione calcium

C-257 one individualized compound I Spiroxamine

C-258 one individualized compound I Tebufloquin

C-259 one individualized compound I Tolylfluanid

N-(Cyclopropylmethoxyimino-(6-

C-260 one individualized compound I difluoromethoxy-2,3-difluoro-phenyl)- methyl)-2-phenyl acetamide

N'-(4-(4-chloro-3-trifluoromethyl-

C-261 one individualized compound I phenoxy)-2,5-dimethyl-phenyl)-N- ethyl-N-methyl formamidine

N'-(4-(4-fluoro-3-trifluoromethyl-

C-262 one individualized compound I phenoxy)-2,5-dimethyl-phenyl)-N- ethyl-N-methyl formamidine composition Component 1 Component 2

N'-(2-methyl-5-trifluoromethyl-4-(3-tri-

C-263 one individualized compound I methylsilanyl-propoxy)-phenyl)-N- ethyl-N-methyl formamidine

N'-(5-difluoromethyl-2-methyl-4-(3-tri-

C-264 one individualized compound I methylsilanyl-propoxy)-phenyl)-N- ethyl-N-methyl formamidine

Methoxy-acetic acid 6-tert-butyl-8-

C-265 one individualized compound I fluoro-2,3-dimethyl-quinolin-4-yl ester

C-266 one individualized compound I Bacillus subtilis NRRL No. B-21661

C-267 one individualized compound I Bacillus pumilus NRRL No. B-30087

C-268 one individualized compound I Ulocladium oudemansii

C-269 one individualized compound I Carbaryl

C-270 one individualized compound I Carbofuran

C-271 one individualized compound I Carbosulfan

C-272 one individualized compound I Methomylthiodicarb

C-273 one individualized compound I Bifenthrin

C-274 one individualized compound I Cyfluthrin

C-275 one individualized compound I Cypermethrin

C-276 one individualized compound I alpha-Cypermethrin

C-277 one individualized compound I zeta-Cypermethrin

C-278 one individualized compound I Deltamethrin

C-279 one individualized compound I Esfenvalerate

C-280 one individualized compound I Lambda-cyhalothrin

C-281 one individualized compound I Permethrin

C-282 one individualized compound I Tefluthrin

C-283 one individualized compound I Diflubenzuron

C-284 one individualized compound I Flufenoxuron

C-285 one individualized compound I Lufenuron

C-286 one individualized compound I Teflubenzuron

C-287 one individualized compound I Spirotetramate

C-288 one individualized compound I Clothianidin

C-289 one individualized compound I Dinotefuran

C-290 one individualized compound I Imidacloprid

C-291 one individualized compound I Thiamethoxam

C-292 one individualized compound I Flupyradifurone

C-293 one individualized compound I Acetamiprid

C-294 one individualized compound I Thiacloprid

C-295 one individualized compound I Endosulfan

C-296 one individualized compound I Fipronil

C-297 one individualized compound I Abamectin composition Component 1 Component 2

C-298 one individualized compound I Emamectin

C-299 one individualized compound I Spinosad

C-300 one individualized compound I Spinetoram

C-301 one individualized compound I Hydramethylnon

C-302 one individualized compound I Chlorfenapyr

C-303 one individualized compound I Fenbutatin oxide

C-304 one individualized compound I Indoxacarb

C-305 one individualized compound I Metaflumizone

C-306 one individualized compound I Flonicamid

C-307 one individualized compound I Lubendiamide

C-308 one individualized compound I Chlorantraniliprole

C-309 one individualized compound I Cyazypyr (HGW86)

C-310 one individualized compound I Cyflumetofen

C-31 1 one individualized compound I Acetochlor

C-312 one individualized compound I Dimethenamid

C-313 one individualized compound I metolachlor

C-314 one individualized compound I Metazachlor

C-315 one individualized compound I Glyphosate

C-316 one individualized compound I Glufosinate

C-317 one individualized compound I Sulfosate

C-318 one individualized compound I Clodinafop

C-319 one individualized compound I Fenoxaprop

C-320 one individualized compound I Fluazifop

C-321 one individualized compound I Haloxyfop

C-322 one individualized compound I Paraquat

C-323 one individualized compound I Phenmedipham

C-324 one individualized compound I Clethodim

C-325 one individualized compound I Cycloxydim

C-326 one individualized compound I Profoxydim

C-327 one individualized compound I Sethoxydim

C-328 one individualized compound I Tepraloxydim

C-329 one individualized compound I Pendimethalin

C-330 one individualized compound I Prodiamine

C-331 one individualized compound I Trifluralin

C-332 one individualized compound I Acifluorfen

C-333 one individualized compound I Bromoxynil

C-334 one individualized compound I Imazamethabenz

C-335 one individualized compound I Imazamox

C-336 one individualized compound I Imazapic composition Component 1 Component 2

C-337 one individualized compound I Imazapyr

C-338 one individualized compound I Imazaquin

C-339 one individualized compound I Imazethapyr

2,4-Dichlorophenoxyacetic acid (2,4-

C-340 one individualized compound I

D)

C-341 one individualized compound I Chloridazon

C-342 one individualized compound I Clopyralid

C-343 one individualized compound I Fluroxypyr

C-344 one individualized compound I Picloram

C-345 one individualized compound I Picolinafen

C-346 one individualized compound I Bensulfuron

C-347 one individualized compound I Chlorimuron-ethyl

C-348 one individualized compound I Cyclosulfamuron

C-349 one individualized compound I lodosulfuron

C-350 one individualized compound I Mesosulfuron

C-351 one individualized compound I Metsulfuron-methyl

C-352 one individualized compound I Nicosulfuron

C-353 one individualized compound I Rimsulfuron

C-354 one individualized compound I Triflusulfuron

C-355 one individualized compound I Atrazine

C-356 one individualized compound I Hexazinone

C-357 one individualized compound I Diuron

C-358 one individualized compound I Florasulam

C-359 one individualized compound I Pyroxasulfone

C-360 one individualized compound I Bentazone

C-361 one individualized compound I Cinidon-ethyl

C-362 one individualized compound I Cinmethylin

C-363 one individualized compound I Dicamba

C-364 one individualized compound I Diflufenzopyr

C-365 one individualized compound I Quinclorac

C-366 one individualized compound I Quinmerac

C-367 one individualized compound I Mesotrione

C-368 one individualized compound I Saflufenacil

C-369 one individualized compound I Topramezone composition Component 1 Component 2

1 ,1 '-[(3S,4R,4aR,6S,6aS,12R,12aS, 12bS)-4-[[(2- cyclopropylacetyl)oxy]methyl]- 1 ,3,4,4a,5,6,6a,12,12a,12b-deca-

C-370 one individualized compound I

hydro-12-hydroxy-4,6a,12b-trimethyl- 1 1 -oxo-9-(3-pyridinyl)-2H,1 1 H-naph- tho[2,1 -b]pyrano[3,4-e]pyran-3,6-diyl] cyclopropaneacetic acid ester

2- [3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn-1 -

C-371 one individualized compound I yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-

3- yl}-1 ,3-thiazol-2-yl)piperidin-1 - yl]ethanone

2-[3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-

C-372 one individualized compound I 1 -yloxy)phenyl]-4,5-dihydro-1 ,2- oxazol-3-yl}-1 ,3-thi-azol-2-yl)piperidin- 1 -yl]ethanone

2-[3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-

C-373 one individualized compound I 1 -yloxy)phenyl]-4,5-dihydro-1 ,2- oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin- 1 -yl]ethanone

one individualized compound I (3S,6S,7R,8R)-3-[[(3-hydroxy-4- methoxy-2-pyridinyl)carbonyl]amino]-

C-374

6-methyl-4,9-dioxo-8-(phenylmethyl)- 1 ,5-dioxonan-7-yl 2-methylpropanoate

C-375 one individualized compound I isofetamid

one individualized compound I N-(7-fluoro-1 ,1 ,3-trimethyl-indan-4-yl)-

C-376

1 ,3-dimethyl-pyrazole-4-carboxamide one individualized compound I N-[2-(2,4-dichlorophenyl)-2-methoxy-

C-377 1 -methyl-ethyl]-3-(difluoromethyl)-1 - methyl-pyrazole-4-carboxamide one individualized compound I 2-[2-chloro-4-(4-chlorophenoxy)-

C-378 phenyl]-1 -(1 ,2,4-triazol-1 -yl)pentan-2- ol

one individualized compound I 1 -[4-(4-chlorophenoxy)-2-(trifluoro-

C-379 methyl)phenyl]-1 -cyclopropyl-2-(1 ,2,4- triazol-1 -yl)ethanol composition Component 1 Component 2

one individualized compound I 2-[4-(4-chlorophenoxy)-2-

C-380 (trifluoromethyl)phenyl]-1 -(1 ,2,4- triazol-1 -yl)butan-2-ol

one individualized compound I 2-[2-chloro-4-(4-

C-381 chlorophenoxy)phenyl]-1 -(1 ,2,4- triazol-1 -yl)butan-2-ol

one individualized compound I 2-[4-(4-chlorophenoxy)-2-

C-382 (trifluoromethyl)phenyl]-3-methyl-1 - (1 ,2,4-triazol-1 -yl)butan-2-ol one individualized compound I 2-[4-(4-chlorophenoxy)-2-

C-383 (trifluoromethyl)phenyl]-1 -(1 ,2,4- triazol-1 -yl)propan-2-ol

one individualized compound I 2-[2-chloro-4-(4-

C-384 chlorophenoxy)phenyl]-3-methyl-1 - (1 ,2,4-triazol-1 -yl)butan-2-ol one individualized compound I 2-[4-(4-chlorophenoxy)-2-

C-385 (trifluoromethyl)phenyl]-1 -(1 ,2,4- triazol-1 -yl)pentan-2-ol

one individualized compound I 2-[4-(4-fluorophenoxy)-2-

C-386 (trifluoromethyl)phenyl]-1 -(1 ,2,4- triazol-1 -yl)propan-2-ol

one individualized compound I 3-(4-chloro-2-fluoro-phenyl)-5-(2,4-

C-387 difluorophenyl)isoxazol-4-yl]-(3- pyridyl)methanol

one individualized compound I 2-{3-[2-(1 -{[3,5-bis(difluoromethyl-1 H- pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-

C-388

thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5- yl}phenyl methanesulfonate one individualized compound I 2-{3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H- pyrazol-1 -yl]acetyl}piperidin-4-yl) 1 ,3-

C-389 thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol- 5-yl}-3-chlorophenyl methanesulfonate

C-390 one individualized compound I tolprocarb

one individualized compound I 2- [3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn-1 -

C-391 yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-

3- yl}-1 ,3-thiazol-2-yl)piperidin-1 - yl]ethanone composition Component 1 Component 2

one individualized compound I 2-[3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-

C-392 1 -yloxy)phenyl]-4,5-dihydro-1 ,2- oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin- 1 -yl]ethanone

one individualized compound I 2-[3,5-bis(difluoromethyl)-1 H-pyrazol- 1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-

C-393 1 -yloxy)phenyl]-4,5-dihydro-1 ,2- oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin- 1 -yl]ethanone

one individualized compound I ethyl (Z)-3-amino-2-cyano-3-phenyl-

C-394

prop-2-enoate ,

C-395 one individualized compound I picarbutrazox

one individualized compound I pentyl N-[6-[[(Z)-[(1 -methyltetrazol-5-

C-396 yl)-phenyl-methylene]amino]oxy- methyl]-2-pyridyl]carbamate, one individualized compound I 2-[2-[(7,8-difluoro-2-methyl-3-

C-397 quinolyl)oxy]-6-fluoro-phenyl]propan-

2-ol

one individualized compound I 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-

C-398

quinolyl)oxy]phen-yl]propan-2-ol, one individualized compound I 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-

C-399

dihydroisoquinolin-1 -yl)quinoline one individualized compound I 3-(4,4-difluoro-3,3-dimethyl-3,4-

C-400

dihydroisoquinolin-1 -yl)quinoline one individualized compound I 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-

C-401

dihydroisoquinolin-1 -yl)quinoline

The active substances referred to as component 2, their preparation and their activity e.g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by lUPAC nomenclature, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031 ; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941 ; EP- A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244,

JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272;

US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ; WO 03/10149; WO 03/1 1853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 1 1/028657, WO2012/168188, WO 2007/006670, WO 201 1/77514; WO13/047749, WO 10/069882, WO 13/047441 , WO 03/16303, WO 09/90181 , WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009and

WO 13/024010).

The composition of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient by usual means, e. g. by the means given for the compositions of compounds I.

Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I.

The compositions of active substances according to the present invention are suitable as fungi- cides, as are the compounds of formula I. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the As- comycetes, Basidiomycetes, Deuteromycetes and Peronosporomycetes (syn. Oomycetes). In addition, it is refered to the explanations regarding the fungicidal activity of the compounds and the compositions containing compounds I, respectively.

I. Synthesis examples

With due modification of the starting compounds, the procedures shown in the synthesis examples below were used to obtain further compounds I. The resulting compounds, together with physical data, are listed in Table I below.Example 1

Step 1 :

To a solution of 1 -bromo-4-(4-chlorophenoxy)-2-(trifluoromethyl)benzene (761 g) in THF (2 L) was added /-PrMgCI LiCI (1.97 L, 1 .3 M solution in THF, 1.5 eq) over 10 minutes at room temperature under an atmosphere of N2. After 30 minutes, this solution was transferred to a vessel containing 1 ,3-bis(triethylsilyloxy)propan-2-one (761 g) and catalytic amounts of AICI3 (dissolved in 10 ml. THF) slowly over 15 minutes and the resulting mixture was stirred over night at room temperature. When HPLC showed full conversion, it was carefully poured into HCI (1 M) and extracted with EtOAc. The combined organic extracts were dried over MgS0 4 and concentrated under reduced pressure. Purification of the residue by column chromatography (EtOAc/heptane = 1/1 ) afforded the desired product (337 g, 54%). H NMR (298 K, CDCI 3 ): δ [ppm] = 3.90 (2H), 4.05 (2H), 6.90-7.00 (1 H), 7.10-7.20 (2H), 7.30-7.40 (2H), 7.45 (1 H), 7-50-7.60 (1 H).

Step 2:

A solution of 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]propane-1 ,2,3-triol (230 g) in di- chloromethane (2 L) was treated with triethylamine (0.299 L, 3.4 eq) and cooled to 0 °C before methanesulfonyl chloride (200 g, 135 ml_, 2.8 eq) was added slowly. After 30 minutes, the ice- bath was removed and the mixture stirred at room temperature until HPLC indicated complete consumption of the starting material. The reaction was quenched by adding water and the product was extracted into dichloromethane. After combining the organic extracts and drying over MgSC , the solvent was removed under reduced pressure to afford a crude product (240 g, 73%) which was used directly without further purification. HPLC: t R = 4.045 min; 1 H NMR (298 K, CDCIs): δ [ppm] = 3.05 (6H), 4.30 (2H), 4.70 (2H), 6.95-7.05 (2H), 7.10-7.18 (1 H), 7.25-7.40 (3H), 7.60-7.65 (1 H).

tep 3:

To a suspension of NaH (33.3 g, 3.0 eq) in NMP (2 L) at room temperature was added triazole (73.5 g, 2.3 eq) and the reaction mixture was stirred for 30 minutes before the crude product obtained from above (240 g) was added. The temperature was increased to 80 °C and the mixture stirred for 20 h, before it was cooled back to room temperature and poured into water. The aqueous phase was extracted with ethyl acetate and the combined organic extracts were dried over MgSC , filtered and freed from solvent under reduced pressure. The crude material was precipitated from di-/sopropyl ether to afford the desired bis-azole (45 g, 47%) as solid. 1 H NMR (298 K, CDCIs): δ [ppm] = 4.50 (2H), 4.80 (2H), 6.85-7.00 (3H), 7.20-7.30 (1 H), 7.35-7.45 (3H), 7.90 (2H), 8.05 (2H). Melting point:: 133 °C

Table I:

* :HPLC method Data: Mobile Phase: A: Wasser + 0, 1 % T FA; B: acetonitrile; Gradient: 5% B to 100% B in 1 .5min; Temperature: 60 °C; MS-Method: ESI positive; mass area (m/z): 100-700; Flow: 0.8ml/min to 1 ,0ml/min in 1 .5min; Column: Kinetex XB C18 1 .7μ 50 x 2.1 mm; Aparatus: Shimadzu Nexera LC-30 LCMS-2020.

**: Mp=Melting Point