Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIRE ELECTRODE FOR ELECTRIC DISCHARGE CUTTING PROCESSES
Document Type and Number:
WIPO Patent Application WO/2010/063410
Kind Code:
A1
Abstract:
The invention relates to a wire electrode (1, 1') for electric discharge cutting processes and a method for the production thereof. The wire electrode (1, 1') has a core (2) containing a metal or a metal alloy, and a coating (3, 4; 3, 4, 5) that surrounds the core (2) and includes one or more coating layers (3, 4, 5), at least one (3) of which contains a phase mixture of ß-brass and/or ß'-brass and γ-brass. In said at least one coating layer (3) containing ß-brass and/or ß'-brass and γ-brass, the ß-phase and/or ß'-phase and the γ-phase are arranged next to each other in a fine-grained structure in which the mean size of the ß-brass and/or ß'-brass grains and the γ-brass grains amounts to a maximum of 5 μm relative to the cross-section extending perpendicular to the longitudinal axis of the wire electrode (1, 1'). In order to produce the wire electrode (1, 1'), a wire is used that has a coating layer predominantly containing γ-brass, and a homogenizing step is carried out in which the γ-brass is substantially transformed into a ß-brass having a minimum zinc concentration of 51 percent by weight at temperatures exceeding 600°C, and the wire (1, 1') is finally cooled, a process during which zones of γ-brass are separated from the supersaturated solid solution of ß-brass.

Inventors:
BAUMANN INGO (DE)
NOETHE TOBIAS (DE)
Application Number:
PCT/EP2009/008435
Publication Date:
June 10, 2010
Filing Date:
November 26, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BERKENHOFF GMBH (DE)
BAUMANN INGO (DE)
NOETHE TOBIAS (DE)
International Classes:
B23H7/08
Foreign References:
US5808262A1998-09-15
US4935594A1990-06-19
US4977303A1990-12-11
EP0733431A11996-09-25
FR2881974A12006-08-18
EP1949995A12008-07-30
EP1295664A12003-03-26
Attorney, Agent or Firm:
LANDRY, Felix et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Drahtelektrode zum funkenerosiven Schneiden mit einem Kern (2), der ein Metall oder eine Metalllegierung aufweist, und einem den Kern (2) umgebenden Mantel (3, 4; 3, 4, 5), der eine oder mehrere Mantelschichten (3, 4, 5) um- fasst, von denen mindestens eine (3) ein Phasengemisch aus ß- und/oder ß' -Messing und γ-Messing aufweist, dadurch gekennzeichnet, dass in der mindestens einen ß- und/oder ß1 -Messing und γ-Messing aufweisenden Mantelschicht (3) die ß- und/oder ß' -Phase und die γ-Phase in einem feinkörnigen Gefüge nebeneinander vorhanden sind, in dem die durchschnittliche Korngröße der ß- und/oder ß'- Messing-Körner und der γ-Messing-Körner im Schnitt senkrecht zur Längsachse der Drahtelektrode (1, I1) 5 μm oder weniger beträgt.

2. Drahtelektrode nach Anspruch 1, bei der die durchschnittliche Korngröße der ß- und/oder ß ' -Messing-Körner und der γ-Messing-Körner im Schnitt senkrecht zur Längsachse der Drahtelektrode (1, 1') 3 μm oder weniger beträgt.

3. Drahtelektrode nach Anspruch 1 oder Anspruch 2, bei der die mindestens einen ß- und/oder ß1 -Messing und γ-Messing aufweisende Mantelschicht (3) zu mindestens 50 Gew.% aus ß- und/oder ß' -Messing und γ-Messing ausgebildet ist.

4. Drahtelektrode nach einem der vorhergehenden Ansprüche, bei der der Mantel (3, 4; 3, 4, 5) mindestens eine Mantelschicht (4) aufweist, die zu mindestens 50 Gew.% aus ß- und/oder ß1 -Messing, α+ß- bzw. α+ß ' -Messing, α-Messing und/oder Kupfer ausgebildet und zwischen dem Kern (2) und der mindestens einen ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht (3) angeordnet ist.

5. Drahtelektrode nach Anspruch 4, bei der der Mantel (3, 4; 3, 4, 5) mindestens eine erste Mantelschicht (4) aufweist, die zu -mindestens 50 Gew.% aus ß- und/oder ß' -Messing und/oder α+ß- bzw. α+ß' -Messing ausgebildet und zwischen dem Kern (2) und der mindestens einen ß- und/oder ß1- Messing und γ-Messing aufweisenden Mantelschicht (3) angeordnet ist.

6. Drahtelektrode nach Anspruch 5, bei der das Gefüge der mindestens einen ersten Mantelschicht (4) grobkörniger als das Gefüge der mindestens einen ß- und/oder ß1 -Messing und γ-Messing aufweisenden Mantelschicht (3) ist.

7. Drahtelektrode nach Anspruch 5 oder Anspruch 6, bei der der Mantel (3, 4; 3, 4, 5) mindestens eine zweite Mantelschicht (4) aufweist, die zu mindestens 50 Gew.% aus α- Messing und/oder Kupfer ausgebildet und zwischen dem Kern

(2) und der mindestens einen ersten Mantelschicht (4) angeordnet ist.

8. Drahtelektrode nach einem der vorhergehenden Ansprüche, bei der der Mantel (3, 4, 5) eine äußere Mantelschicht (5) aufweist, die zu mindestens 50 Gew.% aus Zink, einer Zinklegierung oder Zink-Oxid ausgebildet ist.

9. Drahtelektrode nach Anspruch 5 oder Anspruch 6 und Anspruch 8, bei der der Mantel (3, 4, 5) aus der mindestens einen ersten Mantelschicht (4), der mindestens einen ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht (3) und der äußeren Mantelschicht (5) aufgebaut ist .

10. Drahtelektrode nach Anspruch 5 oder Anspruch 6 und den Ansprüchen 7 und 8, bei der der Mantel (3, 4, 5) aus der mindestens einen ersten Mantelschicht (4), der mindestens einen zweiten Mantelschicht (4), der mindestens einen ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht (3) und der äußeren Mantelschicht (5) aufgebaut ist.

11. Drahtelektrode nach einem der Ansprüche 8 bis 10, bei der die äußere Mantelschicht (5) eine Dicke von 0,1 bis 3 μm aufweist .

12. Drahtelektrode nach einem der vorhergehenden Ansprüche, bei der der Kern (2) aus Kupfer oder einer Kupfer-Zink- Legierung mit einem Zinkgehalt von 2 bis 40 Gew.% ausgebildet ist.

13. Drahtelektrode nach einem der vorhergehenden Ansprüche, bei der entlang der gesamten Länge der Drahtelektrode (1, I1) der durchschnittliche Anteil der Dicke des Mantels (3, 4; 3, 4, 5) an der Gesamtdicke der Drahtelektrode (1, 1') in dem Bereich von 2% bis 30% liegt.

14. Verfahren zur Herstellung einer Drahtelektrode (1, 1') nach einem der Ansprüche 1 bis 13, bei dem ein Kupfer oder Messing aufweisender Kern (2) mit Zink beschichtet wird und durch Diffusionsglühen ein Draht mit einer Mantelschicht gebildet wird, die überwiegend aus γ-Messing besteht, dadurch gekennzeichnet, dass anschließend ein weiterer Diffusionsglühschritt durchgeführt wird, bei dem das γ-Messing bei Temperaturen oberhalb von 600 0C im wesentlichen in ein ß-Messing mit einem Zinkgehalt von mindestens 51 Gew.% umgewandelt wird, und schließlich der Draht (1, 1') abgekühlt wird, wobei sich aus dem übersättigten ß-Mischkristall feine Bereiche aus γ-Messing ausscheiden.

15. Verfahren nach Anspruch 14, bei dem die Aufheizgeschwindigkeit mindestens 10 °C/s beträgt, die Glühzeit 5 bis 200 s beträgt und die Abkühlgeschwindigkeit mindestens 10 °C/s beträgt.

Description:
Drahtelektrode zum funkenerosiven Schneiden

Die vorliegende Erfindung betrifft eine Drahtelektrode zum funkenerosiven Schneiden mit einem Kern, der ein Metall oder eine Metalllegierung aufweist, und einem den Kern umgebenden Mantel, der eine oder mehrere Mantelschichten umfasst, von denen mindestens eine ein Phasengemisch aus ß- und/oder ß'- Messing und γ-Messing aufweist, sowie ein Verfahren zur Herstellung einer solchen Drahtelektrode.

Funkenerosionsverfahren (electrical discharge machining, EDM) werden zum Trennen elektrisch leitender Werkstücke eingesetzt und beruhen auf der Abtragung von Werkstoff mit Hilfe von Funkenentladungen zwischen dem Werkstück und einem Werkzeug. Zu diesem Zweck werden zwischen dem betreffenden Werkstück und dem in einem geringen Abstand dazu angeordneten und als Elektrode fungierenden Werkzeug in einer dielektrischen Flüssigkeit, wie zum Beispiel deionisiertem Wasser oder einem Öl, durch das Anlegen von Spannungsimpulsen kontrollierte Funkenentladungen herbeigeführt. Auf diese Weise können Werkstücke, die beispielsweise aus Metallen, elektrisch leitfähigen Keramiken bzw. Verbundwerkstoffen usw. bestehen, im wesentlichen unabhängig von ihrer Härte bearbeitet werden.

Ein spezielles Funkenerosionsverfahren, bei dem das Werkzeug durch einen gespannten, dünnen Draht mit typischen Durchmessern in einem Bereich von etwa 0,02 bis 0,4 mm gebildet wird, ist das funkenerosive Schneiden oder Drahterodieren. Da der Draht während des Erodierprozesses durch Materialabtragung verschleißt, muss er ständig durch die Schneid- bzw. Bearbeitungszone gezogen werden und kann nur einmal verwendet werden, d.h. der Draht wird kontinuierlich verbraucht.

In der Praxis finden sowohl beschichtete als auch unbeschichtete Drähte bzw. Drahtelektroden Anwendung, die heute zumeist auf Messing- oder Kupferbasis hergestellt sind. Unbeschichtete Drahtelektroden, die auch als Blankdrähte bezeichnet werden, bestehen aus einem homogenen Material, während beschichtete Drahtelektroden einen ummantelten bzw. beschichteten Kern aufweisen. Beschichtete Drahtelektroden sind im Stand der Technik in aller Regel so konstruiert, dass eine Ummantelung bzw. ein Mantel, die bzw. der aus einer Mantelschicht oder mehreren übereinander angeordneten Mantelschichten aufgebaut sein kann, für den eigentlichen Erosionsprozess verantwortlich ist, während der Kern der Drahtelektrode beispielsweise die für den Drahtdurchlauf und die Drahtvorspannung erforderliche Zugfestigkeit und die notwendige elektrische und thermische Leitfähigkeit verleiht.

Blankdrähte bestehen typischerweise aus Messing mit einem Zinkanteil zwischen 35 und 40 Gew.%., während die meisten beschichteten Drähte einen Kern aus Kupfer oder Messing und eine oder mehrere Mantelschichten aus Zink oder einer Kupfer-Zink- Legierung aufweisen. Als am eigentlichen Erodierprozess beteiligte Materialien bieten Zink und Messing aufgrund der Anwesenheit von Zink und der durch diese bewirkten leichten Ver- dampfbarkeit die Vorteile einer relativ hohen Abtragleistung und Effizienz des Erodierprozesses und der Möglichkeit der Übertragung sehr kleiner Impulsenergien zum Feinschlichten von Werkstückoberflächen .

Bei blanken Messingdrähten sind der Erhöhung des Zinkgehalts Grenzen gesetzt, da aufgrund des mit steigendem Zinkgehalt zunehmenden Anteils spröder Phasen im Gefüge ab einem bestimmten Zinkgehalt die für eine wirtschaftliche Verarbeitbarkeit erforderliche Kaltumformung nicht mehr möglich ist.

Es ist bekannt, dass sich gegenüber diesen Blankdrähten die Schneidleistung daher durch Verwendung von Drähten steigern lässt, die mit einer Beschichtung aus reinem bzw. überwiegend reinem Zink versehen sind. Weiterhin ist bekannt, dass Drähte mit einer Beschichtung aus ß- bzw. ß 1 -Phase aufweisendem Mes- sing wiederum eine höhere Schneidleistung erzielen als die zuvor genannten verzinkten Drähte, da das in der ß- bzw. ß' -Messing-Legierung gebundene Zink im Vergleich zum reinen Zink langsamer verdampft und damit ausreichend lange abtragsfördernd zur Verfügung steht, während der Draht die Schneid- bzw. Bearbeitungszone passiert. Ferner kann mit Drähten, die eine Beschichtung aus der γ-Phase und/oder der ε-Phase des Messings aufweisen, der Zinkgehalt des Mantels weiter gesteigert werden, und es können im Vergleich zu den zuvor genannten Drähten mit ß- bzw. ß' -Messing-Beschichtung prinzipiell gleiche oder höhere Schneidleistungen erreicht werden. Dabei hat sich in Zusammenhang mit Beschichtungen aus spröden Phasen wie der γ- Phase jedoch gezeigt, dass zum einen eine Steigerung der Schichtdicke nicht zwingend zu einer weiteren Leistungssteigerung führt (vgl. EP 1 295 664) und zum anderen der Umformbar- keit dickerer Schichten mit Nachteilen für eine wirtschaftliche Herstellbarkeit Grenzen gesetzt sind (vgl. US 5,945,010) . Ferner weisen γ-Messing-Beschichtungen einen größeren Verschleiß als ß-Messing-Beschichtungen auf, was die Schneidleistung in der Praxis vielfach wieder verringert.

Weitere Entwicklungen zur Steigerung der Schneidleistung beruhen vor allem auf Kombinationen von verschiedenen der genannten Mantelschichten, ggf. mit weiteren Schichten, in einem mehrschichtig aufgebauten Mantel sowie z.B. der Nutzung verschiedener Oberflächeneffekte. Dabei sind auch vereinzelt, teilweise zwangsweise bedingt durch während der entsprechenden Herstellungsverfahren stattfindende Diffusionsprozesse, Ummantelungen vorgeschlagen worden, die eine Messing-Mantelschicht mit einem Phasengemisch zum Beispiel aus α- und ß-Phase oder aus ß- und γ-Phase aufweisen. Beispielsweise ist in der EP 1 038 625 eine Drahtelektrode beschrieben, deren Mantel eine innere Mantelschicht aufweist, die unter anderem eine homogene ß- und/oder γ-Struktur haben kann. Durch die Wahl einer solchen Struktur soll ein kubisch flächenzentriertes Kristallgitter mit der oben erwähnten stärkeren Einbindung der Zinkatome in das Gitter vorgesehen werden.

Allgemein besteht der Bedarf, die Wirtschaftlichkeit der Drahterodiertechnik durch die weitere Verbesserung von Schneidleistung und Erosionsbeständigkeit zu erhöhen.

Es ist dementsprechend Aufgabe der vorliegenden Erfindung, eine Drahtelektrode mit einer verbesserten Schneidleistung und Erosionsbeständigkeit anzugeben.

Zur Lösung dieser Aufgabe dienen die Merkmale von Patentanspruch 1 und von Patentanspruch 14. Vorteilhafte Ausführungsformen der Drahtelektrode und des Verfahrens zu ihrer Herstellung sind Gegenstand der jeweiligen zugehörigen Unteransprüche .

Nach der vorliegenden Erfindung ist vorgesehen, dass eine Drahtelektrode zum funkenerosiven Schneiden einen Kern hat, der ein Metall oder eine Metalllegierung aufweist. Dabei ist es bevorzugt, dass der Kern zu mehr als 50 Gew.% und mehr bevorzugt vollständig oder im wesentlichen vollständig aus einem oder mehreren Metallen und/oder einer oder mehreren Metalllegierungen besteht. Insbesondere kann der Kern demnach insgesamt aus einem Metall oder aus einer Metalllegierung ausgebildet sein. Der Kern kann homogen ausgebildet sein oder, zum Beispiel in Form mehrerer übereinander angeordneter Metallbzw. Metalllegierungs-Einzelschichten unterschiedlicher Zusammensetzung, in radialer Richtung variierende Eigenschaften aufweisen.

Den Kern umgebend ist, beispielsweise in Form einer Beschich- tung, eine Ummantelung bzw. ein Mantel vorgesehen, die bzw. der eine oder mehrere Mantelschichten umfasst. Der Mantel ist dazu vorgesehen, während eines Drahterodiervorgangs zu ver- schleißen. Im Falle mehrerer Mantelschichten sind diese in radialer Richtung übereinander angeordnet, und jede verläuft bevorzugt den Kern umgebend. Dabei sind eine oder mehrere Mantelschichten vorgesehen, die ein Phasengemisch aus ß- und/oder ß' -Messing und γ-Messing aufweisen. Demnach kann diese eine Mantelschicht bzw. können diese mehreren Mantelschichten jeweils beispielsweise ß-Phase und γ-Phase, ß' -Phase und γ-Phase oder aber ß-, ß 1 - und γ-Phase aufweisen.

In diesem Zusammenhang sei daran erinnert, dass die ß' -Phase unterhalb einer gewissen Temperatur stabil ist und ein geordnetes Gitter mit definierten Gitterplätzen für das Kupfer und das Zink hat und bei Überschreitung dieser Temperatur in die ungeordnete ß-Phase übergeht, in der sich die Atome statistisch auf die Gitterplätze eines kubisch raumzentrierten Gitters verteilen. Da die Umwandlung zwischen ß-Phase und ß 1 -Phase nach herrschender Meinung nicht zu unterdrücken ist und auch in ihren mechanischen und elektrischen Eigenschaften nur geringe Auswirkungen hat, ist im Rahmen dieser Anmeldung mit einer allgemeinen Bezugnahme auf die ß-Phase auch immer die ß' -Phase gemeint, wenn nicht ausdrücklich ein Unterschied gemacht wird.

Da ß 1 -Messing, ß-Messing und γ-Messing, wie oben angegeben, in vorteilhafter Weise zu einer Erhöhung der Schneidleistung beitragen, ist es besonders bevorzugt, wenn mindestens eine dieser Schichten im Außenbereich oder in der Nähe des Außenbereichs des Mantels vorgesehen ist.

Bevorzugt bildet der Mantel die Außenfläche der Drahtelektrode, und zwischen dem Kern und dem Mantel sind - mit Ausnahme einer weiter unten noch genauer angesprochenen, ggf. vorhandenen Übergangsschicht - keine weiteren Schichten vorgesehen. In bestimmten Anwendungsfällen kann es jedoch auch vorteilhaft sein, auf dem Mantel und/oder zwischen Kern und Mantel eine oder mehrere weitere Schichten vorzusehen. Die mindestens eine ß- und/oder ß 1 -Messing und γ-Messing aufweisende Mantelschicht ist so ausgebildet, dass die ß- und/oder ß 1 -Phase und die γ-Phase in einem feinkörnigen Gefüge nebeneinander vorhanden sind, in dem die durchschnittliche Korngröße der ß- und/oder ß 1 -Messing-Körner und der γ-Messing-Körner im Schnitt senkrecht zur Längsachse der Drahtelektrode 5 μm oder weniger und bevorzugt 3 μm oder weniger beträgt. In einer bevorzugten Ausführungsform beträgt die durchschnittliche Korngröße der ß- und/oder ß ' -Messing-Körner und der γ-Messing- Körner im Schnitt senkrecht zur Längsachse der Drahtelektrode mindestens 0,1 μm und bevorzugt mindestens 0,2 μm. Die γ- Messing-Körner liegen dabei zum Beispiel als feine Ausscheidung in einer Matrix aus ß- und/oder ß' -Messing vor. Die genannten Werte für die durchschnittlichen Korngröße beziehen sich somit auf die Gesamtheit bzw. Kombination der ß- und/oder ß'-Phase und γ-Phase in dem Gefüge, d.h. auf alle zu einer der genannten Phasen gehörenden Körner. Ferner beziehen sich die genannten Werte für die durchschnittliche Korngröße auf die Korngröße senkrecht zur Drahtlängsachse, d.h. in Ebenen senkrecht zur Drahtlängsachse. In Richtung der Drahtlängsachse werden die Körner im allgemeinen aufgrund der während der Herstellung entlang der Längsachse erfolgenden Kaltverformung größere Abmessungen als senkrecht zur Längsachse haben, so dass sich im Längsschliff im allgemeinen größere Werte ergeben werden.

Die durchschnittliche Korngröße wird bevorzugt anhand einer Auswertung von rasterelektronenmikroskopischen Aufnahmen von Querschliffen bestimmt. Die Erzeugung der Querschliffe kann dabei in üblicher Weise Schleifen, Polieren und ggf. Ätzen umfassen. Bevorzugt wird der Draht zunächst mit Hilfe des Ionen- böschungsschnittverfahrens quer zu seiner Längsachse geschnitten, d.h. der Draht wird abschnittsweise durch eine Blende abgedeckt und dann mit Ar + -Ionen der Energie 6 keV bestrahlt, wo- durch über die Blende überstehende Teile des Drahtes durch die Ionen abgetragen werden, und anschließend wird der so präparierte Draht mit Leitsilber leitfähig auf einem Probenhalter befestigt, im Ionenstrahl poliert und anschließend direkt in einem Rasterelektronenmikroskop untersucht. Die verwendeten Aufnahmen sind bevorzugt Rückstreuelektronenbilder bei einer Vergrößerung von 2000 bis 3000, bevorzugt 2000. Die Korngrößenbestimmung kann dann in vorteilhafter Weise in Anlehnung an ASTM E 112 mittels Schnittflächenzählung erfolgen. Dazu können beispielsweise über die Bilder Quadrate mit 10 mm Kantenlänge gelegt und die Anzahl der Körner innerhalb des jeweiligen Quadrats gezählt werden, wobei auf der Außenbegrenzungslinie des Quadrats liegende Körner nur zu 50% zu zählen sind. Die durchschnittliche Korngröße im untersuchten Bereich ergibt sich dann aus der Gleichung

wobei D die durchschnittliche Korngröße (Durchmesser eines äquivalenten Kornes mit quadratischem Querschnitt) , A die Fläche des Quadrates, V die Vergrößerung und n die in oben beschriebener Weise ermittelte Anzahl der Körner in dem Quadrat ist. Die so ermittelte Korngröße wird dann zum Beispiel über drei Quadrate gemittelt.

Der Anteil der γ-Phase an dem Phasengemisch beträgt bevorzugt 5 bis 80% und mehr bevorzugt 5 bis 50%. Dabei kann der Anteil in vorteilhaften Ausführungsformen mindestens 10% betragen.

Es hat sich herausgestellt, dass mit einer Drahtelektrode von dieser Ausgestaltung gegenüber vorbekannten Drähten die Schneidleistung und die Erosionsbeständigkeit gleichzeitig erheblich erhöht werden. Durch das in der mindestens einen ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht bestehende Gefüge steht γ-Phase zur Förderung der Entladungsvorgänge im Bearbeitungsspalt zur Verfügung, wobei diese aber ausreichend durch das Gefüge gebunden ist, um zu erreichen, dass sie in feinen Dosierungen freigegeben wird. Mit anderen Worten wird verhindert, dass während des Erosionsvorgangs zwischen Drahtelektrode und Werkstück größere Mengen an γ-Phase, zum Beispiel in Form größerer Körner, im kurzer Zeit lokal komplett abgetragen bzw. aufgrund verminderter Bindung zum Substrat komplett abgelöst werden und damit an anderer Stelle, während der weiteren Bewegung des betreffenden Drahtabschnitts durch die von der Werkstückhöhe und Schnittspaltbreite vorgegebenen Erosionszone in nachteiliger Weise nicht mehr zur Verfügung steht. Durch das feinkörnige Gefüge ist außerdem eine erhöhte, vorteilhafte Anzahl von Korngrenzen vorhanden, die als bevorzugte Fußpunkte für die Funkenentladung dienen können, so dass die Zündwilligkeit im Prozess und damit wiederum die Schneidleistung gesteigert wird.

Im Vergleich zu einer Drahtelektrode mit einer, z.B. äußeren, Mantelschicht, die überwiegend größere γ-Phasen-Körnern aufweist, zeigt die erfindungsgemäße Drahtelektrode eine höhere Erosionsbeständigkeit. Dadurch ist es möglich, zur Erhöhung der Schneidleistung höhere Generatorleistungen in Form von höheren Impulsfrequenzen oder -strömen anzuwenden." Ferner wird die Sicherheit gegen Drahtriss, d.h. die Prozesssicherheit, insbesondere bei höheren Werkstücken gesteigert, so dass in vorteilhafter Weise die Gefahr von Leerlaufzeiten verringert wird.

Der Mantel kann zum Beispiel durch geeignete Beschichtungsver- fahren auf den Kern aufgebracht werden, ggf. in Kombination mit einem Wärmebehandlungsverfahren. Das Aufbringen des Mantels kann beispielsweise physikalisch oder elektrochemisch erfolgen, und es können sich ggf. noch Schritte zur Verringerung des Drahtdurchmessers anschließen. So kann zum Beispiel von einem Vormaterial in Form eines Drahtes aus Cu, CuZn 2 O oder CuZn 37 mit einem Durchmesser von z.B. 1 mm ausgegangen werden, das, beispielsweise galvanisch oder durch Schmelztauchen, mit Zn beschichtet wird. Nachdem optional mit Hilfe einer Drahtzieheinrichtung der Durchmesser dieses beschichteten Drahtes auf eine Zwischenabmessung verringert wurde, folgen ein- oder mehrstufige Diffusionsglühvorgänge, bei denen Wärme durch Wärmestrahlung, Konvektion oder Konduktion eingebracht werden kann. Das Glühen kann zum Beispiel unter Atmosphäre oder einem Schutzgas erfolgen.

Die Ausbildung des feinkörnigen Phasengemisches aus ß- und/oder ß 1 -Messing und γ-Messing kann zum Beispiel in vorteilhafter Weise dadurch erreicht werden, dass der mit Zn beschichtete und optional an eine Zwischenabmessung gezogene Draht zunächst einer Diffusionsglühung unterzogen wird, bei der durch entsprechende bekannte Prozessführung, wie sie z.B. in EP 0 733 431 Bl beschrieben ist, gezielt die Bildung einer Mantelschicht aus überwiegend γ-Messing erfolgt. Dazu kann beispielsweise ausgehend von einer unterhalb einer Temperatur, bei der Diffusion auftritt, aufgebrachten Beschichtung aus Zink, bevorzugt η-Zink, das Diffusionsglühen mit einer Aufheizgeschwindigkeit von mindestens 10 °C/s und einer Glühtemperatur von 500 bis 800 0 C durchgeführt werden, wobei eine Glühzeit im Bereich von 10 bis 300 Sekunden so gewählt wird, dass die Mantelschicht aus überwiegend γ-Messing oder bevorzugt im wesentlichen aus γ-Messing entsteht, und dann eine Abkühlung mit mindestens 10 °C/s erfolgt. Anschließend wird eine zweite Diffusionsglühung vorgenommen, bei der das γ-Messing bei Temperaturen oberhalb von 600 0 C erst in ein sehr zinkreiches ß-Messing mit einem Zinkanteil von bevorzugt mindestens 51 Gew.% umgewandelt wird bzw. im wesentlichen in ein sehr zinkreiches ß- Messing mit einem Zinkanteil von bevorzugt mindestens 51 Gew.% umgewandelt wird. Während der Abkühlung scheiden sich dann aus dem übersättigten ß-Mischkristall feine Bereiche aus γ-Messing aus. Die Aufheizgeschwindigkeit beträgt bevorzugt mindestens 10 °C/s, die Giühzeit liegt bevorzugt im Bereich von 5 bis 200 s, und die Abkühlgeschwindigkeit beträgt bevorzugt mindestens 10 °C/s. Die obigen Glühzeiten beziehen sich dabei auf den Zeitraum zwischen Beginn und Ende der Wärmezufuhr. Optional können sich jetzt noch eine oder mehrere weitere Zn- Beschichtungsschritte und/oder ein oder mehrere weitere Diffusionsglühvorgänge anschließen, bevor der Draht in seine Endabmessung gezogen wird. Es ist möglich, dass der Draht vor, während oder nach einer der obigen Abkühlvorgänge gezogen wird.

In einer bevorzugten Ausführungsform ist zumindest eine und sind bevorzugt alle der mindestens einen ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschicht zu mindestens 50 Gew.% aus ß- und/oder ß' -Messing und γ-Messing ausgebildet. Insbesondere kann zumindest eine oder können alle der mindestens einen ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschicht aus ß- und/oder ß' -Messing und γ-Messing bestehen oder im wesentlichen bestehen.

In einer vorteilhaften mehrschichtigen Ausgestaltung des Mantels sind eine oder mehrere Mantelschichten vorgesehen, die zu mindestens 50 Gew.% und bevorzugt vollständig oder im wesentlichen vollständig aus ß- und/oder ß 1 -Messing, α+ß- und/oder α+ß 1 -Messing, α-Messing und/oder Kupfer ausgebildet und zwischen dem Kern und der mindestens einen ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht angeordnet sind. Bevorzugt ist, dass alle ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschichten radial außerhalb aller zu mindestens 50 Gew.% aus ß- und/oder ß' -Messing, α+ß- und/oder α+ß 1 - Messing, α-Messing und/oder Kupfer ausgebildeter Mantelschichten angeordnet sind.

In einer dieser mehrschichtigen Ausgestaltungen kann der Mantel zum Beispiel in vorteilhafter Weise eine oder mehrere er- - li ¬

ste Mantelschichten aufweisen, die zu mindestens 50 Gew.% und bevorzugt vollständig oder im wesentlichen vollständig aus ß- und/oder ß' -Messing und/oder α+ß- und/oder α+ß ' -Messing ausgebildet und zwischen dem Kern und der mindestens einen ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschicht angeordnet sind. Dabei ist wieder bevorzugt, dass alle ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschichten radial außerhalb aller ersten Mantelschichten angeordnet sind. So kann eine vorteilhafte Ausgestaltung gewählt werden, bei der der Mantel eine weiter außen liegende Mantelschicht, die überwiegend oder vollständig bzw. im wesentlichen vollständig aus ß- und/oder ß 1 -Messing und γ-Messing ausgebildet ist, und eine zwischen dieser weiter außen liegenden Mantelschicht und dem Kern angeordnete Mantelschicht, die überwiegend oder vollständig bzw. im wesentlichen vollständig aus ß- und/oder ß'- Messing und/oder α+ß- und/oder α+ß '-Messing ausgebildet ist, d.h. eine erste Mantelschicht, aufweist oder aus diesen besteht bzw. im wesentlichen besteht. Es ist bevorzugt, dass eine oder mehrere und bevorzugt alle dieser ersten Mantelschichten ein grobkörnigeres Gefüge als die mindestens eine ß- und/oder ß' -Messing und γ-Messing aufweisende Mantelschicht haben. Durch das Vorsehen einer ersten Schicht zwischen dem Kern und einer ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht kann die Gesamtstärke der Mantelschicht erhöht und so die Verschleiß- bzw. Erosionsbeständigkeit weiter gesteigert werden. Es hat sich gezeigt, dass bei einer bloßen Erhöhung der Schichtdicke der ß- und/oder ß' -Messing und γ- Messing aufweisenden Mantelschicht die elektrische Leitfähigkeit und die Zugfestigkeit der Drahtelektrode abnehmen, was sich wiederum nachteilig auf die Schneidleistung und die Prozesssicherheit auswirkt.

In Zusammenhang mit dieser Ausführungsform ist es ferner bevorzugt, dass der Mantel eine oder mehrere zweite Mantelschichten aufweist, die jeweils zu mindestens 50 Gew.% und be- vorzugt vollständig oder im wesentlichen vollständig aus α- Messing und/oder Kupfer ausgebildet und zwischen dem Kern und der mindestens einen ersten Mantelschicht angeordnet sind. Bevorzugt ist dabei, dass alle ersten Mantelschichten radial außerhalb aller zweiten Mantelschichten und alle ß- und/oder ß 1 - Messing und γ-Messing aufweisenden Mantelschichten radial außerhalb aller ersten Mantelschichten angeordnet sind. Eine zweite Mantelschicht kann insbesondere bei Wahl eines Kernwerkstoffs mit mäßigen Erodiereigenschaften, wie z.B. Stahl oder Kupfer, vorteilhaft sein, da sie als zusätzliche Verschleißreserve dient, dabei aber gegenüber einer Mantelschicht, die α+ß- und/oder α+ß ' -Messing bzw. ß- und/oder ß 1 - Messing und γ-Messing aufweist, stärker zur Zugfestigkeit beitragen kann. Eine solche Schicht kann ggf. auch herstellungsbedingt vorhanden sein, wenn sich z.B. zwischen einem Kupferkern oder einem kupferplattierten Stahlkern und der ersten Mantelschicht die besagte Zusammensetzung aufgrund von Diffusionsprozessen ergibt.

In einer weiteren mehrschichtigen Ausgestaltung kann der Mantel beispielsweise eine äußere, bevorzugt in Form einer Deckschicht einen Teil der Außenfläche oder die gesamte Außenfläche der Mantelschicht bildende Mantelschicht aufweisen, die zu mindestens 50 Gew.% und bevorzugt vollständig bzw. im wesentlichen vollständig aus Zink, einer Zinklegierung oder Zink- Oxid ausgebildet ist. Eine derartige äußere Mantelschicht ist im Rahmen von Feinschlichtvorgängen mit geringen Entladeenergien vorteilhaft, da das Zink dann schneller zur Verfügung steht. Bei höheren Entladeenergien wird die Schicht dagegen schnell abgetragen und trägt nur unwesentlich zum Erodierpro- zess bei. Die äußere Mantelschicht weist bevorzugt eine Dicke von 0,1 bis 3 μm auf.

In einer bevorzugten mehrschichtigen Ausgestaltung ist der Mantel aus einer oder mehreren der oben definierten ersten Mantelschichten, einer oder mehreren der oben definierten ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschichten und der oben definierten äußeren, in Form einer Deckschicht vorgesehenen Mantelschicht aufgebaut. Insbesondere kann der Mantel in vorteilhafter Weise aus einer ersten Mantelschicht, einer ß- und/oder ß' -Messing und γ-Messing aufweisenden Mantelschicht und der äußeren Mantelschicht aufgebaut sein.

In einer weiteren bevorzugten mehrschichtigen Ausgestaltung ist der Mantel aus einer oder mehreren der oben definierten ersten Mantelschichten, einer oder mehreren der oben definierten zweiten Mantelschichten, einer oder mehreren der oben definierten ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschichten und der oben definierten äußeren, in Form einer Deckschicht vorgesehenen Mantelschicht aufgebaut. Insbesondere kann der Mantel in vorteilhafter Weise aus einer ersten Mantelschicht, einer zweiten Mantelschicht, einer ß- und/oder ß 1 -Messing und γ-Messing aufweisenden Mantelschicht und der äußeren Mantelschicht aufgebaut sein.

Es ist bevorzugt, dass der Kern überwiegend und bevorzugt vollständig bzw. im wesentlichen vollständig aus Kupfer oder einer Kupfer-Zink-Legierung mit einem Zinkgehalt von 2 bis 40 Gew.% ausgebildet ist. Derartige Kerne sind in vorteilhafter Weise gut kaltumformbar .

In einer bevorzugten Ausgestaltung liegt entlang der gesamten Länge der Drahtelektrode der durchschnittliche Anteil der Dik- ke des Mantels an der Gesamtdicke der Drahtelektrode in dem Bereich von 2% bis 30% und bevorzugt in dem Bereich von 5 bis 20%. Ist der Mantel zu dünn, wird keine ausreichende Erosionsbeständigkeit erzielt. Bei zu dicken Mänteln wird die Verarbeitung durch Kaltumformung erschwert, und ferner sinken die Zugfestigkeit und die elektrische Leitfähigkeit der Drahtelektrode aufgrund des steigenden Anteils an spröden Phasen. Bevorzugte Durchmesser der Drahtelektrode liegen in einem Bereich von 0,1 bis 0,4 mm.

Der den Kern umgebende Mantel kann - je nach Anwendungsfall - sowohl geschlossen ausgebildet sein als auch Risse oder Unterbrechungen aufweisen, d.h. der Mantel kann den Kern vollständig oder im wesentlichen vollständig oder aber nur teilweise bedecken. In ähnlicher Weise kann im Falle mehrschichtiger Ausgestaltungen des Mantels jede Mantelschicht sowohl geschlossen ausgebildet sein als auch Risse oder Unterbrechungen aufweisen, d.h. sie kann die unter ihr liegende Mantelschicht bzw. den Kern . vollständig bzw. im wesentlichen vollständig oder aber nur teilweise bedecken. Dies betrifft insbesondere jede der oben genannten Mantelschichten. Auch im Falle mehrschichtiger Mäntel kann vor diesem Hintergrund der Kern nicht vollständig bedeckt und an einigen Stellen sichtbar sein. So kann es beispielsweise durch die Herstellung der Drahtelektrode mit Kaltziehvorgängen zu Rissen und Abplatzungen der Deckschicht und einer oder mehrerer der darunter liegenden Mantelschichten kommen. Ferner kommt es durch die besagten Kaltziehvorgänge zu Verwerfungen der Mantelschicht bzw. der Mantelschichten, so dass insgesamt die Grenzflächen zwischen benachbarten Mantelschichten bzw. zwischen dem Drahtkern und der darüber liegenden Mantelschicht in der Regel nicht ideal ausgebildet sein werden, sondern unregelmäßig und/oder durch Diffusionsprozesse "unscharf" sein können. Durch die Verwerfungen kann auch das Kernmaterial bis an die Drahtoberfläche vordringen.

In einer bevorzugten Ausgestaltung ist zwischen dem Kern und dem Mantel eine Übergangsschicht angeordnet, die eines oder mehrere Elemente des Kernmaterials sowie eines oder mehrere Elemente des Mantels aufweist und bevorzugt aus diesen besteht oder im wesentlichen besteht. Im allgemeinen wird bereits im Zuge der Herstellung der Drahtelektrode und insbesondere des Mantels eine entsprechende Übergangsschicht entstehen. Zusätzlich oder anstatt einer derartigen herstellungsbedingten Übergangsschicht können auch gezielt eine oder mehrere Übergangsschichten hergestellt werden. Die Übergangsschicht bzw. die Übergangsschichten dient bzw. dienen der Sicherstellung eines ausreichend festen Verbundes zwischen Kern und Mantel.

Es ist insgesamt darauf hinzuweisen, dass zwischen benachbarten Mantelschichten im allgemeinen zwangsläufig herstellungsbedingt, zum Beispiel durch die bereits erwähnten Diffusionsprozesse, Übergangszonen vorhanden sein können, die eine Übergangsschicht bilden können. Wenn im Rahmen dieser Anmeldung davon gesprochen wird, dass der Mantel aus bestimmten Schichten aufgebaut ist, so schließt dies dementsprechend die Anwesenheit derartiger Übergangsschichten nicht aus.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.

Figur 1 zeigt schematisch und nicht maßstabsgetreu einen Querschnitt einer ersten Ausführungsform der erfindungsgemäßen Drahtelektrode.

Figur 2 zeigt schematisch und nicht maßstabsgetreu einen Querschnitt einer zweiten Ausführungsform der erfindungsgemäßen Drahtelektrode.

Die in Figur 1 im Querschnitt gezeigte Drahtelektrode 1 weist einen Kerndraht 2 auf, der vollständig von einem die Außenseite der Drahtelektrode 1 bildenden Mantel 3, 4 umgeben ist. In der dargestellten beispielhaften Ausführungsform ist der Kern 2 homogen vollständig oder im wesentlichen vollständig aus Kupfer oder einer Kupfer-Zink-Legierung mit einem Zinkgehalt von bevorzugt 2 bis 40 Gew.% ausgebildet. Der Mantel 3, 4 ist aus zwei übereinander angeordneten Teil- bzw. Mantelschichten 3 und 4 aufgebaut, die jeweils zu mehr als 50 Gew.% und bevorzugt vollständig oder im wesentlichen vollständig aus Messing ausgebildet sind. Es kann allgemein in bestimmten Fällen vorteilhaft sein, die Drahtelektrode 1 so auszubilden, dass die Zusammensetzung des Kerns 2 und/oder des Mantels und/oder einzelner Mantelschichten in radialer Richtung variiert. Dies kann im Falle des Mantels nicht nur durch mehrschichtige Ausgestaltungen realisiert werden, sondern auch durch kontinuierliche Variationen innerhalb einzelner Mantelschichten.

Die weiter außen liegende Mantelschicht 3 besteht überwiegend, d.h. zu mehr als 50 Gew.%, und bevorzugt vollständig oder im wesentlichen vollständig aus einem Gemisch aus zum einen ß- und/oder ß' -Messing und zum anderen γ-Messing, wobei die ß- und/oder ß 1 -Phase und die γ-Phase in einem feinkörnigen Gefüge nebeneinander vorhanden sind, in dem die durchschnittliche Korngröße der ß- und/oder ß ' -Messing-Körner und der γ-Messing- Körner, d.h. die Korngröße gemittelt über alle zu den genannten Phasen gehörenden Körner, senkrecht zur Drahtlängsachse 0,1 bis 5 μm beträgt.

Die weitere Mantelschicht 4 ist zwischen der Mantelschicht 3, die in dem Ausführungsbeispiel der Figur 1 die Außenfläche der Drahtelektrode 1 bildet, und dem Kern 2 angeordnet. Die Mantelschicht 4 kann in vorteilhafter Weise überwiegend, d.h. zu mindestens 50 Gew.%, und bevorzugt vollständig oder im wesentlichen vollständig aus ß- und/oder ß' -Messing, α+ß- und/oder α+ß 1 -Messing, α-Messing und/oder Kupfer bestehen, wobei ß- und/oder ß 1 -Messing, α+ß- und/oder α+ß '-Messing bevorzugt sind. Es kann auch von Vorteil sein, die Mantelschicht 4 durch zwei übereinander angeordnete Mantelschichten zu ersetzen, wobei die an den Kern angrenzende Mantelschicht überwiegend und bevorzugt vollständig oder im wesentlichen vollständig aus α- Messing und/oder Kupfer ausgebildet ist und die darüber ange- ordnete Mantelschicht überwiegend und bevorzugt vollständig oder im wesentlichen vollständig aus ß- und/oder ß' -Messing, α+ß- bzw. α+ß ' -Messing ausgebildet ist.

Zwischen dem Mantel 3, 4 und dem Kern 2 kann darüber hinaus eine nicht dargestellte, den Kern 2 ebenfalls vollständig umgebende Übergangsschicht angeordnet sein, die mindestens ein Element aufweist, das in dem Kern 2 vorkommt, und mindestens ein Element, das in der Mantelschicht 4 vorkommt. Bevorzugt weist sie eine Legierung auf, die in ihrer Zusammensetzung zwischen derjenigen des Kerns 2 und derjenigen der Mantelschicht 4 liegt. Dabei kann die Zusammensetzung auch in radialer Richtung variieren, um einen allmählichen Übergang zwischen Kern 2 und Mantelschicht 4 zu bewirken. Eine solche Übergangsschicht dient einer verbesserten Verbindung zwischen dem Kern 2 und der Mantelschicht 4. In Abhängigkeit von dem verwendeten Herstellungsverfahren der Drahtelektrode 1 wird, beispielsweise durch Diffusionsprozesse, im allgemeinen bereits inhärent eine mehr oder weniger ausgedehnte Übergangsschicht entstehen. Eine solche Übergangsschicht wird im Vergleich zum Mantel 3, 4 eine geringe Dicke haben.

Es ist darauf hinzuweisen, dass allgemein insgesamt die Grenzflächen zwischen benachbarten Schichten in der Regel nicht ideal ausgebildet sein werden, sondern unregelmäßig und/oder durch Diffusionsprozesse "unscharf" sein können. Wie bereits oben angegeben wurde, kann der Verlauf der Schichten bzw. der Grenzflächen anders als in den zeichnerischen Darstellungen in Abhängigkeit vom Herstellungsverfahren ggf. auch so unregelmäßig sein, dass einzelne oder mehrere übereinander liegende Schichten stellenweise von darunter liegenden Schichten oder dem Kern "durchbrochen" werden. Insbesondere können der Mantel 3, 4 und/oder einzelne Mantelschichten 3, 4 und/oder eine ggf. vorhandene Übergangsschicht so ausgestaltet sein, dass sie Risse oder Unterbrechungen aufweisen und den Kern bzw. darunter liegende Schichten nicht vollständig bedecken.

In einem speziellen bevorzugten Beispiel dieser Ausführungsform ist der Kern 2 aus CuZn 37 ausgebildet, die an den Kern angrenzende Mantelschicht 4- ist überwiegend aus ß- bzw. ß ? - Messing mit einem Zinkgehalt von ca. 48 Gew.% ausgebildet, und die die Außenfläche der Drahtelektrode 1 bildende Mantelschicht 3 ist überwiegend aus einem Phasengemisch aus ß- bzw. ß' -Messing und γ-Messing mit einem durchschnittlichen Zinkgehalt von ca. 55 Gew.% ausgebildet. Die durchschnittliche Schichtdicke der Mantelschicht 4 beträgt ca. 8 μm, die durchschnittliche Schichtdicke der Mantelschicht 3 beträgt ca. 15 μm, und die Dicke der gesamten Drahtelektrode 1 beträgt 0,25 mm. Die Drahtelektrode 1 weist eine Zugfestigkeit von ca. 800 N/mm 2 und eine elektrische Leitfähigkeit von ca. 12 m/Ωmm 2 auf. Eine etwaige Übergangsschicht zwischen dem Kern und dem Mantel 3, 4 könnte beispielsweise eine Dicke von ca. 1 μm haben.

In Figur 2 ist eine weitere bevorzugte- Ausführungsform einer Drahtelektrode 1' im Querschnitt gezeigt. Diese Ausführungsform unterscheidet sich prinzipiell nur dadurch von der Ausführungsform gemäß Figur 1, dass auf der Mantelschicht 3 als äußerste Mantelschicht noch eine Deckschicht 5 vorgesehen ist, die überwiegend und bevorzugt vollständig bzw. im wesentlichen vollständig aus Zink, einer Zinklegierung und/oder Zink-Oxid ausgebildet ist. Sie sollte in vorteilhafter Weise einen höheren Zinkgehalt als die Mantelschicht 3 aufweisen und kann dann Feinschlichtvorgängen mit geringen Entladeenergien günstig beeinflussen. Dabei kann die Deckschicht 5 eine deutlich geringere Dicke als die Mantelschicht 3 und stärkere Unterbrechungen aufweisen. Ggf. kann daher die Außenfläche der Drahtelektrode 1' im wesentlichen durch die Mantelschicht 3 und die Deckschicht 5 gebildet werden. In einem speziellen bevorzugten Beispiel dieser Ausführungsform gemäß Figur 2 ist der Kern 2 aus CuZn 2O ausgebildet, die an den Kern angrenzende Mantelschicht 4 ist überwiegend aus ß- bzw. ß 1 -Messing mit einem Zinkgehalt von ca. 45 Gew.% ausgebildet, die Mantelschicht 3 ist überwiegend aus einem Phasengemisch aus ß- bzw. ß' -Messing und γ-Messing mit einem durchschnittlichen Zinkgehalt von ca. 53 Gew.% ausgebildet, und die Deckschicht 5 besteht überwiegend aus Zink-Oxid. Die durchschnittliche Schichtdicke der Mantelschichten 3 und 4 beträgt jeweils ca. 12 μm, die durchschnittliche Schichtdicke der Deckschicht 5 beträgt ca. 1 μm, und die Dicke der gesamten Drahtelektrode 1' beträgt 0,25 mm. Die Drahtelektrode I 1 weist eine Zugfestigkeit von ca. 750 N/mm 2 und eine elektrische Leitfähigkeit von ca. 17 m/Ωmm 2 auf. Eine etwaige Übergangsschicht zwischen dem Kern und dem Mantel 3, 4 könnte beispielsweise eine Dicke von ca. 1 μm haben.