Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STERILIZATION USING LIQUID CARBON DIOXIDE AND UV-IRRADIATION
Document Type and Number:
WIPO Patent Application WO/2000/004932
Kind Code:
A1
Abstract:
A process is provided for cleaning, disinfecting, and sterilizing substrates comprising the steps of: (a) placing the contaminated substrate in a cleaning vessel; (b) contacting the contaminated substrate with dense phase carbon dioxide in liquid form; (c) subjecting the substrate and the dense phase carbon dioxide to ultraviolet radiation having a wavelength within the range of about 180 to 300 nm for a duration and intensity sufficient to produce a photochemical reaction capable of destroying the DNA of microorganisms on the substrate; (d) substantially simultaneously subjecting at least the dense phase carbon dioxide to agitation; and (e) removing the dense phase carbon dioxide from the cleaning vessel and thereby transporting the contaminants from the substrate such that the subsrate is cleaned and, in the case of contaminated garments, disinfected or, in the case of medical and dental instrumentation, sterilized. Substantially simultaneously with the UV exposure and agitation, the substrates are also subjected to an oxidizing sterilant, such as H¿2?O¿2?.

Inventors:
CHAO SIDNEY
BEACH ROBERT W
SORBO NELSON W
PURER EDNA M
Application Number:
PCT/US1999/016221
Publication Date:
February 03, 2000
Filing Date:
July 19, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RAYTHEON CO (US)
International Classes:
A61L2/10; A61L2/22; (IPC1-7): A61L2/10
Foreign References:
US5370740A1994-12-06
US5013366A1991-05-07
US5213619A1993-05-25
US5236602A1993-08-17
US5316591A1994-05-31
DE4306645A11994-09-08
US5467492A1995-11-21
Attorney, Agent or Firm:
Raufer, Colin (CA, US)
Download PDF:
Claims:
CLAIMS What Is Claimed Is :
1. A process for removing contaminants from a preselected sabstrate, said con taminants including soiling substances and microorganisms comprising organic m lecular bonds in the form of Db said process comprising the steps of (a) placing said substrate containing said contaminants in a cleaning ves sel ; (b) contacting said substrate containing said contaminants with dense phase carbon dioxide in liquid form ; (c) subjecting said substrate and said dense phase carbon dioxide to ul traviolet radiation having a wavelength within the range of about 180 to 300 nm for a duration and intensity sufficient to produce a photochemical reaction capable of break ing said organic molecular bonds, thereby destroying said DNA and resulting in frag mented biological contaminants ; (d) substantially simultaneously subjecting at least said dense phase car bon dioxide to agitation ; and (e) removing said dense phase carbon dioxide from said cleaning and disinfection vessel and thereby transporting said contaminants, including said frag mented biological contaminants, from said substrate such that said substrate is clean and disinfected.
2. The process of Claim 1 wherein said substrate comprises a material selected from the oup consisting oi metals, fabrics, cellulose, rubbers, ceramics, carbon, glasses, and polymeric materials.
3. The process of Claim 2 wherein said substrate comprises an item selected from the group consisting of garments and medical instrumentation.
4. The process of Claim 3 wherein said item is said garment and said agitation is performed by introducing said dense phase carbon dioxide into said vessel and me chanically agitating said gardent and said dense phase carbon dioxide, thereby disin feeling said garment.
5. The process of Claim 4 wherein said mechanical agitation is performed by a set of high velocity fluid jet manifolds to mechanically agitate said garment and said dense phase carbon dioxide.
6. The process of Claim 3 wherein said item is said medical instrumentation an said agitation is performed by subjecting said dense phase carbon dioxide to cavitation, thereby sterilizing said medical instrumentation.
7. The process of Claim 6 wherein said cavitation is generated by a device se lected from the group consisting of ultrasonic transducers, homs, cavitation blades, and sonic whistles.
8. The process of Claim 1 wherein said radiation has a wavelength within the range of about 253 to 254 nm.
9. The process of Claim 1 wherein step (b) further comprises contacting said substrate with a reactive agent capable of reacting with said contaminants to thereby en hance the removal of said contaminants from said substrate.
10. The process of Claim 9 wherein said reactive agent is an oxidizing agent se lected from the group consisting of an oxygencontaining compound and a hydrogen containing compound.
11. The process of Claim 10 wherein said reactive agent is selected from the group consisting of hydrogen peroxide and ozone.
12. The process of Claim 11 wherein said hydrogen peroxide is mixed with said dense phase gas prior to introduction into said cleaning vessel.
13. The process of Claim 1 further comprising after step (e) removing said dense phase carbon dioxide containing said contaminants from said cleaning vessel and adding clean dense phase carbon dioxide to said cleaning vessel while maintaining pressure in said cleaning vessel.
14. The process of Claim 1 wherein said biological contaminant is selected from a group consisting of bacteria and spores.
Description:
STERILIZATION USING LIQUID CARBON DIOXIDE AND UV-IRRADIATION

BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to a process for cleaning, disinfecting, and sterilizing materials, and, more particularly, to a process for employing the combination of dense phase gas, ultraviolet radiation, and sterilants such as H O. to clean, disinfect, and sterilize materials such as fabrics and medical implements.

2. Description of Related Art (A) Medical and Dental Instruments In the health field, medical and dental instruments that enter the blood stream or sterile tissue should be sterilized before each use. Sterilization means the use of a physi- cal or chemical procedure to destroy all microbial life and endospores. Today, main hospital sterilizing means are (a) moist heat by steam autoclaving, (b) dry heat, and (c) ethylene oxide gas. However, many medical devices and implements cannot be sub- jected to heat, as it leads to degradation of the device or implement.

A variety of chemical germicides (sterilants) have been used to process reusable heat-sensitive medical devices, as they promote a high level of disinfection (virtual elimination of pathogenic microorganisms, but not all microbial forms, such as bacterial endospores). There are three levels of disinfection : (1) high (kills all organisms except high levels of bacterial spores with chemical germicides registered as sterilants by the EPA), (2) intermediate (kills mycobacteria, bacteria, and most viruses, with a chemical

germicide registered as a "tuberculoside" by the EPA, and (3) low (kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA).

In general, items that oniy intact skin, such as sarments, headboards, blood pres- sure cuffs, and other medical accessories, can usually be processed by washing with a detergent or using a low level disinfectant.

In all cases, the main chemical sterilization or disinfecting technology involves the use of 12/8S% ethylene oxide (E70)/hydrochlorofiuorocarbon ("HCFC) mixture, hy- drogen peroxide (H2O2) plasma, peracetic acid (C2H2O3)/H2O2 plasma, and vapor phase H, O,. More recently, a 10/90% ETO/CO2 gas mixture has been used, where the CO ; is a more environmentally "friendly" diluant for the active sterilizing species than the HCFC in the 12/88% ETO/HCFC mixture.

The most efficient of the sterilizing technologies cited are the 12/88% ETO/HCFC and 10/90% ETO/CO>, as they are conducted at positive operating pres- sures (10 to 12 psig and 50 to SO psig, respectively). The other known processes are conducted at sub-atmospheric pressures. The sterilization efficacy of positive pressures against challenge barriers is quoted at 97% on surfaces, but only 44% in the lumen for the 12/88% ETO/ECE. The other sub-atrnospheric technologies cited range lower still, between 32 to 78% on surfaces and 6 to 35% in the lumen. See, MacNeal et al.,"Com- parison of Health Care-Based Sterilization Technologies : Safety, Efficacy, and Eco- nomics", Journal ofHeahhcare Safety, Compliance &. Infection Control, vol. 1, No. 2 (Dec. 1997). Across the board, the substantially lower sterilization efficacy cited for hard to access surfaces such as that of a lumen, is due to the difficulty in cleaning bio- logical debris from cavities prior to sterilization or to the presence of inherently hie-heur levels of bioburden in these cavities. Though the positive pressure in the current systems does not ensure a high level of"kill"in cavities, it is better in overcoming the penetra- tion obstacles to the sterilants in cavities, or in the face of heavy bioburden or biomass.

In addition to the above, the chemical sterilants are highly toxic, and even minor residual levels in the sterilizer, or on sterilized surfaces, can act as irritants to operators or patients.

In summary, the current challenges of chemical sterilization for medical and dental devices is related mostly to difficult to access surfaces such as that of a lumen for the rigorous pre-cleaning required for bioburden reduction, delivery of adequate levels

of active sterilant for these"challenged"surfaces throughout the sterilization cycle, ability of rapidly delivering sieriiants to these surfaces in order to reduce cycle time, and ability to then deactivate or eraciently separate out the residual sterilizing species to mmrn. ize the risk to the operator or patient.

(B) Garments In the field of commercial garment cleanudry-cleanins, typically, garments from multiple customers are co-processed in the sarae machine-cteanina cycle, posinQ the risk of some forms of pathogen transmission through garment cross-contamination.

Fluids used in conventional garment dry-cleaning do not have disinfecting properties, and disinfection in commercial dry-cleaning is not addressed.

The challenge to the commercial garment cleaning/dry-cleaning is to effect the pathogen destruction within the short agitation steps within the cleaning cycle (typically less than 10 minutes) without leading to the degradation of the fabrics themselves and without producing toxic waste.

(C) Dense Phase Carbon Dioxide : IIV Radiation Dense phase carbon dioxide is an inexpensive and virtually unlimited natural re- source that is non-toxic, non-flammable, and non-smog producing. Dense phase carbon dioxide is compressed to either supercritical or subcritical conditions to achieve liquid- like densities, and is often simply termed"liquid carbon dioxide". Liquid carbon dioxide exhibits solvating properties typical of hydrocarbon solvents. Its properties make it a good organic solvent-like cleaning medium in general, and specifically, a good dry- cleaning medium for fabrics and garments.

U. S. Patent No. 5, 316, 591, issued to Chao et al. and assigned to Hughes Aircraft Company, addresses part cleaning by cavitation in liquified gases. U. S. Patent No.

5, 370, 740, issued to Chao et al. and assigned to Hughes Aircraft Company, addresses chemical decomposition of organic materials by sonication in liquid carbon dioxide.

U. S. Patent No. 5, 013, 366, issued to Jackson et al. and assigned to Hughes Aircraft Company, addresses a part cleaning process using phase shifting of dense phase carbon dioxide with or without the aid of W, sonicatiorl, and chemical oxidants. U. S. Patent No. 5, 236, 602, issued to Jackson and assigned to Hughes Aircraft Company, addresses a dense phase fluid photochemical process for liquid substrate treatment using UV, with or without chemical oxidants to chemically alter toxic materials into non-toxic species.

U. S. Patent Nos 5,068,040 and 5,215,592, both issued to Jackson and assigned to Hushes Aircraft Company, address a dense fluid photochemical process for solid sub- strate treatment using UV, with or without chemical oxidants. U. S. Patent No.

13, 619, issued ro Jackson et al., addresses a process for cleanms, sterilizing, and im- planting materials using high energy (acoustic radiation or non-uniform electrostatic field) dense fluids.

Although each of the foregoing patents addresses cleaning in dense phase carbon dioxide in general, and specifically, organic chemical destruction with the aid of UV, with or without chemical oxidants, the disinfection or sterilization in dense phase carbon dioxide by UV radiation with or Nithout chemical oxidants is not addressed. Further- more, although U. S. Patent No. 5,213,619 addresses a process for cleaning, sterilizing, and implanting materials using dense fluids that are energized by a non-uniform electro- static field and high powered acoustic radiation, costly sterilizing equipment is needed, and more importantly, removal of soil from substrates is not effective.

Tne initial patent referencing dens phase carbon dioxide as a suitable solvent for garment dry-cleaning applications is that of Mattel, U. S. Patent No. 4, 012, 194. Other parents, such as U. S. Patent No. 5, 267, 455, issued to Dewees and assigned on its face to The Clorox Company and U. S. Patent No. 5, 467, 492, issued to Chao et al. and assignez to Hughes Aircraft Company, also reference liquid carbon dioxide as a suitable garment dry-cleaning medium. Again, these patents fail to address garment disinfection in dense phase carbon dioxide.

UV light has proven benefits in a broad range of applications, including the dis- infection of solid surfaces, liquids, air, and photochemical processes. The advantage of using UV light for disinfection lies in the fact that it controls pathogens without the use of harmful chemicals. For example, UV germicidal energy has been used to purify wa- ter. UV energy between 180 and 300 nm disrupts the DNA strands of micro-organisms and prevents cell replication. A microbe that cannot replicate dies. Microbes are par- ticularly vulnerable to the effects of light at a wavelength at or near 253 to 254 nm, due to the resonance of this wavelength with molecular structures. This resonance breaks or- ganic molecular bonds which in turn translate to cellular or genetic damage for micro- organisms.

A major disadvantage cA Lis photochernical destruction is that the targeted area must be in the line of sight of the radiation, in order for sterilization to occur and is thus by itself ineffective for all but relatively clean and directly irradiated targets. Addition of oxidizing species that can be readily photo-dissociated upon exposure to me ut radia- tion into more active species increases the efficacy of the IN sterilization, but it does not resolve the challenge of cleaning hard to access cavities and holes, such as that of a lumen, or the challenge of efficiently delivering the sterilants into these holes.

It is desirable to provide a single-step dense gas cleaning process that, in addi- tion to cleaning a substrate, also achieves the disinfection and sterilization of substrates using simple, faster, economical, and less toxic techniques. The present invention fulfills these needs.

SUMMARY OF THé TON A new and improved process for cleaning, disinfecting, and sterilizing substrates is provided herein which possess substantially all of the advantages of the above- described systems while overcoming most of their significant disadvantages. More spe- cifically, in accordance with the invention, a process is provided for removing contai- nants from a preselected substrate, with the targeted contaminants including soiling sub- stances as well as microorganisms. Tne process comprises the following steps : (a) placing the contaminated substrate in a cleaning vessel ; (b) contacting the contaminated substrate with liquid carbon dioxide ; (c) subjecting the substrate and the liquid carbon dioxide to ultraviolet radiation having a wavelength within the range of about 180 to 300 nm for a duration and inten- sity sufficient to produce a photochemical reaction capable of breaking the organic mo- lecular bonds within the microorganisms, thereby destroying their DNA and resulting in fragmented biological contaminants ; (d) subjecting the substrate and the liquid carbon dioxide substantially simulta- neously to agitation ; and (e) removing the liquid carbon dioxide from the cleaning and disinfection vessel and thereby transporting the contaminants, including the fragmented biological con-

taminants, from the substrate such that the substrate is cleaned. disinfected and/or ster- ilized.

Thus, in accordance with the invention, the substrate to be cleaned is exposed in a single process vessel to liquid carbon dioxide (dense phase carbon dioxide) as well as to ultraviolet (UV) radiation and agitation in order to achieve both a clean surface rid of soiling substances as well as a disinfected surface substantially free from microorgan- isms. In this mannes, substrates may be inexpensively cleaned and disinfected, and even sterilized, in an environmentally-friendly but still highly effective and efncient manner.

In particular, in one embodiment, the present invention is directed to a process where UV light, with or without the presence of sterilants such as, but not limited to, H,O., is used to disinfect or sanitize commercial garments processed in a liquid carbon dioxide garment dry-cleaning process, that uses high velocity jets as a means of me- chanical agitation.

Further, in a second embodiment, the present invention is directed to a process that uses dense phase carbon dioxide under vigorous agitation produced by cavitation shear and convection with sonic whistles or cavitational blades, in conjunction with UV light and chemical oxidants such as, but not limited to, H ; 0 ; to accomplish surface pre- cleaning, sterilization, and then residual sterilant destruction within a single process of cleaning and sterilizing medical or dental devices. Specifically, this embodiment em- phasizes cavitation for removal of soil from surfaces and transport away from the sur- faces, with sterilant transport to those surfaces shaded from direct UV exposure.

These and many other features and attendant advantages of the present invention will become apparent as the invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.

BREF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic representation of a system for practicing a preferred exem- plary process of the present invention in which garments may be dry-cleaned and disin- fected with treatments by both dense phase carbon dioxide and UV radiation ; and

FIG. 2 is a schematic representation of a system for practicing a preferred exem- plary process of the present invention in whic . .eGical andlor dental instrumentation may be cleaned and sterilized with treatments by both dense phase carbon dioxide and UV radiation.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is directed to a new and improved process for cleaning, disinfecting, and sterilizing substrates. Essentially, the process employs ultraviolet ra- diation in conjunction with sterilants such as, but not limited to, H ; 0 ; to destroy patho- gens on the substrate, as well as to fragment organic bonds within organic soiling mate- rials, and employs dense phase gas in liquid form to transport pathogen and organic fragments as well as other inorganic soiling materials from the substrate. Vigorous agi- tation is employed in conjunction with the W irradiation and H, O, to enhance the effi- cacy of the process. The combination of vigorous agitation, IJV irradiation, and sterilant is essential to the soil removal from"challenged"surfaces and to the fast transport of the sterilant to these surfaces. As used herein, the term"challenged surface"refers to a sur- face that is relatively inaccessible to fluid, UV radiation, and agitation. Thus, the present invention represents a new and nonobvious combination of two known techniques to clean, disinfect, and sterilize substrates in an economical, efficient, and environmentally- friendly manner.

The dense phase fluid which is used in accordance with the present invention comprises carbon dioxide which may be converted to a supercritical fluid or liquefied at temperatures and pressures which will not degrade the physical or chemical properties of the substrate being cleaned.

Dense phase carbon dioxide is compatible with all substrates contemplated for cleaning, and has a low cost and high health and safety ratings. Further, dense phase carbon dioxide is non-flammable and environmentally-friendly. Also, dense phase car- bon dioxide does not dissociate when exposed to the selected radiation used in the pres- ent process, or if it does dissociate, it forms products which are useful and desired in the present process.

Carbon dioxide is an easily liquefiable natural resource. Once liquefied, it offers a good, low viscosity medium at relatively low pressure (about 600 to 1, 040 psi or about <BR> <BR> <BR> <BR> 4 tu ,3 1 kg/cm2) and mild temperatures (about 10° to 30°C). Tnese values are below the critical pressure of 1071 rsl kz/cm2) and the critical te nperature 22°C for car- bon dioxide. The dense (or compressed) gas phase above the critical temperature and near or above the critical pressure is often referred to as a "supercritical fluid".

Tne radiation used in practicing the present process is selected to produce the dissociation of the undesired material or contaminant, and more particularly the disso- ciation of organic bonds within soiling substances and biological contaminants. The pre- ferred radiation comprises ultraviolet (UV) radiation within the range of about 180 to 300 nm, which disrupts the D suds of microorganisms and prevents cell replica- tion. In particular, it is known that microbes are uniquely vulnerable to the effect of light at wavelengths at or near 253 to 254 nm due to the resonance of this wavelength with molecular structures and the resulting molecular bond breakage that occurs upon expo- sure. Ultraviolet radiation may be produced in any commercially available manner, such as mercury arc lamps or xenon flash lamps. Operation of such lamps may be continuous or high energy burst pulsed, so long as the latter is suitable for cleaving contaminant bonds.

It is noted that, in addition to destroying pathogens, the radiation may also alter the molecular structure and properties of the dense fluid so as to enhance its cleaning ability, as recognized by Jackson (U. S. Patent Nos. 5,068,040 and 5, 236, 602, both de- scribed above). The enhanced cleaning ability of the dense phase fluid exposed to UV radiation derives from the believed polarity of the dense phase fluid induced by photo- excitation.

There are a number of techniques to improve the effectiveness of the ultraviolet radiation in photodissociating organic molecular bonds. One technique involves in- creasing the interna reflection of the chamber by including a radiation-reflecting liner on its interior surface. By scattering the radiation throughout the cleaning vessel by in- troducing additional internal reflection, there is greater exposure of the substrate sur- faces to the radiation. This phenomena decreases the dependence of substrate distance from the radiation source for effective surface cleaning.

More specifically, adding an oxidizing sterilant, e.g., H2O2 that will dissociate into more active radicals when irradiated by UV, coupled with vigorous fluid agitation, such as with a cavitating blade or sonic whistle, will transpon these active species into holes and crevices that are shaded from direct exposure to the UV. Tnus, on UV-shaded, challenge access surfaces, pathogen obstruction occurs through sterilant exposure (as activated by UV and delivered by agitation).

Therefore, the ultraviolet radiation employed in the practice of the invention di- rectly destroys pathogens associated with the substrate and indirectly activates sterilants that effect sterilization, and thereby enhances the cleaning ability of the dense phase fluid by photoexcitation. Adåitionally, the photolysis of the present invention achieves a size reduction in larger organic and inorganic molecules, which are cleaved into smaller fragmentes that are easier to solvate or suspend in the dense phase fluid than larger mole- cules. Therefore, in addition to destroying pathogens and photoexciting the dense phase fluid, the photolysis of the present invention decreases surface cleaning time by in- creasing soil solvation and suspension in dense fluids.

The dense phase fluid also serves multiple purposes when combined with ultra- violet radiation exposure, such as serving as an effective radiation transmission medium, a cleaning solvent, and waste carrier. The agitated dense phase fluid bathes the substrate surface and dissolves or suspends the soils, including biological contaminants, which are photolytically or chemically (when sterilants are present) dissociated and accordingly destroyed. The dense phase fluid then suspends and transports the decomposition prod- ucts as well as other soils dissolved or dislodged by agitation, rendering surfaces both clean and sterile.

Thus, the present process simultaneously provides both the cleaning step and the disinfection and sterilization steps that have been performed in separate steps in prior art processes discussed above. Tne dense phase fluid under vigorous agitation and the UV radiation and sterilants such as H2O2 work together to achieve both cleanliness and dis- infection and/or sterilization of substrates.

The process of the present invention may be used to clean, disinfect, and sterilize a wide variety of substrates formed of a variety of materials. Typical substrates from which soils may be removed by the present process include, but are not limited to, sub- strates formed of metals, fabrics, cellulose, rubbers, ceramics, carbon, glasses, polymeric

materials, and other organic or inorganic compounds. In addition, the substrate may be in the form of paniculate matter or other finely divided material. The substrate may also comprise water or other liquid carrier for waste materials. The process is especially well adapted and contemplated for cleaning and disinfecting/sterilizing garments and other fabrics as well as medical and denial instrumentation.

Inorganic and organic soils can be removed simultaneously in accordance with the present process. Organic soils absorb'LJV radiation causing bond cleavage, while in- organic materials are removed through solvation or fluidation in the dense phase media.

In a first embodiment of the present invention, the undesired material which is removed comprises a contaminant, such as a hydrocarbon material or biological mate- rial, on the surface of substrate, such as garments and fabrics or medical and dental im- plements. In another related embodiment, the undesired material which is removed and destroyed comprises pathogens or dissolved organic soils, suspended in the liquid CO ; medium.

Turning now to the drawings, wherein like reference numerals designate like elements, an exemplary cleaning and disinfection system for practicing the present in- vention is shown diagrammatically in FIG. I. Specifically, the system 10 depicted in FIG. 1 is a dense phase gas gardent dry-cleaning system 10 that employs ultraviolet ra- diation to achieve disinfection of the garments and recirculating fluid. The various parts of the apparatus are conventional and have been disclosed elsewhere. Although specific details of the apparatus are not described here, it is believed that those skilled in the art can use the teachings of the present invention to construct suitable apparatus to carry out the process of the present invention.

As shown in FIG. 1, the exemplary cleaning and sterilization system for use in practicing the present invention includes a gas supply, with the dense gas being formed by known methods of controlling temperature and pressure. The liquid dense phase gas is stored in a storage vessel 12 at approximately 915 psi and 25°C, for example. The storage vessel 12 is conventional, and comprises any material capable of containing the dense phase gas at required high pressures.

FIG. 1 depicts a cleaning chamber 14 equipped with lid 14a suitably employed in the practice of the invention. Garments are placed in a perforated cleaning basket 16 within the cleaning chamber 14, the lid 14a is closed, and the chamber is pressurized.

Liquid carbon dioxide is introduced into the chamber 14 from the storage vessel 12 by a pump 18, via a set of high velociy fiuid jet manifolds Z0, and the reversible agitation of the gardent load is commenced, as described in U. S. Patent 5,,6/,492, supra. As the ? ; arments accelerate, and span the peripheral cleaning zone of the perforated cleaning basket 16, the soil is expelled from the garments and from the basket into the zone 22 between the basket wall and fee cleaning chamber wall and then out of the cleaning chamber 14. During this agitation step, the garments are exposed to UV radiation from a UV radiation source 24, such as a mercury lamp, of an appropriate intensity to cause sterilization/disinfection, at one or more peripheral basket areas. The fluid is re- circulated in a closed loop through a lint trap 26 and a batch of filters 23 which serve to remove insoluble particulates. The re-circulating fluid can also be exposed to the UV light at optional points, such as denoted at 30, within the re-circulating loop, preferably before the pump inlet from the pump 18. The UV exposure can take place alone or in conjunction with chemical oxidizing agents such as hydrogen peroxide, injecte into the re-circulating loop in a manner that promotes its dispersion by the recirculating liquid carbon dioxide, i. e., at the pump discharge 32. At the end of the cleaning/agitation/- disinfection step, the fluid is drained back into the storage vessel 12. The gaseous CO2 is recovered back into the storage vessel 12 via a compressor 34 and re-condensed into liquid by a refrigerator 36a/condensor 36b.

Other elements of the system 10 include a still 38, which is used to distill solu- bilized soils or spent sterilant, a pump 42 that replenishes the storage tank 12 with fresh liquid CO., and a sterilant pump 40 typically positioned at or near the main pump 18 inlet to promote the dispersion of the sterilant into the main liquid C0, medium. In ad- dition, a heater 44 may be used to heat the CO2, if desired.

In garment dry-cleaning/disinfection, typical process temperatures (in the cleaning chamber 14) are below 32"C, with pressure below the critical pressure of 1071 psi.

The typical exposure time of the articles to be cleaned will vary, depending upon the nature of the substrate being cleaned, the degree of soiling, and so forth. However, when working with fabrics, a typical exposure time to the dense phase gas is between about 5 to 10 minutes, while the typical-exposure time to the ultraviolet radiation is

within the range of about 5 to 10 minutes. However, some substrates, such as hospital sarments, may require somewhat longer agitation and UV exposure.

The liquid suspension medium, i. e., the dense phase fluid within the chamber 14, may contain additives, such as dense phase gas oxidants, which enhance the cleaning process. The-oxidants may be photodissociated by me UV radiation, with the result that the photodissociated species have increased reactivity with the soils and pathogens and enhance their removal or destruction. Examples of additives that may be employed in- clude an oxidizing gas, such as ozone, and oxidants, such as hydrogen peroxide. How- ever, the invention is not limited to these specific additives.

Hydrogen peroxide is the preferred reactive agent for use in the present process and is preferably employed in the dry-cleaning garment system depicted in FIG. 1. Hy- drogen peroxide can be photodissociated to hydroxyl radicals and peroxide radicals, which react with soils and form innocuous carbon dioxide and water by-products. Thus, hydrogen peroxide enhances the cleaning qualities of dense phase carbon dioxide with- out adding toxicity to the process and offers the added avantage of serving as a biocide.

Additionally, unlike carbon dioxide, hydrogen peroxide has a large dipole and low di- electric strength. Accordingly, a mixture of carbon dioxide and hydrogen peroxide in varying ratios may possess a wide range of hydrogen bonding, polar, and dipole energy contributions, hence may offer a wide variety of solubility chemistries.

Turning now to FIG. 2, a part cleaning, disinfection, and sterilization system 10' in accordance with the present invention is depicted therein, with the parts specifically being contemplated to be medical and dental instrumentation. In this embodiment, the parts themselves are typically stationary, to prevent damage to the parts, and since vig- orous agitation is employed, typically part fixturing or traying (not shown) is required.

The vigorous agitation necessary for cleaning and even transport and distribution of chemical oxidants needed for sterilization/disinfection is provided by vigorous shear cavitation, such as generated by ultrasonic transducers, horns, cavitation blades, or sonic whistles. The use of shear cavitation in conjunction with dense phase gas cleaning is disclosed elsewhere ; see, e. g., U. S. Patent 5, 316, 591, supra. FIG. 2 represents an exem- plary dense phase carbon dioxide part cleaning system that also embodies the part disin- fection/sterilization process of the present invention, using cavitation, UV irradiation of parts, and fluid and chemical oxidants.

A typical dense phase carbon dioxide part cleaning and disinfection process is as follows : the parts are placed in the cleaning chamber 46 and the lid 46a is closed and the chamber is pressurized. Liquid carbon dioxide is introduced into the chamber 46 from a storage tank 48 by a compressor 50. A chemical oxidant (such as, but not limited to hv- drogen peroxide or ozone) preferentially located at the fluid inlet path 52 is introduced into the chamber 46 along with the liquid carbon dioxide medium. A cavitation disk 54 is employed in the chamber 46, and the disk 54 is activated along with the ultraviolet ra- diation source 56, which in the system 10'depicted in FIG. 2 is contained within the chamber 46 itself, thereby promoting the illumination of the exposed parts.

Agitation via the cavitation disk 54 is continued for a predetermined amount of time, typically for a period of time within the range of about 5 to 10 minutes. The cleaning fluid is thereafter drained from the chamber 46 to a still 58 and distilled back to storage 46 and recondensed to a liquid state by the refrigeration/condenser 60. The time period of cavitation is essentially the time period is same as UV exposure, which is de- rived from EPA guidelines, as referenced in EPA Design Manual for Municipal Waste Water Disinfection.

Typical process temperatures for carbon dioxide are below the critical tempera- ture of 32°C and the typical process pressure is below 1071 psi, such that the cleaning medium is in a liquid form.

The necessary processing parameters, i. e., gas type and gas mixture ratios, tem- peratures, and pressures necessary to achieve the desired cleanliness and sterility levels, are dependent upon the nature and extent of contamination and the configuration of the material being processed. An estimation of such parameters may be made using the EPA guidelines presented in the above-referenced EPA Design Manual, using the UV Den- sity Method employed.

The cleaning vessels 14, 46 shown in FIGS. 1 and 2, respectively, are exem- plary only, and other possible cleaning vessel configurations may be used in order to carry out the process of the present invention. For example, a wide variety of external and internal heating and cooling elements may be utilized in order to provide the neces- sary temperature control to accomplish phase shifting of the dense fluid between the liq- uid and supercritical fluid states, if such phase shining is employed. Also, cleaning ves- sels may be used wherein several types of cavitation-producing agitation methods are

incorporated into the cleaning chamber 14, 46 along with the ultraviolet radiation fea- tures.

Thus, there has been disclosed an improved process for cleaning, disinfectins and sterilizing substrates. It will be readily apparent to those of ordinary skill in this art that various changes and modifications of an obvious nature may be made without de- parting from the spirit of the invention, and all such changes and modifications are con- sidered to fall within the scope of the invention, as defined by the appended claims.